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Abstract 
Modern longitudinal studies often collect genetic information in addition to follow-up 
data on mortality or other events. Typically, individuals are genotyped at different ages, 
and the demographic structure of the genotyped population provides additional 
information about the effect of genetic variants on the event of interest (along with 
follow-up data on genotyped and non-genotyped individuals). We present the general 
genetic-demographic approach which takes such structure into account and describe 
results of simulation studies which illustrate that combining information on follow-up 
and information on ages at biospecimen collection improves power in analyses of genetic 
effects on mortality compared to analyses of follow-up data alone. We also illustrate the 
approach in application to a genome-wide association study (GWAS) of lifespan in 
Cardiovascular Health Study (CHS) with genetic data from the CHS Candidate Gene 
Association Resource. We found that groups of individuals with different values of 
weighted polygenic risk scores (above/below median) constructed from the top SNPs in 
GWAS of lifespan (with p-value threshold 0.01) differ in chances to stay free of 
Alzheimer’s disease thus validating further exploration of these findings in analyses of 
larger scale genetic data.  

 
Key words: longitudinal data; genetics of longevity; mortality; polygenic risk score; 
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1. Introduction 

 
Estimation of effects of genetic markers on time-to-event outcomes (such as mortality 
risk or incidence of a disease) usually involves application of appropriate survival 
analysis methods to a sample of genotyped individuals. Such analyses can also benefit 
from a “genetic-demographic” (GD) approach (Yashin et al. 1999, Yashin et al. 2000, 
Dato, Carotenuto, and De Benedictis 2007, Yashin, Arbeev, and Ukraintseva 2007, 
Arbeev et al. 2011) that takes into account the demographic structure of the genotyped 
population under study. Usually genetic data are collected from participants of 
longitudinal studies at different ages. Then the allele-/genotype-specific age structure of 
the population at the time of biospecimen collection (i.e., proportions of carriers of 
different alleles/genotypes at different ages) also conveys information about the effect of 
genetic variants on the event of interest, in addition to follow-up data. Indeed, if the 
outcome is mortality, then an individual needs to survive until the age at biospecimen 
collection in order to be genotyped, or he/she should be event-free at that time if the 
event of interest is incidence of a disease. In addition, the non-genotyped part of the study 
provides additional information on the events, and the non-genotyped sample consists of 
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the mixture of carriers and non-carriers of the alleles or genotypes being studied. Hence, 
the use of these additional sources of information can improve power compared to the 
analyses of follow-up data on genotyped individuals alone (Yashin, Arbeev, and 
Ukraintseva 2007, Arbeev et al. 2011). 
 
The rest of the text is organized as follows. Section 2 describes the general GD model. 
This presentation extends the original GD approach (Yashin et al. 1999, Yashin et al. 
2000, Arbeev et al. 2011) allowing both allele-/genotype-specific survival functions and 
initial proportions of alleles/genotypes to depend on additional covariates. Section 3 
presents results of simulation studies which illustrate that combining information on 
follow-up and information on ages at biospecimen collection improves power in analyses 
of genetic effects on mortality/morbidity risks compared to analyses of follow-up data 
alone. Section 4 shows the application results of the approach to data on mortality in the 
Cardiovascular Health Study (CHS) with genetic data from the CHS Candidate Gene 
Association Resource (CARe). Section 5 concludes the paper. 
 

2. General “Genetic-Demographic” Model 
 
2.1 Some Notations 
 
Consider a study with N independent individuals at the baseline and let 

nongengen NNN  , where genN  and nongenN  are the numbers of genotyped and non-
genotyped individuals in the sample, respectively. Let Gi be a random variable with 
values gi, gi = 1…G, denoting the presence of some allele or genotype in the genome of 
ith individual. For example, it may be a binary variable coding the presence (1) or absence 
(0) of the minor allele at some locus, or it may be a variable counting the number of the 
minor alleles coded as 0, 1, and 2. For genotyped individuals, information on the genetic 
marker is available (i.e., the value gi is known for ith individual) but for non-genotyped 
individuals this value is unknown.  
 
We assume that time-to-event information and other relevant covariates are available for 
both genotyped and non-genotyped individuals. Denote i  age at death/censoring, i  a 

censoring indicator (0 if censored, 1 if died), 0
it  age at baseline, and Xi a (column) vector 

of covariates for ith individual from the sample, i = 1…N. Let gen

it , i = 1… genN , be ages 
at biospecimen collection for genotyped individuals. In a general case, biospecimen 
collection can happen after some time since the baseline, so these two ages can be 
different (the simpler situation when biospecimen are collected at the baseline is a special 
case of the general formulas which will be mentioned below).  
 
Denote by ),|( iii XgGt   the hazard rate for an individual with alleles/genotypes gi 
(whether observed or not) and a vector of covariates Xi and let )|( ig XtS

i
 be the 

respective survival function:  



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


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iiiiiiiig duXgGuXgGtPXtS
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),|(exp),|()|(  .      (1) 

Individuals with different alleles/genotypes gi entering the study at age 0
it (and having the 

values of covariates Xi) have, in general, different chances to survive until the age at 
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biospecimen collection gen

it . Denote the proportion of individuals with allele/genotype gi 

who survived until the age at biospecimen collection gen

it  given that they entered the 

study at age 0
it and have the values of covariates Xi as 

),,|(),|( 00
ii

gen

iiiiii

gen

ig XttgGPXtt
i

  . 
 
2.2 Likelihood Function for Genotyped Subsample  
 
For ith individual from the genotyped subsample, we observe his/her (censored) lifespan (

i , i ) and information on the genetic variant of interest (gi), conditional on having the 

individual’s age at baseline 0
it , age at biospecimen collection gen

it , and a vector of 
covariates Xi.  
 
The initial probabilities )|( ii XkGP   can be represented, for example, using a 
multinomial logistic regression (it could be any other functional relationships between the 
covariates and the probability, see, e.g., Sections 3 and 4): 
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for k = 1…G −1, and 
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Here 
k0  and  

k1  are the intercept and the column vector of allele- or genotype-specific 
regression parameters, respectively, and “T” denotes transposition. Here we postulated 

00 G  and 01 G   for identifiability (Proust-Lima et al. 2014). 
 
The term in the likelihood function that corresponds to the genotyped subsample is  


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where )|( 0

iig XtS
i

 are given by (1). 
 
2.3 Likelihood Function for Non-Genotyped Subsample  
 
We assume that the genotyped and non-genotyped subsamples are independent and that 
they are representative to each other, that is, carriers/non-carriers of the respective 
alleles/genotypes in these subsamples have the same parameters of hazard rates (note that 
if this is not the case, but a functional relationship between the parameters in the genetic 
and non-genetic subsamples can be reasonably assumed, then this situation can also be 
modeled). We also assume that the initial proportions are given by (2), (3).  
 
For jth individual from the non-genotyped subsample, j = 1… nongenN , we observe his/her 

(censored) lifespan ( j , j ), conditional on having the individual’s age at baseline 0
jt  

and a vector of covariates Xj. Information on the genetic variant of interest is unknown 
for the non-genotyped individuals.  
 
Therefore, the term in the likelihood function that corresponds to the non-genotyped 
subsample is  
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
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and ),|( 0

jjj XtkGP   is given by (8). 
 
2.4 Likelihood Function for Combined Genotyped and Non-Genotyped Subsamples  
 
Since participants of the study with and without genetic information are assumed to be 
independent from each other, the combined likelihood function is  
 

nongengenLLL  .     (11) 
 
An important property of the likelihood terms (4) and (9) is that they are based on the 
same specifications of hazard for carriers of different alleles/genotypes, and, therefore, 

3511



they have the same unknown parameters. This property suggests that the joint analysis of 
data from genotyped and non-genotyped subsamples by maximizing the likelihood (11) 
will improve the accuracy of parameter estimates compared to the estimates evaluated in 
the analyses of data from the genotyped subsample alone (i.e., maximizing the likelihood 
(4)). 
 
2.5 Special Case when Biospecimen Are Collected at Baseline  
 
In case when biospecimen are collected at the baseline examination, we have 0

i

gen

i tt   

and the respective term gen

iL  in the likelihood (4) simplifies to 
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where ),|( 0
iiii XtgGP   is given by (8). 

 
3. Simulation Studies 

 
In our simulation studies, we assumed that the hazard rate for individuals with different 
number of alleles is XG T

XGexGx
 

 )()|( 0 , where the variable G counts the number 
of the alleles of interest, the baseline mortality )(0 x  is the Gompertz function, i.e., 

bxax  ln)(ln 0 , and X is a vector with two covariates representing birth cohort 
(simulated as 1950-X0, where X0 is age at baseline exam, uniformly distributed over the 
interval [30, 60]) and sex (0 or 1, with probability 0.5). The initial distribution of 
genotypes in a population is assumed according to the Hardy-Weinberg equilibrium and 
the probability of having an allele of interest is modeled as: XT

P  0)(logit . We 

used the following parameters: 0.9ln a , 08.0b , 4.0G , )2.0,005.0(T

X , 

0.10  , )2.0,01.0(T

P  which provide realistic mortality curves similar to 
contemporary populations. 
 
We generated a “general population” of 10,000,000 individuals, assigning values of G to 
individuals computed in accordance with the probabilities for respective values of 
covariates X. Then we generated lifespans for all individuals from the corresponding 
probability distributions (i.e., those corresponding to the hazard for individuals carrying 
G alleles and having covariates X, with the parameters defined above). Then we assigned 
a hypothetical “age at entry” into the study to each individual in the population generated 
as a discrete random variable uniformly distributed over the interval 30 to 60 years. We 
assumed that individuals were genotyped 40 years after the baseline and that the follow-
up period was 60 years. We collected a sample of 5,000 individuals whose life spans 
exceeded their hypothetical “age at entry.” Individuals with simulated lifespans 
exceeding “age at entry” plus the follow-up period were considered censored at that age. 
We assumed that 1,250 individuals constitute the “genotyped” sample for which the 
values of G are known and the rest of the sample is non-genotyped so that these values 
are unknown (but still lifespan information is available). Such design resembles the 
structure of the Framingham Heart Study (original cohort) (Dawber, Meadors, and Moore 
1951). This procedure was repeated 100 times to generate 100 datasets which were 
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estimated using the likelihood function presented in the previous section. The results are 
shown in Table 1. 
 

Table 1 about here 
 
To illustrate the increase in power in case of combining information on follow-up and 
information on ages at biospecimen collection compared to analyses of follow-up data 
alone, we performed simulation studies with different values of effect size (parameter 

G ). We simulated a scenario with a shorter follow up period (8 years) and a wider 
range of ages at baseline (40 to 100), with genotyping at the baseline (i.e., all 5,000 
individuals are genotyped), to resemble a more common situation in contemporary 
longitudinal studies (such as Long Life Family Study, see, e.g., Yashin et al. 2010). All 
other parameters were selected as indicated above. We compare the approach which takes 
into account differential survival of individuals with different genotypes vs. the approach 
which uses only the follow-up information (with the left truncation defined as the age at 
baseline which ignores the fact that carriers of different numbers of alleles G have 
different chances to survive until the baseline to become the participants of the study). 
Fig. 1 indicates that the former approach results in substantial improvement in power 
compared to the latter one. 
 

Fig. 1 about here 
 

4. Applications 
 
We applied the method to the Cardiovascular Health Study (CHS) data. The CHS is a 
population-based, longitudinal study of risk factors for the development and progression 
of heart disease and stroke in the Medicare-eligible older individuals aged 65+ years at 
enrollment (Fried et al. 1991). The main cohort of 5,201 study participants was examined 
annually from 1989 through 1999. In June 1993, an additional 687 African Americans 
were recruited using similar methods. Deaths were ascertained through surveillance and 
at semi-annual contacts (Fried et al. 2001). In this study, we used the CHS data provided 
by the database of Genotypes and Phenotypes (dbGaP), dbGaP Study 
Accession: phs000287.v5.p1. We focused on the subsample of whites in CHS (referred to 
as CHS-W below). The CHS-W sample includes data on 4,648 individuals (2,607 
females, 2,041 males) aged 65-100 years at the baseline exam. 
  
We used the Candidate Gene Association Resource (CARe) data provided by dbGaP 
(dbGaP Study Accession: phs000377.v5.p1) which include information on genotyping of 
about 50,000 single nucleotide polymorphisms (SNPs) in approximately 2,100 candidate 
genes and pathways for cardiovascular, inflammatory and metabolic phenotypes, done 
using the same customized Illumina's iSelect array (the IBC-chip) in each study of the 
CARe project (Keating et al. 2008, Musunuru et al. 2010).   
 
We applied the quality control (QC) procedure (Anderson et al. 2010) to CHS-W CARe 
data. We removed variants with minor allele frequency < 0.01, Hardy–Weinberg 
equilibrium P-value < 0.00001, and genotype failure rate > 0.05. We excluded all 
individuals with a genotype failure rate ≥ 0.05 or a heterozygosity rate ± 3 standard 
deviations from the mean, and individuals with a first or second principal component 
(PC) score ± 8 standard deviations from the mean reference population (CEU+TSI 
HapMap3 individuals). PCs used in QC and in analyses were computed using R-package 

3513



GENESIS (Conomos, Miller, and Thornton 2015). The resulting sample after QC 
contained data on 4,183 individuals (2,360 females, 1,823 males) and 34,411 SNPs from 
autosomal chromosomes. We applied the model described in Section 2 to these data 
(using the likelihood for genotyped individuals genL ). The following specification was 

used: XG T
XGexGx

 
 )()|( 0 , with the Gompertz baseline mortality and the vector X 

with two covariates representing birth cohort (date of birth minus the minimal year of 
birth in the study (1885) grouped in 5 year intervals (0 = 1885-1889 through 40 = 1925-
1929)) and sex. The initial probabilities of having an effect allele are modeled as 

P

T

P X  0)(logit , with 
PX  containing birth cohort, sex and first PC. 

 
The results of applications of this model are shown in Fig. 2.  

 
Fig. 2 about here 

 
We also constructed (weighted) polygenic risk scores (PRS) using the results of GWAS 
of lifespan in CHS-W CARe data described above (with p-value threshold 0.01) and 
evaluated how participants with different values of PRS (above/below median) differ in 
their chances to stay free of Alzheimer’s disease (defined from CHS hospital discharge 
data, ICD9-CM codes 331.0 and 290.1x). The results are shown in Fig. 3. 
 

Fig. 3 about here 
 

5. Conclusions 
 
We presented the general genetic-demographic (GD) model that takes into account the 
demographic structure of the genotyped population (i.e., proportions of carriers of 
different alleles/genotypes at different ages) in analyses of effects of genetic markers on 
time-to-event outcomes (e.g., mortality). The model allows both allele-/genotype-specific 
survival functions and initial proportions of alleles/genotypes to depend on additional 
covariates thus extending the original GD approach (Yashin et al. 1999, Yashin et al. 
2000, Arbeev et al. 2011). The demographic structure of the genotyped population 
conveys information about the effect of genetic variants on the event of interest, thus its 
incorporation in the analyses improves power compared to the analyses of follow-up data 
on genotyped individuals alone, as we illustrated in simulation studies presented here. 
This effect is especially noticeable in the studies with shorter follow-up, as we showed 
earlier using the original GD approach (Yashin et al. 2013). Application of the GD 
approach to GWAS of lifespan in CHS CARe data (subsample of whites) did not reveal 
genome-wide significant signals. Nevertheless, we found that groups of individuals with 
different values of weighted PRS (above/below median) constructed from the top SNPs 
in GWAS of lifespan (with p-value threshold 0.01) differ in chances to stay free of 
Alzheimer’s disease (the effect is observed in both females and males) thus validating 
further exploration of these findings in analyses of larger scale genetic data.  
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Figures: 

  
 
Figure 1: (A) Power in two approaches (using data on follow-up only, “FU”, and data on 
follow-up and ages at biospecimen collection, “FU+A”) for different effect sizes (i.e., 
values of regression parameter  ) and fixed 05.0 . Markers (“empir.”) denote values 
from simulations and lines (“fit”) correspond to power curves of a one-sample Z-test of 
the mean (with standard deviations producing the best fit to simulated values in two 
approaches: 0.051 and 0.044, respectively). (B) Level of the test (shown as )(log10   
for better visibility) that yields power w=0.8, as a function of the effect size in both 
approaches (the curves are calculated using the values of standard deviations mentioned 
above).  
 
 

   
 
 
Figure 2: Results of GWAS of lifespan in CHS CARe data, subsample of whites (model 
adjusted for sex, birth cohort, PC1) 
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Figure 3: Kaplan-Meier curves for probabilities of staying free of Alzheimer’s disease 
for individuals from CHS-W CARe data with different values of polygenic risk score 
(PRS): A) females; B) males. PRS were computed from GWAS of lifespan in CHS-W 
CARe, with p-value threshold 0.01. 
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Tables: 

Table 1: Results of simulation studies 

 
aln  10b  G  100)1( X  )2(X  0  10)1( P  )2(P  

Mean -9.047 0.804 0.410 -0.442 0.197 -0.908 -0.129 0.188 
St. Dev. 0.148 0.015 0.045 0.199 0.029 0.231 0.089 0.090 
Min -9.451 0.768 0.297 -0.914 0.112 -1.489 -0.317 -0.054 
Max -8.723 0.844 0.543 0.003 0.263 -0.351 0.102 0.404 
True Values -9.0 0.8 0.4 -0.5 0.2 -1.0 -0.1 0.2 
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