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Abstract

We propose an algorithm for exact support recovery in the setting of noisy compressed sensing

when all entries of the design matrix are i.i.d. standard Gaussian. This algorithm achieves the same

(optimal) conditions of exact recovery as the exhaustive search, and has an advantage over the latter

of being adaptive to all parameters of the problem and computable in polynomial time. We use a

more careful approach to study the non-asymptotic minimax Hamming risk where we show that a

non-adaptive variant of our method is nearly optimal.
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1. Statement of the problem

We consider the linear regression model

Y = Xβ + σξ (1)

with the outputs Y ∈ R
n, the unknown vector β ∈ R

p, the design or sensing matrix

X ∈ R
n×p, and σ > 0. Motivated by the noisy compressed sensing problem, we assume

that all entries of X are i.i.d standard Gaussian random variables, and ξ ∼ N (0, In) is a

Gaussian noise independent of X where In denotes the identity matrix. The problem of

variable selection is stated as follows: Given the observations (X,Y ), estimate the binary

vector

ηβ = (1{β1 6= 0}, . . . ,1{βp 6= 0})
where 1 {·} denotes the indicator function, and βj is the jth component of β.

We assume that the vector β is s-sparse and we denote by Sβ its support. Consider the

following set of s-sparse vectors:

Ωp
s,a := {β ∈ R

p : |β|0 = s and |βi| ≥ a, ∀i ∈ Sβ} ,

where a > 0, s ∈ {1, . . . , p}, and |β|0 denotes the number of non-zero components of β.

In order to estimate ηβ (and thus the support Sβ), we define a selector η̂ = η̂(X,Y ) as

a measurable function of the observations (X,Y ) with values in {0, 1}p. The performance

of selector η̂ is measured by the maximal risks

sup
β∈Ωp

s,a

Pβ (η̂ 6= ηβ) and sup
β∈Ωp

s,a

Eβ|η̂ − ηβ |

where |η̂ − ηβ| stands for the Hamming distance between η̂ and ηβ , Pβ denotes the joint

distribution of (X,Y ) satisfying (1), and Eβ the corresponding expectation. We say that a

selector η̂ achieves exact support recovery with respect to the above two risks if

lim
n,p→∞

sup
β∈Ωp

s,a

Pβ (η̂ 6= ηβ) = 0, (2)
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or

lim
n,p→∞

sup
β∈Ωp

s,a

Eβ|η̂ − ηβ| = 0 (3)

where the asymptotics are considered as p→ ∞ and n = n(p, s) → ∞ such that n(p, s) ≤
p. For the sake of brevity, n will always stand for n(p, s).

The selector η̂ we suggest here is defined by a two step algorithm, which computes at

the first step the SLOPE estimator β̂ with parameters defined in [1]. At the second step, the

components of η̂ are obtained by thresholding of debiased estimators of the components of

β based on β̂.

We now proceed to the formal definition of this selection procedure. Let xi denote

the ith row of matrix X. Split the sample (xi, Yi), i = 1, . . . , n, in two subsamples with

respective sizes n1 and n2, such that n = n1 + n2. For k = 1, 2, denote by (X(k), Y (k))
the corresponding submatrices X(k) ∈ R

nk×p and subvectors Y (k) ∈ R
nk . The SLOPE

estimator β̂ based on the first subsample (X(1), Y (1)) is defined as follows. Let λj be the

tuning parameters

λj = Aσ

√

log(2p
j
)

n
, j = 1, . . . , p,

for a constant A > 4 +
√
2. For any β ∈ R

p, let (β∗1 , . . . , β
∗
p) be a non-increasing rear-

rangement of |β1|, . . . , |βp|. Set

|β|∗ =
p
∑

j=1

λjβ
∗
j , β ∈ R

p,

which is a norm on R
p. Then, the SLOPE estimator β̂ is a solution of the minimization

problem

β̂ ∈ argmin
β∈Rp

(

‖Y (1) −X(1)β‖2
n

+ 2|β|∗
)

.

Let X
(2)
i denote the ith column of matrix X(2), and β̂j the jth component of the SLOPE

estimator β̂. The suggested selector is defined as a vector

η̂(X,Y ) = (η̂1(X,Y ), . . . , η̂p(X,Y )) (4)

with components

η̂i(X,Y ) = 1

{(

X
(2)
i , Y (2) −

∑

j 6=i

X
(2)
j β̂j

)

> t(X
(2)
i )‖X(2)

i ‖
}

(5)

for i = 1, . . . , p, where (·, ·) denotes the scalar product, ‖ · ‖ is the Euclidean norm, and

t (u) :=
a‖u‖
2

+
σ2 log

(

p
s
− 1
)

a‖u‖ , ∀u ∈ R
p.

2. Non-asymptotic minimax selectors

In this section, we present a non-asymptotic minimax lower bound on the Hamming risk

of any selectors as well as a corresponding non-asymptotic upper bound for the Hamming

risk of the selector (4) – (5). Set

ψ+ (n, p, s, a, σ) = (p− s)P (σε > t (ζ)) + sP (σε > a‖ζ‖ − t (ζ))

where ε is a standard Gaussian random variable, and ζ ∼ N (0, Ip) is a standard Gaussian

random vector in R
p independent of ε. The following minimax lower bound holds.
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Theorem 2.1. For any a > 0, σ > 0 and any integers n, p, s such that s < p we have

inf
η̃

sup
β∈Ωs,a

Eβ|η̃ − ηβ | ≥ ψ+(n, p, s, a, σ),

where inf η̃ denotes the infimum over all selectors η̃.

Consider now a quantity close to ψ+ given by the formula

ψ (n, p, s, a, σ) = (p− s)P (σε > t (ζ)) + sP (σε > (a‖ζ‖ − t(ζ))+) .

Here, we use the notation x+ = max(x, 0). Clearly, ψ (n, p, s, a, σ) ≤ ψ+ (n, p, s, a, σ).

Theorem 2.2. Let n, p, s, a, σ be as in Theorem 2.1, and let η̂ be the selector (4) – (5).

There exists a constant c0 > 0, such that for all δ ∈ [0, 1] and n1 >
c0
δ
s log

(

ep
s

)

we have

sup
β∈Ωs,a

Eβ|η̂ − ηβ| ≤ 2ψ(n2, p, s, a, σ
√

1 + δ2) + p
(p

s

)−s

.

Theorems 2.1 and 2.2 imply near optimality of the selector (4) – (5). Their proofs use

the arguments close to those developed in [2] combined with a bound for the ℓ2 risk of the

SLOPE estimator from [1].

3. Study of the phase transition

Using the above upper and lower bounds for the minimax risk, we can study the phase tran-

sition that gives necessary and sufficient conditions on the sample size in order to achieve

exact recovery. A necessary condition for exact recovery using the Hamming risk follows

from Theorem 2.1 and has the form

n ≥ (1− ǫ)
log(p− s) + 7 log(s)

4 log
(

1 + a2

4σ2

) , ∀ǫ ∈ (0, 1).

Sufficient conditions for the selector (4) – (5) to achieve exact recovery are given by the

following result.

Theorem 3.1. Let n, p, s, a, σ be as in Theorem 2.1, and a ≤ σ. Then, the selector η̂ de-

fined in (4) – (5) achieves exact recovery under both risks (Hamming and support recovery)

defined in Section 1 if for some δ ∈ [0, 1] and ǫ > 0 the following inequalities hold

n1 >
c0
δ
s log

(ep

s

)

and n2 > (1 + ǫ)
log(p− s) + log(s)

log
(

1 + a2

4σ2(1+δ2)

) .

It is interesting to compare these conditions with the best known in the literature (where

only the case of support recovery risk was studied). Necessary condition for exact recovery

was established in [3], and is given by the inequality

n ≥ c

(

s log(p
s
)

log(1 + s a
2

σ2 )
∨ log(p − s)

log(1 + a2

σ2 )

)

for some absolute constant c > 0. As shown by [4], this condition is also sufficient pro-

vided a and s are such that a ≤ σ, and a2s ≥ c′σ2 for some c′ > 0, and it is achieved

by the exhaustive search selector. However, the exhaustive search selector cannot be com-

puted in polynomial time. The sufficient conditions we establish in Theorem 3.1 are of

the same order, with the advantage that our selector can be computed in polynomial time.

Nevertheless, the knowledge of parameters s, a and σ is required for the construction. This

motivates us to introduce an adaptive version of this selector.
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4. Nearly optimal adaptive procedure

It is known, cf. [1], that the SLOPE estimator is adaptive to the sparsity parameter s. The

dependence on s and a only appears in the definition of the threshold t(·). We now take an

adaptive threshold of the form

t(u) = σ

√

2

(

(p

2

)
2

n2 − 1

)

‖u‖, ∀u ∈ R
p. (6)

Then, we have the following result analogous to Theorem 3.1.

Theorem 4.1. Let n be an even integer. Set n1 = n2 = n/2, and let the threshold t(·) be

as in (6). Then, the selector η̂ given in (4) – (5) achieves exact recovery under both risks

(Hamming and support recovery) if n ≥ 2

(

c0s log
(

ep
s

)

∨ 2 log (p)

log
(

1+ a2

8σ2

)

)

.

We also generalize this theorem to the case of unknown variance, for which we need to

replace σ in (6) by a suitably chosen estimator σ̂. The main advantage of this algorithm is

its adaptivity to all parameters of the problem.

Recall that the results of this work are obtained under the assumption of i.i.d. Gaussian

design. Extension of the above approach to more general designs remains an open problem.
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