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Abstract
Quantile regression is useful for modeling the conditional quantile of the response variable.

Recently, quantile regression has also been applied to discrete choice models, where the
response variable is binary or ordinal. They can be estimated using the Bayesian Markov
chain Monte Carlo (MCMC) approach when the error terms are assumed to follow, for exam-
ple, the asymmetric Laplace distribution. This paper proposes the application of Bayesian
quantile regression models to survey data from the Australian Election Study (AES). The
binary and ordinal quantile regression models will be used for investigating the factors that
influence Australian voters’ choice for certain political parties and their level of interest in
politics generally. In addition, to assist with the interpretations of regression coefficients,
this paper proposes to calculate the marginal effects of the explanatory variables. The main
objectives are to investigate the differences in the coefficients estimates and marginal effects
of the regression models at various quantile levels. Comparisons will also be made to binary
and ordinal probit models.

Key Words: Markov chain Monte Carlo; quantile regression; discrete choice models;
Bayesian inference; Australian Election Study (AES)

1. Introduction

Quantile regression, initially proposed by Koenker and Bassett (1978), is often used
as an alternative to ordinary least squares regression. With the increased pop-
ularity of the Bayesian approaches in the past three decades, Bayesian Markov
chain Monte Carlo (MCMC) methods have been extended to quantile regression,
where the error term is assumed to follow the asymmetric Laplace distribution (Yu
and Moyeed, 2001). This provided an alternative method for statistical inference
to a non-parametric problem. Kozumi and Kobayashi (2011) proposed using the
normal-exponential mixture representation of the asymmetric Laplace distribution
to facilitate the use of the Gibbs sampler in estimating Bayesian quantile regression
models. As an alternative to the asymmetric Laplace distribution, Wichitaksorn,
Choy, and Gerlach (2014) proposed another class of skew distributions that could
also be used for quantile regression models.

Until recently, quantile regression models have been applied to situations where
the response variable is continuous. In Albert and Chib (1993), Bayesian methods
had been applied to regression models where the response variable is binary or or-
dered data. Benoit and van den Poel (2012) and Rahman (2016) considered the
use of Bayesian binary and ordered quantile models respectively, which looked at
the conditional quantiles of the response variable rather then the conditional mean.
Bayesian binary quantile models have been applied to areas such as education (Mol-
lica and Petrella, 2016) and environmental studies (Lav́ın, Flores, and Ibarnegaray,
2017).
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However, one difficulty of using quantile regression models for binary and ordinal
data is that the coefficients are difficult to interpret. Greene (2012) has proposed
calculating the marginal effects of variables in the binary and ordinal probit and
logistic regression models. The marginal effects of the explanatory variables, rather
than the regression coefficients, could be interpreted like the regression coefficients
in a linear regression. This means that a unit increase in a continuous explanatory
variable (holding all else constant) would lead to a change in the predicted proba-
bility of the response variable by the marginal effect for that variable. For a binary
explanatory variable, the marginal effect is given by the predicted probability when
that variable takes a value of 1 minus the predicted probability when that variable
takes a value of 0.

This paper proposes an extension of the method of calculating marginal effects
in Greene (2012) to quantile regression models for binary and ordinal response vari-
ables. Marginal effects of variables in quantile regression models will be calculated
using the MCMC samples for the regression coefficients, which are then converted
to MCMC samples for the marginal effects. This paper illustrates the application of
this method to the Australian Election Study (AES) 2016 survey data (McAllister
et al., 2016). This dataset consists of the responses of 2818 Australians to questions
relating to the 2016 Federal election and their political views generally.

The remaining parts of this paper are as follows. Section 2 gives a brief overview
of quantile regression of Koenker and Bassett (1978) and its recent Bayesian exten-
sions. Section 3 illustrates the Bayesian binary and ordered quantiles models that
will be used in the analysis of the AES dataset. Section 4 shows the application of
the models to the AES data. Section 5 concludes this paper.

2. Quantile regression

In this paper, the use of the quantile regression for binary and ordered responses
is proposed. The aim is to model the conditional quantiles of the response variable
instead of the conditional mean. The quantile at τ (0 < τ < 1) of a random variable
Y (whose realisation is y and whose cumulative distribution function is F ) is defined
as

F−1(τ) = inf{y : F (y) ≥ τ}. (1)

Suppose the response variable y∗ (n × 1 vector) is related to the explanatory
variables X (n× p matrix) at a particular value of τ , such that

y∗ = Xβτ + ε, (2)

where βτ (p × 1 vector) are the regression coefficients for the quantile model at a
particular value of τ and ε (n× 1 vector) are the error terms.

Instead of minimising the sum of squared errors, the loss function in quantile
regression of Koenker and Bassett (1978, p. 38) to minimise is

min
βτ∈Rp

 ∑
i∈{i:yi≥xT

i βτ}

τ |yi − xT
i βτ |+

∑
i∈{i:yi<xT

i βτ}

(1− τ)|yi − xT
i βτ |

 . (3)

where xi (p × 1 vector) are the regressors. By defining a check function ρτ (εi) =
εi(τ − I(εi < 0)), where I(·) is an indicator function, Equation (3) can be rewritten
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as

min
βτ∈Rp

n∑
i=1

ρτ (yi − xT
i βτ ). (4)

Even though quantile regression models are usually solved using nonparamet-
ric method, such models could easily be solved using parametric methods in the
Bayesian context, by recognising the fact that minimising the loss function is the
same as maximising the likelihood function of the asymmetric Laplace distribution
(Yu and Moyeed, 2001). In quantile regression models, the error terms εi (for all
i = 1, . . . , n) are assumed to follow the asymmetric Laplace distribution of Yu and
Zhang (2005). The probability density function of εi for a particular value of τ is

fεi(εi) = τ(1− τ) exp [−ρτ (εi)] , (5)

where ρτ (·) is the check function mentioned above. Since εi has location 0, scale 1
and skewness τ , then εi ∼ ALD(0, 1, τ). It should be noted that while τ represents
the skewness parameter in the asymmetric Laplace distribution, it coincides with
the parameter for quantile regression that is previously defined.

Kozumi and Kobayashi (2011) showed that this distribution can be written into
a hierarchical form as

εi = gτλi + hτ
√
λiui, ui

iid∼ N (0, 1), λi
iid∼ Exp(1),

gτ =
1− 2τ

τ(1− τ)
, h2τ =

2

τ(1− τ)
,

(6)

where gτ and hτ are fixed constants given τ . Similar to the scale mixtures of normal
representation in Andrews and Mallows (1974), the hierarchical form in Equation
(6) facilitates the use of the Gibbs sampler in MCMC algorithms.

3. Bayesian quantile regression models for discrete choice data

This section presents the quantile regression models for binary and ordered re-
sponses, along with their implementations using Bayesian MCMC algorithms.

3.1 Model for binary responses

Let yi, i = 1, . . . , n, be the binary response variable taking only the values 1 or 0.
The latent variable y∗i is related to yi as follows.

yi =

{
1, if y∗i ≥ 0,

0, if y∗i < 0,
(7)

where the latent variable y∗i is related to the regressors xi as follows

y∗i = xT
i βτ + εi, εi

iid∼ ALD(0, 1, τ). (8)

To ensure identifiability of this model, the scale of the error terms εi is fixed, and
is equal to 1. Since the error terms follow the asymmetric Laplace distribution, it is
possible to use the mixture of normal and exponential variables shown in Equation
(6).
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To complete the Bayesian paradigm, the following vague prior will be used for
βτ .

βτ ∼ Np(0, 10000Ip). (9)

The MCMC algorithm for the quantile regression model at a fixed quantile τ for
binary responses is given below. The parameters and latent variables are simulated
from their full conditional distributions as follows.

• Simulate β from a multivariate normal distribution.

• Simulate y∗i for all i = 1, . . . , n from a univariate truncated normal distribu-
tion.

• Simulate λi for all i = 1, . . . , n from a generalised inverse Gaussian distribu-
tion. Since the generalised inverse Gaussian distribution used here is a special
case of the inverse Gaussian distribution, the simulation method in Michael,
Schucany, and Haas (1976) is used.

For comparison purposes, the binary probit model will also be considered. This
means skipping the step for simulating λi, as λi = 1 for all i = 1, . . . , n, when
estimating the binary probit model.

3.2 Model for ordered responses

Let yi, i = 1, . . . , n, be the ordered response variable taking values from j = 1, . . . , J ,
where J is the total number of ordered categories, as follows.

yi =


1, if γτ,0 < y∗i ≤ γτ,1,
2, if γτ,1 < y∗i ≤ γτ,2,
. . .

J, if γτ,J−1 < y∗i ≤ γτ,J ,

(10)

where γτ,j are the cut-points, with γτ,0 = −∞ and γτ,J = ∞. For the model to be
identifiable, the cut-point γτ,1 = 0 is used. To speed up the MCMC algorithm, the
following transformation of the cut-points is adopted (see Rahman, 2016),

δτ,j = log(γτ,j−1 − γτ,j), 2 ≤ j ≤ J − 1. (11)

At a fixed quantile level τ , the latent variable y∗i (i = 1, · · · , n) is related to the
explanatory variables xi as follows

y∗i = xT
i βτ + εi, εi

iid∼ ALD(0, 1, τ). (12)

The only cut-points that need to be estimated are δτ = (δτ,2, δτ,3, . . . , δτ,J)T. Similar
to binary quantile regressions, the scale of the error terms εi in ordinal quantile
regressions is set to 1 to ensure identifiability.

The hierarchical structure for the error terms εi shown in Equation (6) can be
used to facilitate the MCMC algorithm.

As with the binary quantile model, to complete the Bayesian paradigm, the
following vague prior will be used for βτ .

βτ ∼ Np(0, 10000Ip). (13)
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The prior chosen for δτ is

δτ,j ∼ 1 · I(δτ,j ≤ 3), 2 ≤ j ≤ J − 1. (14)

For computational purposes, δτ will be limited so that its value is smaller or equal
to log 3. This is because letting δτ take unrestricted values would possibly lead
to δτ being very large, and model parameters become difficult to simulate in an
MCMC algorithm.

The MCMC algorithm for the quantile regression model at a fixed quantile τ
for ordinary responses is given below. The parameters and latent variables are
simulated from their full conditional distributions as follows.

• Simulate βτ from a multivariate normal distribution.

• Simulate y∗i for all i = 1, . . . , n from a univariate truncated normal distribu-
tion.

• Simulate λi for all i = 1, . . . , n from a generalised inverse Gaussian distribu-
tion. As in the case with the binary quantile model, the simulation method
in Michael, Schucany, and Haas (1976) is also used here.

• Simulate δτ from a non-standard distribution.

Since the full conditional distribution for δτ is non-standard, a random-walk
Metropolis-Hastings step is used. This is similar to the MCMC algorithm presented
in Rahman (2016), except the cut-points δτ are restricted to less than or equal to
3.

Once again, for comparison purposes, the ordered probit model is estimated.
This model can be implemented by setting λi = 1 for all i = 1, . . . , n, and the step
for simulating λi is thus omitted.

4. Applications

Two empirical applications of quantile regression to the Australian Election Study
(AES) 2016 will be considered. The first application is to use a binary quantile
regression model for investigating the impacts of factors contributing the House of
Representatives vote for the Australian Greens in the 2016 Federal election. The
second application is an ordinal quantile regression model for the level of voters’
interest in politics generally.

There are 2818 responses on AES 2016. For both models, only observations
without missing values across the response and explanatory variables in each type
of model are included. Therefore, the actual number of observations used in these
models will be less than 2818.

For the models considered below, the MCMC algorithm will be run for 20000
iterations. The first 10000 iterations are burn-in iterations, whereas the remaining
10000 iterations are used for statistical inference. Similar to the method proposed
by Greene (2012) for binary probit and ordinal probit models, two additional cal-
culations are made: (1) the marginal effects of a change in each of the explanatory
variables on the probability of an outcome of the response variable, and (2) the
predicted probability of an outcome of the response variable for different values of
the explanatory variables. The samples from the Gibbs sampling algorithm for the
regression coefficients βτ (and additionally, for ordinal quantile models, the samples
for the cut-points δτ ) are used for calculating the marginal effects of the explanatory
variables. Marginal effects are not calculated for the intercept term.
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4.1 Binary quantile models: application

In each of the binary quantile models considered, the following variables are used.
The response variable will be whether a voter voted for the Australian Greens in
the House of Representatives at the 2016 Federal Election (green vote). Only 2324
responses are included, as these responses contain non-missing values across all the
variables listed in the table below. 237 respondents voted for the Greens. 2087
respondents did not vote for the Greens. The variables used are listed in Table 1.

Various binary quantile regression models using the variables in Table 1 are
estimated. The 10th quantiles to the 90th quantile at every 10th quantile are
chosen. This means the models for τ = 0.1 to τ = 0.9 at increments of 0.1 are
chosen. For comparison, the binary probit model will also be considered.

The posterior means for the parameters of the binary probit model and binary
quantile model for τ = 0.5 are shown in Table 2. The marginal effects are shown
in Table 3. For both models, the regression coefficients are significant as the 95%
credible intervals do not include 0. The coefficients show that if the respondent is
non-religious or feels that the environment or global warming are extremely impor-
tant policy issues on deciding how to vote, it is more likely that this person will
vote for the Greens. The regression coefficient estimates are different for the probit
and quantile models, but they are difficult to interpret. The marginal effects for the
quantile model for τ = 0.5 have the following interpretation. A person who believes
the environment is extremely important in deciding how to vote is 3.44% (0.0344×
100%) more likely to vote for the Greens. For a one-year increase in age, the person
is 0.14% less likely (−0.0014× 100%) to vote for the Greens. The marginal effects
for the same variables in the binary probit model are interpreted in a similar way.

As an illustration, the plots for the posterior means and 95% C.I of the marginal
effects for the variables age, bachelor, bachelor, high tax, imp env, imp warm and
soc serv for the binary quantile models for τ = 0.1 (on the left: QR10) to τ = 0.9
(on the right QR90) are shown in Figure 1. For the plots for binary models, unless
otherwise stated, the 10th quantile is denoted as QR10 (‘QR’ means quantile regres-
sion, and 10 means the 10th quantile), and other quantiles are denoted similarly.

The marginal effects of age are negative, whereas the marginal effects for other
variables are positive. This means that a person, for example, who has a university
degree, or feels that the environment is an extremely important, or strongly supports
measures to reduce inequality is more likely to vote for the Greens. The marginal
effect of each variable for τ = 0.9 is the largest in magnitude.
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Variable Description

green vote Y = 1 if voted Greens in the House of Representatives;
Y = 0 otherwise.

age Age of the respondent in the year 2016.
Calculated as 2016 minus the year of birth.

no religion Non-religiosity.
1 for non-religious; 0 otherwise.

bachelor At least a Bachelor’s degree.
Respondent with at least a bachelor’s degree = 1;
0 otherwise.

imp env Environment being an extremely
important policy issue in deciding
how to vote during the election.
1 = extremely important; 0 otherwise.

imp warm Global warming being an extremely
important policy issue in deciding
how to vote during the election.
1 = extremely important; 0 otherwise.

reduce inequal Support for reducing income inequality.
Score of 1 to 10.
10 strongest. 1 weakest.

high tax Support for the statement that
high taxes create disincentives to work harder.
Score of 1 to 5.
5 strongest. 1 weakest.

soc serv Support for an increase in government
spending on social services, if the government
has to increase social services expenditure or
reduce taxes.
Score of 1 to 5.
5 strongest. 1 weakest.

Table 1: Description of the variables. Response variable: green vote. Explanatory
variables: all other variables.
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Model Variable Mean S.D. 95% C.I.

Probit (Intercept) −2.472 0.266 [−3.003,−1.958]
age −0.019 0.003 [−0.024,−0.015]
no religion 0.481 0.086 [0.311,0.648]
bachelor 0.190 0.087 [0.020,0.362]
imp env 0.451 0.119 [0.219,0.684]
imp warm 0.434 0.113 [0.216,0.655]
reduce inequal 0.074 0.025 [0.025,0.123]
high tax 0.128 0.040 [0.052,0.206]
soc serv 0.168 0.035 [0.098,0.238]

50th Quantile (Intercept) −7.409 0.828 [−9.100,−5.859]
(τ = 0.5) age −0.060 0.007 [−0.073,−0.046]

no religion 1.348 0.253 [0.852,1.837]
bachelor 0.620 0.246 [0.144,1.106]
imp env 1.366 0.389 [0.631,2.120]
imp warm 1.260 0.358 [0.572,2.005]
reduce inequal 0.214 0.077 [0.069,0.370]
high tax 0.431 0.122 [0.195,0.670]
soc serv 0.594 0.112 [0.381,0.815]

Table 2: Posterior means, standard deviations and 95% C.I. for the parameters in
binary models

Model Variable Mean S.D. 95% C.I.

Probit age −0.0020 0.0003 [−0.0025,−0.0015]
no religion 0.0572 0.0121 [0.0344,0.0821]
bachelor 0.0203 0.0097 [0.0021,0.0402]
imp env 0.0489 0.0137 [0.0229,0.0766]
imp warm 0.0500 0.0148 [0.0228,0.0804]
reduce inequal 0.0074 0.0025 [0.0025,0.0123]
high tax 0.0129 0.0041 [0.0052,0.0211]
soc serv 0.0169 0.0037 [0.0099,0.0243]

50th Quantile age −0.0014 0.0002 [−0.0018,−0.0010]
(τ = 0.5) no religion 0.0366 0.0081 [0.0227,0.0553]

bachelor 0.0154 0.0066 [0.0032,0.0288]
imp env 0.0344 0.0105 [0.0148,0.0550]
imp warm 0.0333 0.0104 [0.0144,0.0554]
reduce inequal 0.0050 0.0018 [0.0016,0.0087]
high tax 0.0100 0.0029 [0.0046,0.0157]
soc serv 0.0138 0.0027 [0.0089,0.0194]

Table 3: Marginal effects for the explanatory variables in binary models
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Figure 1: Marginal effects for the binary quantile model coefficients for different
quantiles (Posterior mean in blue. 95% upper and lower C.I. in red.)
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Figure 2: Effect of having at least a bachelor’s degree on the predicted probability
of a respondent voting for the Greens (Y = 1). 80th Quantile (τ = 0.8). (Blue for
having at least a bachelor’s degree. Red otherwise.)

Figure 2 shows the effect of having at least a bachelor’s degree on the predicted
probabilities of a respondent voting for the Greens (Y = 1) for the quantile model at
the 80th quantile (τ = 0.8). If someone has at least a bachelor’s degree, the predicted
probability is higher than someone without one. Also, as the age increases, the
predicted probability decreases, meaning that the older someone is, the less likely
it is for the person to vote for the Greens.

4.2 Ordinal quantile models: application

For the ordinal quantile models considered, the response variable will be the level
of voters’ interest in politics generally (pol int). There are 2173 responses with
non-missing values across all variables used in the model. 829 respondents say they
have a lot of interest in politics. 927 respondents say they have some interest in
politics. 417 respondents say they have not much or no interest in politics. Since
the research question is to look at the factors contributing to the level of voters’
interest in politics generally, the use of an ordinal quantile model is proposed. The
ordinal quantile model is estimated at the 10th quantile to 90th quantile (τ = 0.1
to τ = 0.9), at increments of every 10th quantile. The ordinal probit model is
also estimated for comparison. The variables for the ordinal models are listed in
Table 4. Since there are three outcomes for the response variable (meaning that
J = 3), there is only one cut-point γτ,2 to be estimated. This is because for the set
of cut-point parameters γτ,0, γτ,1, γτ,2 and γτ,3, the following definitions are used:
γτ,0 = −∞, γτ,1 = 0 and γτ,3 = ∞. The only parameter left to estimate is γτ,2. In
Table 5, γ2 and γ0.5,2 refer to the cut-points under the ordinal probit model and
quantile model for τ = 0.5 respectively.
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Variable Description

pol int Y = 3 for a lot of interest in politics.
Y = 2 for some interest in politics.
Y = 1 for not much or no interest in politics.

pol attention Score for respondents’ attention
to politics on newspapers, television,
radio, the internet.
Score 1-20. The higher the score, the more attention.

pol int camp Interest in the 2016
Federal election campaign.
Score 1-4. The higher the score, the stronger the interest.

difference Making a difference by voting.
Score 1-5. The higher the score,
the stronger the belief in making a difference.

sex Gender.
Male = 1; 0 otherwise.

age Age of the respondent in the year 2016.
Calculated as 2016 minus the year of birth.

bachelor At least a Bachelor’s degree.
Respondent with at least a bachelor’s degree = 1;
0 otherwise.

Table 4: Description of the variables for the ordinal models. Response variable:
pol int. Explanatory variables: all other variables.

Model Variable Mean S.D. 95% C.I

Probit (Intercept) −4.990 0.181 [−5.344,−4.646]
pol attention 0.165 0.014 [0.138,0.193]
pol int camp 1.018 0.048 [0.926,1.113]
difference 0.129 0.024 [0.083,0.176]
sex 0.234 0.056 [0.123,0.345]
age 0.020 0.002 [0.016,0.023]
bachelor 0.294 0.060 [0.176,0.413]
γ2 2.097 0.059 [1.988,2.216]

50th Quantile (Intercept) −8.871 0.393 [−9.641,−8.118]
(τ = 0.5) pol attention 0.269 0.028 [0.214,0.324]

pol int camp 1.827 0.094 [1.641,2.012]
difference 0.201 0.049 [0.106,0.298]
sex 0.438 0.115 [0.211,0.660]
age 0.032 0.004 [0.025,0.039]
bachelor 0.474 0.124 [0.224,0.710]
γ0.5,2 2.993 0.007 [2.974,2.9998]

Table 5: Posterior means, standard deviations and 95% C.I. for the parameters in
ordinal models
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Model Variable Mean S.D. 95% C.I.

Probit pol attention 0.0559 0.0048 [0.0466,0.0655]
pol int camp 0.3448 0.0166 [0.3126,0.3778]
difference 0.0438 0.0080 [0.0281,0.0596]
sex 0.0790 0.0191 [0.0417,0.1165]
age 0.0066 0.0006 [0.0055,0.0079]
bachelor 0.1014 0.0211 [0.0603,0.1431]

50th Quantile pol attention 0.0463 0.0052 [0.0363,0.0566]
(τ = 0.5) pol int camp 0.3140 0.0187 [0.2778,0.3519]

difference 0.0345 0.0085 [0.0182,0.0514]
sex 0.0756 0.0202 [0.0365,0.1156]
age 0.0054 0.0007 [0.0042,0.0068]
bachelor 0.0842 0.0230 [0.0388,0.1287]

Table 6: Marginal effects for the explanatory variables in ordinal models for the
outcome (Y = 3)

Table 5 shows the posterior means, standard deviations and 95% C.I. for the
regression coefficients and the cut-points for the ordinal probit and quantile model
for τ = 0.5. All the variables are statistically significant as the 95% credible in-
tervals for each of the regression coefficients do not include 0. The coefficients for
the variables pol attention, pol int camp, difference, sex, age and bachelor are pos-
itive for both models. However, the coefficients and cut-points alone are difficult
to interpret as they relate to the latent variable rather than the probability of a
particular outcome.

The marginal effects for each variable variable for each outcome Y = 3, Y = 2
and Y = 1 are calculated. Table 6 shows the marginal effects of each of the variables
for the outcome Y = 3. Holding all else constant, a respondent who believed
that he/she will make a difference by voting or pays more attention to politics on
newspapers, television, radio and on the internet will be more likely to have a lot
of interest in politics.

The marginal effects for the quantile model are lower for each of the variables.
For example, the marginal effect for pol attention in the ordinal probit model is
0.0559, which means a 1 unit increase in the score for the respondents’ attention
to politics in the media would increase the probability of having a lot of interest in
politics by 5.59%. However, for the quantile model, the marginal effect is 0.0463,
which is smaller.
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Figure 3: Marginal effects for the ordinal model coefficients for different quantiles
(Posterior mean in blue. 95% upper and lower C.I. in red.)
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Figure 4: Effect of having at least a bachelor’s degree on the predicted probability
of having a lot of interest in politics (Y = 3), having some interest in politics
(Y = 2), or having not much or no interest in politics (Y = 1). 70th Quantile
(τ = 0.7). (Blue for having at least a bachelor’s degree. Red otherwise.)
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Figure 3 shows the posterior mean of the marginal effect (blue) and the 95%
credible intervals (red) for each of the variables for each of the three outcomes Y = 3,
Y = 2 and Y = 1. The left-hand side of each plot shows the marginal effects for the
10th quantile (QR10), whereas the right-hand side shows that for the 90th quantile
(QR90). Once again, ‘QR’ means quantile regression and the number denotes the
particular quantile. Unless stated otherwise, this will be the notation for the plots
for ordinal models.

For the outcome Y = 3, the 95% C.I. of most of the variables do not include 0,
except for the variable sex for the quantile model for τ = 0.1. The marginal effects
of pol attention, pol int camp, difference, age and bachelor are positive. The inter-
pretations for the marginal effects of the variables pol attention and pol int camp
are as follows. Holding all other variables constant, for example, someone who paid
more attention to politics on the media or was more interested in the 2016 Federal
election campaign is more likely to have a lot of interest in politics generally. Some
of the largest magnitudes for the marginal effects for all explanatory variables are
quantile models for τ = 0.6 and τ = 0.7, whereas some of the smallest magnitudes
are found for τ = 0.1 and τ = 0.9.

For the outcome Y = 2, the signs of marginal effects of all variables are different
for quantile models of different τ . For the variables pol attention, pol int camp,
difference and age, the marginal effects are negative for quantile models from at
least τ = 0.3. For τ = 0.2, the marginal effects for these variables are statistically
insignificant. For τ = 0.1, the marginal effects are positive. However, for the
variables sex and bachelor, the marginal effects are insignificant for τ = 0.5, positive
for τ > 0.5 but negative for τ < 0.5.

For the outcome Y = 1, the 95% C.I. of marginal effects of most variables cover
only negative values across all quantiles, except for the variable sex for τ = 0.1. For
example, if an individual believed that voting makes a difference, the probability of
the person having little to no interest in politics decreases, as the marginal effect
for difference for this outcome is negative. Similar interpretations could be made
for the variable pol attention and pol int camp.

The effect of having at least a bachelor’s degree on the predicted probability of
having different levels of interest in politics can be calculated for the ordered quantile
model at the 70th quantile (τ = 0.7). This is shown in Figure 4. The predicted
probability is calculated for different ages for two different scenarios: a person with
at least a bachelor’s degree (bachelor = 1, blue curve) and otherwise (bachelor = 0,
red curve). An increase in age (holding all else constant) will increase the predicted
probability of a lot of interest in politics (Y = 3). The predicted probability is
higher for someone with at least a bachelor’s degree than someone who does not.
However, an increase in age will decrease the predicted probability of the other two
outcomes: some interest in politics (Y = 2) and not much or no interest in politics
(Y = 1). For the outcome Y = 1, the probability is higher for those respondents
without at least a bachelor’s degree than those with one. This model seems to
indicate that, holding all other variables constant, older respondents are more likely
to be very interested in politics than younger respondents, and that higher level of
education leads to a stronger interest in politics in general.
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5. Conclusion

This paper has extended the use of quantile regression models to the Australian
Election Studies (AES) survey data. The quantile regression models are used to
address two research questions: the impact of factors that lead to a respondent to
vote for the Greens in the House of Representatives at the Australian federal election
2016; and the impact of factors that lead to a respondent being more interested in
politics in general. This paper proposes using the Bayesian MCMC approach to
calculate the marginal effects for the explanatory variables in quantile regressions for
binary and ordinal response data. The advantage of this method is that it is easier to
interpret the regression coefficients, as marginal effects show the effect of changing
each explanatory variable on the probability of each observed outcome. This paper
shows an application of this method to the binary and ordinal quantile regressions
for the AES and compares the marginal effects for the explanatory variables for
different quantiles.
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