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Abstract
This paper proposes hybrid-testing procedures as a general class of methods that simul-
taneously addresses the problems of procedure selection and multiple testing. Hybrid-
testing procedures apply a set of primary testing procedures to perform the tests of
primary interest (e.g. using the t-test or rank-sum test to evaluate equality of univariate
means across groups for a large number of variables) and a set of assumption testing
procedures to statistically evaluate the assumptions (e.g. the normality of data as an
assumption of the t-test for those same variables) of the primary test procedures. The
results from each testing procedure are summarized as a set of p-values and empirical
Bayesian probabilities (EBPs) of the corresponding null hypotheses. Prior knowl-
edge of the statistical properties of the primary testing procedures according to the
validity of the statistically evaluated assumptions is used to define an algorithm. The
algorithm selects the best primary testing procedure according to the validity of each
assumption testing procedure to determine weights for combining the EBPs from the
primary testing procedures into a final set of EBPs for the hypotheses of primary inter-
est (univariate equality of means for the set of variables). This final EBP is a measure
of statistical significance that adjusts for multiple-testing and incorporates a formal
evaluation of assumptions to combine the results of several hypothesis-testing proce-
dures in a manner guided by prior statistical knowledge. The proposed procedures are
applied to gene expression data.

1 Introduction

We propose procedures for testing hybrid hypotheses as a general methodology for address-
ing the frequently overlooked problem of selecting the most appropriate hypothesis testing
procedure to use when performing a very large number of tests in the analysis of high-
dimensional data. The procedure selection is complex, usually because distributional test
statistics under a specific hypothesis (e.g. the normal distribution assumption for the t-test)
may be reasonable for some tests but not valid for other tests. The statistical evaluation of
assumptions for each test also introduces an additional layer of multiplicity to the analy-
sis. We propose the use of an estimate of the empirical Bayesian probability (EBP) of the
null hypothesis for each test in a manner that simultaneously addresses the multiple testing
problem and the procedure selection problem. This overall EBP estimate is the weighted
mean of EBPs obtained from the several hypothesis testing procedures performed. The
weights are defined in terms of the EBPs that the assumptions hold. Three specific hybrid-
testing procedures developed for frequently encountered applications show good perfor-
mance characteristics in simulation studies and in applications from cancer genomics. An
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R package that implements these hybrid-testing procedures and provides “plug-in” capabili-
ties to facilitate the rapid implementation of novel hybrid-testing procedures, HybridMTest,
has been developed by Pounds and Fofana (Bioconductor, 2012).

Hypothesis testing is formalized through a null hypothesis and an alternative hypothesis.
P-values are computed under the null hypotheses and several other technical assumptions.
The computed p-values may not be uniformly distributed if the technical assumptions do
not hold. If the technical assumptions are invalid then estimations or control of type I errors
and type II errors will be misleading.

Three specific hybrid-testing procedures developed for frequently encountered applica-
tions show good performance characteristics in simulation studies and in applications from
cancer genomics.

2 Literature Review

Multiple hypothesis testing is an essential step in the analysis of high-dimensional data like
genomic or proteomic data. It presents, however, a lot of challenges. There are well known
difficulties to face when dealing with multiple testing procedures, such as controlling for
multiple testing, see Benjamini & Hochberg (1995), Efron et al. (2001), Storey (2002),
taking assumptions into consideration (Pounds & Rai, 2009). These challenges occur very
often when analyzing gene expression data.

The need to overcome these challenges provides the motivation for the procedures we
develop in this paper. We implement one procedure, hybrid-testing, for analyzing data in a
multivariate setting. We develop hybrid-testing procedures to combine tests that are made
under a variety of distributional assumptions.

When enormous amounts of data are produced, one statistical task consists of data
reduction; Efron et al. (2001) introduce a nonparametric empirical Bayes probability (EBP)
model that can be used as a summary statistic. Their model can also be used to make
simultaneous inferences.

Some procedures look at averaging models that average across models, for example
Bayesian Model Averaging for Linear Regression Models (see Raftery, Madigan and Hoet-
ing, 1997). They emphasize that selecting subsets of predictor variables is a basic part of
building a linear regression model. A typical approach would be carrying out a model se-
lection exercise that leads to a single “best” model and then making inferences as if the
selected model were the true model. They show that averaging procedures provide better
predictive performance than any single model that might reasonably have been selected. As
a single model ignores a major component of uncertainty about the model itself.

Hybrid-testing is an averaging procedure too. This procedure estimates the proportion,
π0, of true null hypotheses in multiple-hypothesis set-ups and considers, at the same time,
the underlying assumptions of the hypothesis test. The tests are based on observed p-values.
Estimating the proportion of true null hypotheses is of interest in many situations where a
large number of hypothesis tests are conducted, see Nettleton et al., 2006. To estimate the
density function of the p-values, some researchers fit a beta uniform distribution to estimate
π0, see Pounds & Rai (2009), while others use a method called the Grenander density
estimation, a nonparametric, maximum likelihood estimator based on the order statistics of
the p-values, see Langaas et al. (2005).

Hybrid-testing uses the EBP approach and the Grenander estimator of the p-value den-
sity. It simultaneously controls for multiple testing of the error rate and selects the best
testing procedures.
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3 Notations

Let G represent the number of hypothesis tests to be performed. In an application of interest
G will be the number of genes, and let

Hog : θ g = θ og (1)

represent the null hypothesis for gene g, and the alternative hypothesis

Hag : θ g 6= θ og, g = 1, · · · ,G. (2)

Suppose also that there are two different methods, M1 and M2 that can be used to
perform these statistical tests. When M1 is used, let T1 = {T11, · · · ,T1G} represent the
test statistics obtained and P1 = {P11, · · · ,P1G}, the corresponding P-values. Similarly,
let T2 = {T21, · · · ,T2G} and P2 = {P21, · · · ,P2G} represent the corresponding quantities for
method M2.

Let
HoAg : Ag = 1, (3)

represent that the hypothesis from an assumption categorized as 1 is true and

HaAg : Ag = 2, (4)

the assumption that an alternative assumption categorized as 2 is true. Let Ta = {Ta1, · · · ,TaG}
be the test statistics and Pa = {Pa1, · · · ,PaG} the corresponding P-values.

4 FDRs, Empirical Bayes Probability and Grenander Procedure

False Discovery Rates (FDRs)

In high-dimensional genomic or proteomic data, analyses requiring multiple testings as
described in (1), such multiple testings result in inflated type I error. Controlling false
discovery rates (FDRs) have proven to be reliable and less conservative statistical method
in determining the significance of genomic features. FDR methodologies are currently
used in many applications which include gene expression data analysis, spectrometric peak
detection, single nucleotide polymorphism (SNP) discovery, and edge selection in genetic
networks. FDR was introduced in the seminal papers by Schweder and Spjøtvoll (1982)
and Benjamini and Hochberg (1995). Storey (2002) improved it through pFDR.

Consider a test statistic T, with observed values denoted by t. Assume that across hy-
potheses g, g = 1, · · · ,G, the statistics T follows a two-component mixture distribution,
with density function

f (t) = π f0(t)+(1−π) fa(t), (5)

where f0 the density function of T under the null hypothesis and fa the density function of
T under the alternative hypothesis. This mixture model may also be written in terms of the
distribution functions

F(t) = πF0(t)+(1−π)Fa(t), (6)

where F0(t) is the distribution function of T under H0, and Fa(t) is the distribution function
of T under Ha. For an observed value T = t, Strimmer (2008) calculates the false discovery
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rate as

FDR(t) = π
1−F0(t)
1−F(t)

. (7)

It should be noted that the expression (7) corresponds to the posterior probability that H0 is
true given T ≥ t, that is

FDR(t) = P(H0 true | T ≥ t). (8)

Intuitively, FDR is simply a P-value corrected for multiplicity. The idea is to provide an
efficient data reduction method, since microarray experiments produce enormous amounts
of data that require novel data reduction strategies.

Empirical Bayes Probability

Local FDR, also known as empirical Bayes probability (EBP), was introduced by Efron et
al. (2001). Efron and Tibshirani (2002) discuss other aspects of EBP. Using the concept of
local FDR by Efron et al. (2001), Strimmer (2008) defines the empirical Bayes probability
of the null hypothesis as

EBP(t) = π
f0(t)
f (t)

. (9)

Full Bayesian analysis would require prior specification of π, f0(t), fa(t), but EBP does not
require any prior distribution, Efron and Tibshirani (2002) provide more details.

We illustrate the objective of developing a hybrid EBP by considering a two sample
microarray data analysis.

In such analysis, the goal is to identify genes that are differentially expressed relative
to the control group and it is not uncommon in such applications to assume that the two
samples come from the same scale-location family of distribution such as the Gaussian
family. However, in the first step in coming to that assumption is usually to try to transform
the pre-processed expression to normality. Hence the first set of hypothesis in the hybrid
testing is a test of normality for each gene which is followed by the second layer of testing
for equality of mean in expression for each gene.

For this first layer of testing, we use the Grenander density estimation to determine the
distribution of the transformed expression data. The empirical Bayes probability for the
hybrid-testing is derived from the following theorem.

Theorem 1. Empirical Bayes probability for hybrid tests
Let T be a statistic to be used for testing H0 versus Ha and let H01 represent the hypothesis
that the distribution of T belongs to family F1. Symbolically, let

H01 : A = 1 vs Ha1 : A 6= 1. (10)

Then
EBP(H0) = EBP(H0 | H01)EBP(H01)+EBP(H0 | Ha1)EBP(Ha1) (11)
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Proof.

EBP(H0) = π0 f0(z)
f (z)

= P(H0)P(z|H0)
P(z)

= P(H0∩z)
P(z)

= P(H0∩z∩(H01∪Ha1))
P(z)

= P(H0∩z∩H01)
P(z) + P(H0∩z∩Ha1)

P(z)

= P(H0|H01)P(z|H0∩H01)
P(z|H01)

× P(H01)P(z|H01)
P(z) +

P(H0|Ha1)P(z|H0∩Ha1)
P(z|Ha1)

× P(Ha1)P(z|Ha1)
P(z)

= EBP(H0 | H01)EBP(H01)+EBP(H0 | Ha1)EBP(Ha1)

In order to compute the EBPs and FDRs it is necessary to estimate not only π, but also
f , F, F0, and f0. However, the raw test statistics are not collected in our study, instead the P-
values of the tests are available. Under the null hypothesis, P is uniformly distributed [0,1]
when the test statistic is continuous. For one-sided tests the knowledge of P-values can be
used to obtain F0 and f0 approximately. To estimate π , f , and F a Grenander estimator is
described in the following section, (Langaas and Lindqvist, 2005). In the following section
we describe the Grenander estimator.

The Grenander Estimator

Denote Θ the set of decreasing density functions on [0,1]. Let p(1) ≤, · · · ,≤ p(G) be the
ordered observed p− values from the G hypothesis tests. A nonparametric maximum like-
lihood estimator of f in Θ is given by Langaas and Lindqvist (2005) as

f̂ = argmax
`∈Θ

{
G

∏
g=1

`(p(g))

}
, (12)

f̂ is known as the Grenander estimator, Grenander (1956).
For each g, g = 1, · · · ,G, f̂g is determined by

f̂g = min
l≤g−1

max
k≥g

{
F̂(p(k))− F̂(p(l))

p(k)− p(l)

}
(13)

letting f̂ be constant in each interval (p(g), p(g+1)].
F̂ is defined by

F̂(α) =
#{pg ≤ α}

G
. (14)

Several methods are proposed to estimate the parameter π. Langaas and Lindqvist
(2005) estimate it as

π̂ = min
l≤G−1

{
F̂(p(G))− F̂(p(l))

p(G)− p(l)

}
. (15)

Equation (13) shows that the Grenander estimate is the (left-hand) slope of the least
concave majorant of the empirical distribution function F̂ . The estimator can be computed
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by using the pool adjacent violators algorithm (Robertson et al., 1988). The Grenander
estimator uses F̂ , the empirical cumulative distribution function (ECDF). To implement our
method we use “fdrtool” a statistical package by Strimmer (2008) for the Grenander density
estimation.

5 The General Hybrid-Testing Procedure

Pounds and Morris (2003) describe a method that estimates EBPs by fitting a beta-uniform
mixture (BUM) model to the p-values and then estimating the EBP for a specific p-value.
Efron et al. (2001) use a logistic regression to compute EBPs. The hybrid-testing procedure,
however, uses the Grenander estimator density of the p-values.

Specifically, let B1 = {B11, · · · ,B1G}, B2 = {B21, · · · ,B2G}, and Ba = {Ba1, · · · ,BaG}
be the empirical Bayes probabilities calculated using (9), and let the p-values P1, P2, and
Pa be defined as in the notation section. The Grenander estimates of f and π are as (12),
and (15), respectively. By using the law of total probabilities, an estimate of the EBP for
testing Hog versus Hag is given by

EBP∗
g = Bag×B1g +(1−Bag)×B2g. (16)

In addition, let

EBP∗∗
g =

{
B1g, if Bag ≥ ς

B2g, if Bag < ς ,
(17)

with ς a pre-specified threshold, define another hybrid-testing procedure. The decision
rule is to reject the null hypothesis Hog : θ g = θ og,g = 1, · · · ,G when EBPg is less than a
pre-specified threshold τ.

The hybrid-testing procedure, EBP∗, can be extended to the case where the number of
possible testing methods is greater than two. Suppose there are k possible distributional
assumptions, A1, · · · ,Ak for each of the statistic tests. A final weighted EBP for the gth test
is computed as

EBP∗
g =

k

∑
i=1

wigBig (18)

where wig are the weights and satisfy wig ≥ 0 and ∑
k
i=1 wig = 1.

6 Some Specific Hybrid-Testing Procedures

We illustrate the above using three hybrid-testing procedures: the hybrid t-Wilcoxon, the
hybrid ANOVA-Kruskal-Wallis, and the hybrid Pearson-Spearman. We conduct simula-
tions in order to see the performances of our methods compared to other methods. In
addition, we apply the hybrid-testing procedures to real data on human Apendema and
AML genes expression data. In the first data set, we compare gene expression levels in
three groups and in the second one, we investigate how gene expression is related to DNA
synthesis rate data.

Hybrid t-Wilcoxon Testing

When comparing two groups, many different statistical tests can be used. The t-test and the
Wilcoxon test are examined here, see Wilcoxon, 1945.
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Consider the following multiple hypotheses tests

H0g : µ1g = µ2g vs Hag : µ1g 6= µ2g, g = 1, · · · ,G. (19)

Commonly, under the assumption that the test statistics have normal distribution a t-test is
used. However, a Wilcoxon test based on rank sums maybe used when the normality as-
sumption is not valid. It is worthwhile mentioning that when the normally assumption is
correct, the t-test may be more powerful than the Wilcoxon test, however, if the assump-
tion of normality is not valid a t-test is not an optimal test and may be anti-conservative.
We use the Shapiro-Wilk test to test for normality, Royston (1982) and Shapiro and Wilk
(1965). Let ps

1, · · · , ps
G be the G p-values computed from the Shapiro-Wilk’s test statistics

for the G normality tests, pt
1, · · · , pt

G be the G p-values calculated from the t-test statistics,
and pw

1 , · · · , pw
G be the G p-values derived from the rank-sum statistics. Let Bs

1, · · · ,Bs
G,

Bt
1, · · · ,Bt

G, and Bw
1 , · · · ,Bw

G be the respective empirical Bayes probabilities from the G p-
values of the G p-values of Shapiro-Wilk’s test statistics, the t-test statistics, and the G
p-values of the rank-sum statistics. The weighted empirical Bayes probability, EBP∗

g , is as
follow

EBP∗
g = Bs

g×Bt
g +(1−Bs

g)×Bw
g . (20)

And finally, the selected empirical Bayes probability, EBP∗∗
g , is computed as follows:

EBP∗∗
g =

{
Bt

g, if Bs
g ≥ ς

Bw
g , if Bs

g < ς .
(21)

Hybrid ANOVA–Kruskal-Wallis

Two statistical tests that can be used for comparing multiple groups are ANOVA and the
Kruskal-Wallis test. The choice between these two different tests depends on whether the
data can be assumed to come from a normal distribution.

Consider the following hypothesis testings

H0g : µ1g = µ2g = · · ·= µkg vs Hag : µig 6= µ jg, i 6= j for at least one i and j for each g,
(22)

g = 1, · · · ,G, where µig is the mean value of group i for gene g. For each component g, the
test determines if there exist at least two groups that have different means. A hybrid-testing
procedure can take assumptions for each test into consideration.

We select two well-known methods of testing k-group means, an ANOVA test which
assumes the populations are normally distributed, and the non-parametric Kruskal-Wallis
test which makes no distributional assumptions. When the data are normally distributed,
the ANOVA test is believed to be more powerful than the Kruskal-Wallis test, but when the
assumption of normality does not hold the Kruskal-Wallis test may perform better than the
ANOVA test. In order to check whether normality may be assumed, a Shapiro-Wilk test of
normality can be used. To implement a hybrid-testing procedure for K−group comparison,
we first compute three different sets of p-values. Let ps

1, · · · , ps
G, pa

1, · · · , pa
G, and pk

1, · · · , pk
G

be the G p-values calculated from the Shapiro-Wilk, the ANOVA, and the Kruskal Wallis,
respectively. Let Bs

1, · · · ,Bs
G, Ba

1, · · · ,Ba
G, and Bk

1, · · · ,Bk
G be the respective empirical Bayes

probabilities computed from the G p-values of the Shapiro-Wilk, the ANOVA, and the
Kruskal-Wallis test statistics.

3426



The hybrid EBPs are given by

EBP∗
g = Bs

g×Ba
g +(1−Bs

g)×Bk
g, (23)

and

EBP∗∗
g =

{
Ba

g, if Bs
g ≥ ς

Bk
g, if Bs

g < ς .
(24)

Hybrid Pearson-Spearman

In the literature of gene expression data, it is common to ask whether certain covariates are
significantly correlated with a gene expression measurement. Two different statistics that
are widely used to measure linear relationship are the Pearson test, and the nonparametric
Spearman rho. The choice between one of the procedures is predicated on the normality
assumption. The Pearson test assumes that the data come from a normal population, while
the Spearman rho test is distribution free.

Suppose that the ith observation (expression value) from gene g satisfies the linear model

Ygi = βg0 +βg1Xi + εgi, g = 1, · · · ,G; i = 1, · · · ,n, (25)

with β g = (βg0,βg1) is a vector of parameters to estimate for gene g, Xi is the measure of a
covariate, and εgi is an error term.

Hypothesis tests for the linear dependency of Yg on X is

H0g : βg1 = 0 vs Hag : βg1 6= 0, g = 1, · · · ,G. (26)

Let ps
1, · · · , ps

G, pp
1 , · · · , pp

G, and psp
1 , · · · , psp

G , and be the respective G p-values calculated
from the Shapiro-Wilk, Pearson, and Spearman test statistics. Let Bs

1, · · · ,Bs
G, Bp

1 , · · · ,Bp
G,

and Bsp
1 , · · · ,Bsp

G be the empirical Bayes probabilities derived from the G p-values of the
Shapiro, Pearson, and Spearman test statistics, respectively.

The empirical Bayes probabilities are given by

EBP∗
g = Bs

g×Bp
g +(1−Bs

g)×Bsp
g , (27)

and

EBP∗∗
g =

{
Bp

g , if Bs
g ≥ ς

Bsp
g , if Bs

g < ς .
(28)

7 Simulations

In order to compare the hybrid-testing with other methods, we conduct three different se-
ries of analysis through simulations, two-group comparison, three-group comparison, and
regression analyses and use AUCs, sensitivity, and specificity.

Hybrid t-Wilcoxon Simulation

The hybrid-testing procedure is studied for two-group comparison analysis using simula-
tions. With a total of G genes, the hybrid-testing procedure is compared with other statis-
tical tests. In a two-group comparison study, the problem is, for each gene, to test whether
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its expression level is different between two groups. Consider the following hypothesis
testings

H0g : µ1g = µ2g vs Hag : µ1g 6= µ2g, g = 1, · · · ,G, (29)

where µig is group i mean expressing for gene g.
Using three different methods: t-test with equal variances, t-test with unequal variances,

and Wilcoxon test can be used to conduct the analysis, and the Bartlett test to check for
equality of variances, we compute the hybrid-testing as

EBP∗
g = Bs

g× [Bb
g×Bevt

g +(1−Bb
g)×Buvt

g ]+ (1−Bs
g)×Bw

g (30)

where Bb
g, Bevt

g , and Buvt
g are EBPs from the Bartlett test, the t-test with equal variances, and

the t-test with unequal variances, respectively.
We simulate expressions of G genes where n0 of the G genes are from H0., the null

hypotheses, and na of the rest of the G genes are from Ha., the alternative hypotheses.
Among the n0 genes, some are N(0,σ2), some are Log− normal(0,σ2) and others are
Cauchy(0,σ), 0 is the location parameter and σ the scale parameter. Also, among the
na alternative gene expression values some are normally distributed N(µ,σ2), some are
Log− normal(µ,σ2) and the others are Cauchy(θ ,σ). Appendix B contains more details
on the simulation setups. In this setup the exact number of expressed genes and the exact
number of unexpressed genes are known. In each setup, we conduct several settings. Each
setting corresponds to a sample size and each setting is replicated a number of times.

We conduct several simulation studies. In the first setup, there are two groups of sample
size varying from 5, 10, 25, and 50. The number of null genes with the normal distribu-
tion are 720, number of null genes with the Cauchy distribution are 80. The number of
alternative genes is 20 for the Cauchy distribution and 180 for the normal distribution, 200
alternative genes in total, and the number of replications is 1000.

We compute the powers and AUCs in each setting. Powers and AUCs vary according to
settings, therefore, for each setting a power and an AUC are computed and the correspond-
ing graphs are provided. Table 1 presents the corresponding powers for the competing
procedures and Figure 1 is the corresponding graph. Table 2 shows the AUC results and
Figure 2 presents the corresponding graph. The greater power or the greater AUC corre-
sponds to a better methodology. These tables and graphs show that the hybrid procedures
are more powerful than other procedures in most of the settings. For instance, in Table 1,
when the sample size is 50, the respective powers for the t-test with equal variances, the
t-test with unequal variances, the Wilcoxon test, the hybrid-testing EBP∗, and the hybrid-
testing EBP∗∗ are 0.665806, 0.662936, 0.80269, 0.87464, and 0.810064.

In a second simulation setup, the Cauchy distribution is replaced by the Log-normal
distribution. We give more details in Appendix B. The results are presented in Table 3, and
Figure 3; in Table 4, and Figure 4. We draw the same conclusion as in the first setup. In
most of the settings, hybrid-testing procedures reveal to be more powerful than the other
competing procedures.
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Table 1: Two-Group Simulation Power Comparison

SS EV t-test UV t-test Wilcoxon EBP∗ EBP∗∗

5 0.002434 0.000846 0 0.02818 0.00069
10 0.08058 0.05682 0.115098 0.270526 0.13047
25 0.444066 0.435188 0.553762 0.674988 0.565108
50 0.665806 0.662936 0.80269 0.87464 0.810064

Notes: This shows powers for different methods of 2−group comparison in multidimensional testing. SS≡ Sample size. EV
t-test and UV t-test mean t-test with equal and unequal variances, respectively. EBP∗ is hybrid-testing as in (30) and EBP∗∗

is hybrid-testing as in (17).

Figure 1: Two-Group Simulation Power Comparison
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Table 2: Two-Group Simulation AUC Comparison

SS EV T-test UV T-test Wilcoxon EBP∗ EBP∗∗

5 0.64849 0.648356 0.567129 0.64236 0.635831
10 0.730395 0.730853 0.735035 0.755804 0.756211
25 0.829219 0.829531 0.902337 0.910524 0.910104
50 0.868432 0.868546 0.971567 0.976555 0.973893

Notes: This shows AUCs for different methods of 2−group comparison in multidimensional testing. SS ≡ Sample size. EV
t-test and UV t-test mean t-test with equal and unequal variances, respectively. EBP∗ is hybrid-testing as in (30) and EBP∗∗

is hybrid-testing as in (17).
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Figure 2: Two-Group Simulation AUC Comparison
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Table 3: Two-Group Simulation Power Comparison

SS EV t-test UV t-test Wilcoxon test EBP∗ EBP∗∗

5 0.004396 0.00139 0 0.065002 0.001136
10 0.134986 0.11498 0.116222 0.358476 0.137462
25 0.54672 0.540376 0.552902 0.722674 0.570982
50 0.780498 0.777618 0.802668 0.891926 0.813996

Notes: This shows powers for different methods of 2−group comparison in multidimensional testing. SS≡ Sample size. EV
t-test and UV t-test mean t-test with equal and unequal variances, respectively. EBP∗ is hybrid-testing as in (30) and EBP∗∗

is hybrid-testing as in (17).

Table 4: Two-Group Simulation AUC Comparison

SS EV T-test UV T-test Wilcoxon EBP∗ EBP∗∗

5 0.657408 0.656395 0.567454 0.655039 0.65254
10 0.763339 0.762761 0.736313 0.769609 0.767322
25 0.897038 0.89681 0.902189 0.916082 0.91352
50 0.953357 0.953298 0.971567 0.978162 0.974856

Notes: This shows AUCs for different methods of 2−group comparison in multidimensional testing. SS ≡ Sample size. EV
t-test and UV t-test mean t-test with equal and unequal variances, respectively. EBP∗ is hybrid-testing as in (18) and EBP∗∗

is hybrid-testing as in (17).
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Figure 3: Two-Group Simulation Powers Comparison
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Figure 4: Two-Group Simulation AUC Comparison
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Hybrid ANOVA-Kruskal-Wallis Simulation

We apply the hybrid-testing procedure to compare means in a three-group analysis. Con-
sider the following hypothesis testings

H0g : µ1g = µ2g = · · ·= µkg vs Hag : µig 6= µ jg, i 6= j for at least one i and j for each g,
(31)
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g = 1, · · · ,G. As in two group comparing analysis, we compare the performance of the
hybrid-testing procedures with other methods using powers and AUCs. We make the com-
parison through two different setups. In the first setup, there are three groups with the
sample varying from 5, 10, 25, 50. The number of null genes with the normal distribu-
tion is 720. The number of null genes with the Cauchy distribution is 80. The number of
alternative genes is 20 for the Cauchy distributions and 180 for the normal distributions,
with 200 alternative genes in total. The number of replications is 1000. The simulation
results are presented in Table 5, and Figure 5; and in Table 6, and Figure 6. The results
show that, in most of the settings, hybrid-testing procedures outperform the other method-
ologies. Figure 5 shows hybrid-testing procedures (EBP∗ and EBP∗∗) to be more powerful
than the Kruskal-Wallis test and the ANOVA test; the corresponding numerical results are
presented in Table 5. Figure 6 shows that the hybrid-testing procedures (EBP∗ and EBP∗∗)
have greater AUCs than all other methods; the corresponding results are presented in Table
6.

Table 5: Three-Group Simulation Power Comparison

Sample size ANOVA Kruskal EBP∗ EBP∗∗

5 0.00267 0.00011 0.001575 0.00156
10 0.08803 0.047405 0.08517 0.105845
25 0.62652 0.685965 0.713885 0.70887
50 0.90504 0.94124 0.961455 0.945485

Notes: This shows powers for different methods of k−group comparison in multidimensional testing. EBP∗ is hybrid-testing
as in (16) and EBP∗∗ is hybrid-testing as in (17).

Figure 5: Three-Group Simulation Power Comparison
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Table 6: Three-Group Simulation AUC Comparison

Sample size ANOVA Kruskal EBP∗ EBP∗∗

5 0.723323 0.705571 0.729793 0.717486
10 0.85501 0.849496 0.870027 0.853085
25 0.972265 0.970622 0.982884 0.969216
50 0.988244 0.984893 0.995077 0.984916

Notes: This shows AUCs for different methods of k−group comparison in multidimensional testing. EBP∗ is hybrid-testing
as in (16) and EBP∗∗ is hybrid-testing as in (17).

Figure 6: Three-Group Simulation AUC Comparison
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A second simulation, similar to the first simulation, is performed with the Cauchy dis-
tribution replaced by the Log-normal distribution. The results are presented in Table 7,
and Figure 7; and in Table 8, and Figure 8. Our proposed methodologies are again more
powerful than the other procedures in most of the cases.

Hybrid Pearson-Spearman

Consider a simple regression
Y = βX+ ε, (32)

where Y is a G×n matrix where each row constitutes gene expression data, G is the number
of genes, n is the sample size.
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Table 7: Three-Group Simulation Power Comparison

Sample size ANOVA Kruskal EBP∗ EBP∗∗

5 0.003705 8.00E-05 0.0023 0.00267
10 0.12584 0.05036 0.12057 0.132475
25 0.700315 0.685965 0.722465 0.72113
50 0.935525 0.94072 0.95545 0.94422

Notes: This shows powers for different methods of k−group comparison in multidimensional testing. EBP∗ is hybrid-testing
as in (16) and EBP∗∗ is hybrid-testing as in (17).

Figure 7: Three-Group Simulation Power Comparison
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Table 8: Three-Group Simulation AUC Comparison

Sample size ANOVA Kruskal EBP∗ EBP∗∗

5 0.715722 0.7053 0.720206 0.717601
10 0.85251 0.849279 0.85984 0.852012
25 0.969388 0.971307 0.975089 0.969274
50 0.983381 0.984229 0.988712 0.98259

Notes: This shows AUCs for different methods of k−group comparison in multidimensional testing. EBP∗ is hybrid-testing
as in (16) and EBP∗∗ is hybrid-testing as in (17).

And X′
=


1 x1
1 x2
...

...
1 xn

 , β =


β10 β11
β20 β21

...
...

βG0 βG1

 , and ε =



ε11 ε12 · · · ε1n

ε21 ε22 · · · ε2n

...
...

...
...

εg1 εg2 · · · εgn

...
...

...
...

εG1 εG2 · · · εGn


, are matrices of
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Figure 8: Three-Group Simulation AUC Comparison
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sample covariates, parameters, and random errors with means of zeros and variances of
ones, respectively. The hypothesis testings can be summarized as

H0g : βg1 = 0 vs Hag : βg1 6= 0. (33)

We perform two different setups to compare hybrid-testing procedures with the other
methodologies. In the first setup, the number of null genes with the normal distribution are
720, number of null genes with the Cauchy distribution are 80. The number of alternative
genes is 20 for the Cauchy distribution and 180 for the normal distribution, 200 alternative
genes in total, and the number of replications is 1000. The sample size varies from 5, 10,
25, 50. We compare hybrid-testing methodologies (EBP∗ and EBP∗∗) with Pearson and
Spearman tests using powers, and AUCs. The results are presented in Table 9, and Figure
9; and in Table 10, and Figure 10. The results show that our procedures perform better than
other methodologies in most of the cases.

Table 9: Regression Simulation Power Comparison

Sample size Pearson Spearman EBP∗ EBP∗∗

5 0.00094 0 0.000855 0.00115
10 0.084065 0.064045 0.081235 0.10014
25 0.42082 0.46567 0.47968 0.49815
50 0.497415 0.70289 0.693565 0.702665

Notes: This shows powers for different methods of correlation in multidimensional testing.
EBP∗ is hybrid-testing as in (16) and EBP∗∗ is hybrid-testing as in (17).
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Figure 9: Regression Simulation Power Comparison
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Table 10: Regression Simulation AUC Comparison

Sample size Pearson Spearman EBP∗ EBP∗∗

5 0.69203 0.546736 0.691299 0.701406
10 0.824858 0.803001 0.844474 0.859245
25 0.926474 0.958733 0.970049 0.970106
50 0.96073 0.97999 0.989255 0.981823

Notes: This shows AUCs for different methods of correlation in multidimensional testing.
EBP∗ is hybrid-testing as in (16) and EBP∗∗ is hybrid-testing as in (17).

A second simulation, similar to the first simulation is conducted where the Cauchy
distribution is replaced by the Log−normal distribution. The results are presented in Table
11, and Figure 11; and in Table 12, and Figure 12. Again, the results show that our proposed
methods are more powerful than other methodologies in most of the settings.
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Figure 10: Regression Simulation AUC Comparison
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Table 11: Regression Simulation Power Comparison

Sample size Pearson Spearman EBP∗ EBP∗∗

5 0.00423 0 0.003606 0.00479
10 0.16786 0.13519 0.166945 0.183385
25 0.61661 0.71118 0.74184 0.746385
50 0.793995 0.93356 0.941415 0.935395

Notes: This shows powers for different methods of correlation in multidimensional testing.
EBP∗ is hybrid-testing as in (16) and EBP∗∗ is hybrid-testing as in (17).

Table 12: Regression Simulation AUC Comparison

Sample size Pearson Spearman EBP∗ EBP∗∗

5 0.694852 0.547953 0.694589 0.696258
10 0.830779 0.806726 0.851895 0.851087
25 0.9272 0.959929 0.970204 0.965763
50 0.960601 0.978931 0.987718 0.981027

Notes: This shows AUCs for different methods of correlation in multidimensional testing.
EBP∗ is hybrid-testing as in (16) and EBP∗∗ is hybrid-testing as in (17).
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Figure 11: Regression Simulation Power Comparison

0 10 20 30 40 50

0
20

40
60

80
10

0

 

Sample Size

Pe
rc

en
t P

ow
er

●

●

●

●

●

●

●

●

●

●

Pearson power
Spearman power
EBP* power
EBP** power

Figure 12: Regression Simulation AUC Comparison
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8 Applications

To further compare hybrid-testing methods with other procedures, we analyze the human
ependymoma data, and the AML expression data along with the INHIBO data.
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Comparison of 3-anatomically human ependymoma

The data sets are human ependymoma data from three distinct anatomic regions: Posterior
Fossa (PF), Spine (SP) and Supratentorial (ST). The analysis consists of testing whether
mean gene expression levels are equal in these three groups. From Figure 13, the his-
togram of the p-values of the Shapiro-Wilk test indicates that some of the expression data
are normally distributed and others are not, since some p-values are less than 5% level of
significance. Thus, the hybrid-testing procedure may be useful for analyzing the data. The
box plot given in Figure 14 shows that the three groups of the gene 224132at expression are
different. Both the Hybrid ANOVA-Kruskal-Wallis test and the ANOVA test validate that
finding, while the Kruskal Wallis test finds no difference among the three groups. Thus the
Hybrid ANOVA-Kruskal-Wallis testing procedure performs better than the Kruskal-Wallis
test when the normality assumption is valid. The Q-Q plot test for normality in Figure 15
accepts the validity of the normality of the data. Under Figure 14, we report the ANOVA
p-value as 0.01 and the ANOVA EBP as 0.06, the Kruskal-Wallis p-value as 0.12 and the
Kruskal-Wallis EBP as 0.26, the Shapiro-Wilk p-value as 0.93, and the hybrid-testing EBP
as 0.06. With a threshold of τ equals to 0.1, both the hybrid-testing and the ANOVA reject
the null hypothesis.

Figure 13: Three-Group Comparison Data

Association of Expression with DNA Synthesis Rate in AML Data

The study consists of investigating if gene expressions from a sample of patients are signif-
icantly correlated with the DNA Synthesis Rate (INHIBO). We conduct the analysis using
Affymetrix arrays. Specifically, we wish to investigate the relationships between AML gene
expression levels with INHIBO. To start with, we evaluate the distribution of p-values of
tests for differential expression of the AML data and found in Figure 16 that some of the
p-values are less than 0.05. Figure 17 and the Shapiro-Wilk test (p-value=0.172) show that
the normality assumption does hold. A linear regression plot in Figure 18 indicates that the
expression values of the gene 200081sat are not correlated with INHIBO. An application of
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Figure 14: Ependymoma Data: Analysis results

Figure 15: Ependymoma Data: Test for normality

Pearson test in this case accurately supports the hypothesis that the gene expression values
are not linearly correlated with DNA synthesis rate. On the other hand, the nonparametric
Spearman correlation marginally rejects this hypothesis and reduces the EBP of Pearson
from 0.861 to an EBP of 0.152. Using hybrid-testing EBP of 0.506, thus the hybrid-testing
performs better than the use of Spearman test alone.

9 Conclusion

We introduce hybrid-testing procedures as a general class of methods that can incorporate
procedure-selection and account for multiple-testing in a seamless manner. Theorem 3.1
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Figure 16: Regression data

Figure 17: Explore Association of Expression with DNA Synthesis Rate: Normality diag-
nosis
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provides a theoretical foundation for the use of the hybrid-testing procedure. In simulations
and in real data analysis, we show that the hybrid-testing procedures perform well. In
particular, we apply the hybrid-testing methodology to tumor data to compare expression
of genes in three different groups, and to clinical data to study the relationship between
AML expression data with INHIBO (DNA Synthesis Rate). The hybrid procedures have
good performances in both applications compared to the ANOVA test and the Kruskal-
Wallis test for the 3-group comparison analysis and to the Spearman and Pearson tests for
the regression analysis.
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Figure 18: Explore Association of Expression with DNA Synthesis Rate: Analysis results
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Figure 19: Association of Expression with DNA Synthesis Rate

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−2 −1 0 1 2

10
.0

10
.2

10
.4

10
.6

10
.8

11
.0

200081_s_at expression

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(a) Normality diagnosis
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(b) Analysis results

For anyone interested in using our hybrid procedure there is an R package, “HybridMtest”,
available on the Bio-conductor. It provides, p-values and EBPs from all the methods includ-
ing the hybrid-testing procedures.
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