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Abstract
A longstanding conundrum in environmental data with multiply left-censored measurements (i.e.,

non-detects) is how to best fit parametric data models. The magnitude and pattern of censoring
jointly impact the information available for testing specific models or for identifying outliers. Yet
such testing is important for many applications, e.g., estimating limits on contaminants in soil or
groundwater. This paper presents a novel strategy for computing percentage points under nearly
arbitrary left-censoring for two common tests: the probability plot correlation coefficient goodness-
of-fit test and Rosner’s block outlier screening test. The new strategy: (1) eliminates the need to
‘fudge’ percentage points computed from complete samples, (2) allows a unique set of percentage
points to be computed for each dataset, depending on the magnitude and pattern of censoring, and
(3) partially alleviates the complication of left-censoring in the ‘chicken-and-egg’ problem of need-
ing a distributional model to identify outliers, but also needing to remove outliers prior to fitting a
data model.
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1. Introduction

As is well known, traditional diagnostic tests of normality and outlier identification were
developed for complete, uncensored samples (e.g., Shapiro-Wilk, Anderson-Darling, Dixon,
Rosner, etc.), including nearly all of the published algorithms and available percentage
points. In practice, the same tests are applied to left-censored data (i.e., non-detects) —
especially in environmental data analysis — by ‘fudging’: censored measurements are ei-
ther ignored or perhaps imputed to some fraction of the detection/reporting limit. Then the
sample is assumed (pretended) to be complete.

Does such ‘fudging’ make an important difference in goodness-of-fit and/or outlier
testing? If so, is there a practical way to accommodate data censoring and still construct
accurate diagnostic tests?

1.1 Non-detects (left-censored data) are a challenge with environmental data

Non-detects are one of the ‘bug-a-boos’ of environmental data analysis. Typically, the de-
gree of bias in one-sample estimates, confidence intervals, prediction limits, etc. is either
unknown or crudely bounded. Especially problematic are samples containing multiple lev-
els of censoring (e.g., varying reporting limits) interleaved or interwoven in magnitude with
quantified (uncensored) measurements. At best, partial rankings of such samples are pos-
sible. Many pairwise orderings are indeterminate (e.g., 4 ppb vs. < 10 ppb) and may have
to be treated as ties in nonparametric procedures. Further, the possible levels of censoring
and patterns of ‘mixing’ of groups of uncensored and censored measurements are nearly
infinite. It would be impossible to enumerate all cases in published tables or algorithms.

1.2 Further challenge to parametric model fitting and outlier testing

Not only do percentage points for normality tests assume complete samples, but formal
outlier testing is always parametric: one must assume a known or working distributional
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model. A ‘Catch-22’ occurs if both left-censored data and outlier(s) are present in the
same sample. One needs to identify a model to classify possible outlier(s), but also needs
to eliminate outlier(s) to properly fit the model in the first place. Again, since all the
percentage points for outlier tests also assume complete samples (e.g., Barnett and Lewis,
1994), this not uncommon dilemma is solved in practice by assuming a complete sample
even when left-censored data are present.

1.3 A practical solution

Since pre-published percentage points to account for possible censored data configura-
tions are not feasible, a practical solution is to generate them ‘on-the-fly.’ That is, embed
Monte Carlo algorithms into diagnostic tests to compute percentage points that account for
sample-specific censoring configurations. We have constructed such algorithms for two
common diagnostic/model fitting techniques:

• Filliben’s normality test (Filliben, 1975), and

• Rosner’s outlier test (Rosner, 1975)

Depending on the sample size and processor, 30-50,000 Monte Carlo replications of
either algorithm can be run in typically 10-60 seconds per test on modern PCs. This is
slower than commercial software implementations of Filliben’s or Rosners tests, but still
practical for regular data analysis and, we would argue, more accurate. Each algorithm is
described in turn below, but they both depend on first constructing a partial ranking of the
censored sample and then estimating (probability) plotting positions for the subsample of
uncensored (detected) measurements. This basic step accounts for the observed level and
pattern of censoring.

2. Extending Filliben’s Normality and Rosner’s Outlier Tests

2.1 Filliben’s Test

In complete, uncensored samples, Filliben’s test computes the correlation between the or-
der statistics (X(i)) and the approximate expected median normal quantiles of the sample
(Q(i)), as on a Q-Q plot. The higher the correlation, the closer the fit of the data to a normal
model. To extend Filliben’s procedure to left-censored samples, we first partially rank the
sample (of size N ) using either a modification of the well-known Kaplan-Meier algorithm
(Kaplan and Meier, 1958; USEPA, 2009) or a similar construction popular in environmental
circles, regression on order statistics (ROS) (Gilliom and Helsel, 1986). From the plotting
positions (pi) estimated on the ordered subsample U of uncensored values (size N − m,
where m = #censored), we then compute associated normal quantiles (Q(i) = Φ−1(pi))
and correlate those quantiles with the values in U . This gives the extended Filliben test
statistic:

rcen =

∑
iϵU (X(i) − X̄U )(Q(i) − Q̄U )√∑

iϵU (X(i) − X̄U )2
∑

iϵU (Q(i) − Q̄U )2

where U is the set of subscripts associated with the uncensored subsample, and X̄U and
Q̄U are the subsample means of X(i) and Q(i) respectively.

To compute ‘on-the-fly’ percentage points for this test, we generate a large series
(Nsim) of ordered, standard normal samples of size N . In each Monte Carlo sample, we
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select the subset corresponding to the same estimated plotting positions as the original un-
censored subsample (iϵU ), thus mimicking the observed level and pattern of left-censoring.
By then correlating each subset with expected quantiles Q(i),iϵU , we generate an ‘on-the-
fly’ null distribution for the extended Filliben statistic. This allows easy computation of
percentage points and p-values under the hypothesis of normality.

2.2 Rosner’s Test

For complete, uncensored samples, the most common form of Rosner’s algorithm does the
following:

1. Identify a block of k ≥ 2 possible outliers in a sample of size N .

2. Iteratively compute studentized residuals of the outlier subsample, beginning with
the most extreme possible outlier. That is, compute R1 = maxjϵ1,...,N ((yj − ȳ)/sy).

3. Exclude the most extreme remaining value and repeat steps (2-3) until k studentized
residuals have been computed; these residuals form a vector of Rosner test statistics
(Ri) of length k.

4. Test each block size (k ≥ 2) in order from k down to 2 as a possible group of outliers;
conduct each test by comparing the vector of Rosner statistics against a k-vector of
Rosner critical points (vi). If any Ri > vi, declare the j = maxi(Ri > vi) most
extreme values to be a block of j outliers.

To extend Rosner’s test to left-censored samples, we modify the algorithm as follows:

1. Identify a block of k ≥ 1 possible outliers.

2. Exclude the possible outliers, then partially rank the reduced sample using regression
on order statistics (ROS).

3. Impute values for the subsample of censored measurements (C) using the estimated
ROS plotting positions from step (2). This first entails fitting an acceptable distribu-
tion to the (left-censored) reduced sample.

4. Add back the excluded block of possible outliers to the imputed, reduced sample,
then iteratively compute a vector of k Rosner statistics on the combined (size N )
data.

To compute ‘on-the-fly’ percentage points for the extended test, we generate a large
Monte Carlo series (Nsim) of ordered standard normal samples of size N , as with Filliben’s
extension. In each generated sample — using the same ROS-based plotting positions es-
timated from the original sample, respectively, for the censored (C) and uncensored (U )
subsamples — exclude those values corresponding to the ranks of subsample C. Then use
ROS to impute values for each excluded slot, treating this subsample as if it were left-
censored, again to mimic the level and pattern of censoring in the original sample. Finally,
compute a k-length vector of (censored) Rosner statistics (Rcen

i ) as in the algorithm above.
The result of this algorithm is an Nsim × k array of simulated Rosner statistics. Ros-

ner (1977, pp. 307-08) shows how to use the marginal distributions of Rcen
1 , . . . , Rcen

k to
compute joint percentage points under the null hypothesis of no outliers by finding β and
v1, . . . , vk such that

Pr[Ri > vi(β)] = β, for i = 1, . . . , k
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Table 1: Percentage Points for Complete, Uncensored Samples (Nsim = 50, 000)

Filliben (1975) On-the-Fly
N r0.01 r0.05 r0.1 r0.01 r0.05 r0.1
4 0.822 0.864 0.898 0.820 0.865 0.894
8 0.859 0.905 0.924 0.856 0.902 0.922

20 0.925 0.950 0.960 0.923 0.947 0.958
40 0.958 0.972 0.977 0.956 0.970 0.975

100 0.981 0.987 0.989 0.980 0.986 0.989

and

Pr

{
k∪

i=1

[Ri > vi(β)]

}
= α

where α is the significance level. The k-vector vi, i = 1, . . . , k is the desired set of per-
centage points.

3. Performance and Benefits

‘On-the-fly’ percentage points for Filliben’s and Rosner’s diagnostic tests offer several ben-
efits and few drawbacks. Probably the biggest disadvantage is computational speed. Nei-
ther test is instantaneous, and the computation time will vary by speed of Monte Carlo
generation, the number of default replications, sample size, and degree of censoring. In
tests on a 2012 iMac (3.4 GHz Intel Core i7), the modified Filliben’s test averages 10-30s
per data set, while the modified Rosner’s test typically runs 20-60s. The default code runs
50,000 replications in order to limit the Monte Carlo error associated with each test.

The advantages include:

• Reproducibility. Each modified algorithm matches published percentage points for
complete, uncensored samples within Monte Carlo error (s.e. ∼ 0.0022 for 50,000
replications).

Table 1 compares examples of varying sample sizes for Filliben’s test. The number of
replications can be adjusted as desired to balance the performance/accuracy tradeoff.

• Accuracy. Depending on the degree and pattern of left-censoring, percentage points
and/or p-values for these tests can differ substantially. Therefore, relying on pub-
lished tables designed for complete samples can give inaccurate results.

Table 2 gives comparative examples for Filliben’s test. Samples of metals concentra-
tions in groundwater are compared using each of three methods: (1) the proposed Monte
Carlo algorithm, (2) ignoring non-detects completely and treating the uncensored measure-
ments as a complete sample, and (3) imputing half the reporting limit for each non-detect
and then treating the imputed sample as complete (and uncensored). The probability plot
correlation coefficient test statistic is given in column Q-Q Corr, and the generated or pub-
lished percentage points for common significance levels are given in the three right-hand
columns.

For lithium with zero censoring, the sample fails the normality test, but does so iden-
tically for all three approaches. For radium with nearly 24% censoring, not only do the
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Table 2: Example Comparisons for Filliben’s Test

Metal Method N/ND% Q-Q Corr r0.01 r0.05 r0.1
Radium on-the-fly 38/23.7 0.9830 0.939 0.961 0.970

ignore 29 0.9618 0.945 0.962 0.969
impute 38 0.9271 0.956 0.970 0.975

Molybdenum on-the-fly 46/69.6 0.9921 0.881 0.922 0.938
ignore 14 0.9661 0.901 0.934 0.947
impute 46 0.7480 0.962 0.974 0.979

Lithium on-the-fly 48/0 0.9272 0.962 0.974 0.979
ignore 48 0.9272 0.963 0.975 0.980
impute 48 0.9272 0.963 0.975 0.980

percentage points differ by method, but also the test statistic and, importantly, the outcome
of the test. The ‘on-the-fly’ method computes the probability plot correlation of the uncen-
sored values after first adjusting the plotting positions for the level and pattern of censoring.
No such adjustment is made if the non-detects are either ignored or treated with simple im-
putation. In fact, in this example, the radium sample passes the normality test using the
‘on-the-fly’ algorithm, but fails if the censored values are imputed and fails at the 0.05
level if the non-detects are ignored.

Molybdenum, with almost 70% censoring, also exhibits instructive differences. Simple
imputation fails badly, while ignoring the non-detects altogether passes the test, largely
due to the much smaller percentage points associated with disregarding most of the data.
The highest correlation stems from the ‘on-the-fly’ approach, and in turn, the high level of
censoring leads to the lowest set of percentage points. The key point in these comparisons
is that naive application of these diagnostic tests may lead to incorrect decisions, as well as
inaccurate percentage points.

• Flexibility. The modified tests can be used not only with left-censored data, but
also with a wide variety of (unpublished) censoring configurations and/or sample
sizes. The algorithms are coded in R to enable widespread accessibility and possible
extensions.

Many such extensions are feasible. Rosner’s test, for example, was originally devel-
oped for testing blocks of two (2) or more outliers, with published percentage points to
match. The modified test is coded to also test single outliers. Both Rosner and Filliben as-
sume normality under H0; this has been extended by considering a range of Box-Cox type
transformations with left-censoring. A prototype of the R code for the modified procedures
also tests the Weibull and gamma distributions. Indeed, the same logic could be used to
modify other diagnostic tests to handle left- and/or right-censoring.

Figures 1 through 3 illustrate upgradient background data for barium, chromium, and
fluoride in groundwater, respectively. These examples are distinguished by different num-
bers of possible outliers and levels of left-censoring. The results from applying the ‘on-the-
fly’ Rosner’s algorithm to these cases is summarized in Table 3.

In all three examples, the seemingly obvious outliers are confirmed no matter how the
censored measurements are treated. However, the 0.01 percentage points differ by method;
the ‘on-the-fly’ critical points generally fall between ignoring the non-detects altogether
and imputing each non-detect to half its reporting limit. For Rosner’s procedure, the lower
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Table 3: Example Comparisons for Rosner’s Test

Metal Method N/ND% Block Size Ri v0.01
Barium on-the-fly 61/0 1 7.18 3.56

ignore 61 7.18 3.56
impute 61 7.18 3.56

Chromium on-the-fly 182/51.6 2 (12.6, 12.5) (3.95, 3.27)
ignore 88 (8.75, 8.99) (3.84, 3.25)
impute 182 (12.6, 12.5) (4.08, 3.45)

Fluoride on-the-fly 66/72.7 1 6.23 3.26
ignore 18 3.92 2.94
impute 66 7.54 3.59

the critical point, the more sensitive the test, so accounting for left-censoring in the pro-
posed manner appears to offer more powerful outlier tests than simply imputing the sam-
ple and treating it as complete. On the other hand, eliminating the non-detects altogether
ignores substantial information in the censored samples and also sharply lowers the com-
parative set of Rosner statistics. Again, this would appear to lower the power of the test
relative to the ‘on-the-fly’ approach.

4. Conclusion

Environmental data analysis still makes frequent use of diagnostic testing in order to fit
parametric data models or identify outliers. If the samples contain non-detect (i.e., left-
censored) measurements, the diagnostics are typically run by ‘fudging’ or perhaps ignoring
the censoring content, in part because published guidance is lacking on proper adjustment
for left-censored data.

Yet, naive use of goodness-of-fit and/or outlier testing with left-censored data may eas-
ily lead to biased or inaccurate diagnostic tests. Our method for computing ‘on-the-fly’
Monte Carlo percentage points is now practical for at least two common diagnostic tests:
Filliben’s probability plot correlation coefficient test of normality and Rosner’s outlier test.
While the power of the modified tests must still be formally investigated, informal applica-
tion of each test on hundreds of real data sets indicates very good agreement between the
test result and what you might expect from visual examination of the data.

To encourage greater use of these techniques, R routines for both tests are available by
request from the author (kcmacstat@gmail.com).
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Figure 1: Grouped Upgradient Barium in Groundwater
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Figure 2: Grouped Upgradient Chromium in Groundwater
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