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Abstract
The Pearson and likelihood ratio statistics are commonly used to test goodness-of-fit for models applied to
count data from a multinomial distribution. When data are from a table formed by the cross-classification
of a large number of manifest variables, the common statistics may have low power and inaccurate Type
I error level due to sparseness. Several statistics defined on marginal distribution have been proposed to
remedy this issue. Some of these statistics, fit to binary cross classified variables, have good performance
for Type I error rate and power when the data table is formed from a moderate number of manifest variables.
However, when the number of manifest variables becomes larger than 20, these statistics have limitations in
terms of computer resources. This paper compares the performance of several Goodness-of-fit statistics for
multinomial data when number manifest variables is larger than or equal to 25. The study will also inves-
tigate performance of a bootstrap method to obtain p-values for Pearson-Fisher statistic, fit to confirmatory
dichotomous variable factor analysis model, when the number of manifest variables is larger than or equal
to 25.
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1. Introduction

In multinomial models we often consider the null hypothesis Ho : πππ = πππ(βββ), where πππ is a T-
dimensional vector of multinomial probabilities, and πππ(βββ) is a vector of the multinomial probabil-
ities as a function of parameters in the vector βββ . When the model parameters βββ are unknown and
estimated, the null hypothesis Ho : πππ = πππ(βββ) is often tested with the Pearson-Fisher statistic:

χ2
PF =

∑
s

z2
s , (1.1)

where
zs =

√
n(πs(β̂ββ))

− 1
2
(
p̂s − πs(β̂ββ)

)
and where, p̂s is element s of p̂, vector of multinomial proportions, n is total sample size, β̂ββ pa-
rameter estimator vector, πs(βββ) is the expected proportion for cell s and πs(β̂ββ) is the estimated
expected proportion for cell s.
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Under the large sample theory conditions, the Pearson-Fisher statistic has an asymptotic chi-square
distribution with T-g-1 degrees of freedom where, T is the number of cells and g is the number
of estimated model parameters (Koehler and Larantz, 1980). However, this assumption may not
reasonable for analyzing a sparse table. A sparse table is one where there are many cells with small
counts and/or zeros. When the data table is sparse, Pearson’s chi-square statistic may have lower
power and inaccurate Type I error.

Over the past years several statistics has been proposed to remedy this issue. Some of these
statistics formed on lower-order marginals, fit to binary cross classified variables, have good per-
formance for Type I error rate and power when the data table is formed from a moderate number of
manifest variables. However, when the number of manifest variables becomes larger than 20, these
statistics have limitations in terms of computer resources. This paper investigates the performance
of the Tollenaar and Mooijaart (2003) statistic for multinomial data when number manifest vari-
ables is larger than or equal to 25. Mathematical details related to Tollenaar and Mooijaart (2003)
statistic and the reasons for choosing this statistics over other statistics formed on lower-order
marginals are given in the Section 3 and 4.

This study will also investigate performance of a bootstrap method to obtain p-values for
Pearson-Fisher statistic, fit to confirmatory dichotomous variable factor analysis model, when the
number of manifest variables is large.

2. Marginal Proportions

Traditional statistic such as Pearson’s chi-square uses the joint frequencies to calculate goodness
of fit for a model that has been fit to a cross-classified table. This section presents a transformation
from joint proportions or frequencies to marginal proportions.

2.1 First- and Second-Order Marginals

The relationship between joint proportions and marginals can be shown by using zeros and 1’s to
code the levels of dichotomous response random variables, Yi, i = 1, 2, . . . , q, where Yi follow
the Bernoulli distribution with parameter Pi . Then, a q-dimensional vector of zeros and 1’s,
sometimes called a response pattern, will indicate a specific cell from the contingency table formed
by the cross-classification of q response variables. For dichotomous response variables, a response
pattern is a sequence of zeros and 1’s with length q. The T = 2q-dimensional set of response
patterns can be generated by varying the levels of the qth variable most rapidly, the qth−1 variable
next, etc. Define VVV as the T by q matrix with response patterns as rows.
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For instance when q = 3,

VVV =



0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.

Let vis represent element i of response pattern s, s = 1, 2, . . . , T. Then, under the model
πππ = πππ(βββ), the first-order marginal proportion for variable Yi can be defined as

Pi(βββ) = Prob(Yi = 1|βββ) =
∑
s

visπs(βββ),

and the true first-order marginal proportion is given by

Pi = Prob(Yi = 1) =
∑
s

visπs .

Under the model, the second-order marginal proportion for variables Yi and Yj can be defined as

Pij(βββ) = Prob(Yi = 1, Yj = 1|βββ) =
∑
s

visvjsπs(βββ),

where j = 1, 2, . . . , q − 1; i = j + 1, . . . q, and the true second-order marginal proportion is given
by

Pij = Prob(Yi = 1, Yj = 1) =
∑
s

visvjsπs .

2.2 Higher-Order Marginals

A general matrix H[t:u] to obtain marginals of any order can be defined using Hadamard products
among the columns of VVV . The symbol H[t:u] , t ≤ u ≤ q, denotes the transformation matrix that
would produce marginals from order t up to and including order u. Furthermore, H[t] ≡ H[t:t]

and H≡ H[t:u] . H[1:q] gives a mapping from joint proportions to the set of (2q − 1) marginal
proportions:

PPP = H[1:q]πππ ,

where

PPP = (P1, P2, P3, . . . Pq, P12, P13, . . . Pq−1,q, P1,1,2 . . . Pq−2,q−1,q . . . P1,2,3...q)
′
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is the vector of marginal proportions. For example, when q=3,

H[1:3] =



0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

· · ·
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

· · ·
0 0 0 0 0 0 0 1


.

Based on the above definition, second-order marginal proportions for variables Yi and Yj can also
be obtained by,

PPP [2] = H[2]πππ (2.1)

where,

H[2] =



(vvv1 ◦ vvv2)′

(vvv1 ◦ vvv3)′

...
(vvv1 ◦ vvvq)′
(vvv2 ◦ vvv3)′

(vvv2 ◦ vvv4)′

...
(vvv2 ◦ vvvq)′

...
(vvvq−1 ◦ vvvq)′



,

where vvvf represents column f of matrix VVV , and vvvf ◦ vvvg represents the Hadamard product of
columns f and g.

3. Test statistics based on lower-order marginals

As indicated before, one way of remedying the problem of sparseness is to consider focused test
statistics that are based on only the low-order marginals, which are sums of joint frequencies. Any
statistic formed from a sum of the components, not necessarily ones based on marginal frequencies,
can be considered a focused statistic. Summing a subset of components to create a focused test
statistic could increase the power against certain alternatives. Focused tests using lower-order
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marginals can be used in a wide variety of applications including log-linear models, categorical
variable factor analysis and repeated measures on categorical variables.

Christoffersson (1975) first introduced the idea of using first- and second-order marginals for a
test of fit in dichotomous variable factor analysis. Transforming to the notation in this paper, this
statistic can be written as,

χ2
Ch = r̄′H′[1:2](D(p)− pp′)−1H[1:2]r̄ (3.1)

where r̄ = p̂ − πππ(β̄ββ), β̄ββ is the generalized least squares estimator of βββ . χ2
Ch has an asymptotic

chi-square distribution with 2q − g degrees of freedom, where g = number of model parameters
to be estimated. The statistic could be generalized to include higher-order marginals, but even if
marginals from first- to order q were included, this statistic would not be equivalent to the Pearson-
Fisher statistic. Muthén (1978) improved χ2

Ch statistic, but both used observed proportions for the
calculation of covariance matrix and neither presented their test as having higher power or as a
remedy for sparse data.

Reiser(1996, 2008) and Reiser and Lin (1999) proposed statistics for H0 : Hπππ = Hπππ(βββ) that
can be obtained from orthogonal components defined on marginal proportions. These statistics
have higher power under some circumstances, and they usually perform well when applied to
sparse frequency tables. Define the unstandardized residual rs = p̂s−πs(β̂ββ), and denote the vector
of unstandardized residuals as rrr with element rs.√

n rrr has asymptotic covariance matrix ΩΩΩrrr , where

ΩΩΩrrr = (D(πππ(βββ))− πππ(βββ)πππ(βββ)′ −G(A′A)−1G′),

and where

D(πππ(βββ)) = diagonal matrix with (s, s) element equal to πs(βββ),

A = D(πππ(βββ))−1/2∂πππ(βββ)

∂βββ
,

and G =
∂πππ(βββ)

∂βββ
.

Then consider the linear combination eee = Hrrr. If H contains 2q − g − 1 linearly independent
rows corresponding to marginals from order 1 to q, then define the statistic

χ2
[1:q] = nrrr′H′ΩΩΩ−1

eee Hrrr.

Here the statistic is evaluated at βββ = β̂ββ , where β̂ββ is now consistent and efficient for βββ , such as the
maximum likelihood estimator, and where ΩΩΩeee = HΩΩΩrrrH

′. With the added condition that the rows

of H are linearly independent of the columns of G, i.e., rank(H′
...G) = T + g, χ2

[1:q] can be shown
to be equivalent to χ2

PF . See Reiser (2008). To obtain orthogonal components, define the upper
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triangular matrix FFF such that FFF ′ΩΩΩeeeFFF = III . FFF = (CCC ′)−1, where CCC is the Cholesky factor of ΩΩΩeee .
Then writing ΩΩΩeee as CCCCCC ′,

χ2
PF = nrrr′H′(ĈCC

′
)−1ĈCC

′
(ĈCC ĈCC

′
)−1ĈCC(ĈCC)

−1
Hrrr

= nrrr′H′F̂FF F̂FF
′
Hrrr

where F̂FF and ĈCC are the matrices FFF and CCC evaluated at βββ = β̂ββ .
Define

γ̂γγ = n
1
2 F̂FF
′
Hrrr = n

1
2 Ĥ∗rrr

Then

χ2
PF = γ̂γγ ′ γ̂γγ =

j=T−g−1∑
j=1

γ̂2
j ,

and the elements γ̂2
j are orthogonal components of χ2

PF . Since Ĥ∗rrr has asymptotic covariance
matrix FFF ′ΩΩΩeeeFFF = IIIT−g−1, the elements γ̂2

j are asymptotically independent χ2
1 random variables.

By summing subset of these components one can obtain limited-information statistics. The
statistic on first- and second-order marginals from Reiser (1996) is

χ2
[1:2] =

j=q(q+1)/2∑
j=1

γ̂2
j ,

and the statistic on second-order marginals from Reiser and Lin (1999) is

χ2
[2] =

j=q(q+1)/2∑
j=q+1

γ̂2
j .

Joe (1993) and Maydeu-Olivares and Joe (2001, 2005, 2006)proposed a class of chi-square tests
for sparse dichotomous and multidimensional data with applications to the item response model,
a form of categorical variable factor analysis. Their approach is closely related to that of Reiser
(1996) but their focused statistic M2 does not correspond to the same decomposition of the χ2

PF .
For e = H[1:r]r and r = p̂− πππ(β̂̂β̂β),

Mr = e′Ĉre (3.2)

where Ĉr = (HT̂H′)−1 − (HT̂H′)−1HĜ(Ĝ′H′(HT̂H′)−1HĜ)−1Ĝ′H′(HT̂H′)−1 and T̂ =
D(πππ(β̂̂β̂β))− πππ(β̂̂β̂β)πππ(β̂̂β̂β)′. H is always equal to H[1:r] when applied to the definition of Mr.

Tollenaar and Mooijaart (2003) proposed a statistic,

χ2
red = ne′(H[1:2]T̂H′[1:2])

−1e (3.3)

where,
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T̂ = D(πππ(β̂̂β̂β))− πππ(β̂̂β̂β)πππ(β̂̂β̂β)′.

The Tollenaar and Mooijaart (2003) statistic is a reduced version of χ2
[1:2] statistic (Reiser,

2008). The difference lies in the covariance matrix T not including the term G(A′A)−1G′, where

G =
∂πππ(βββ )

∂βββ
and A = D(πππ)−1/2G. As indicated by Tollenaar and Mooijaart (2003), omitting

this term may substantially reduce computations. Since χ2
[1:2] and χ2

red have different covariance
matrices, the degrees of freedom are different.

3.1 Application to Factor Analysis

When categorical manifest variables are hypothesized to be associated with a continuous latent
variable, the model is known as categorical variable factor analysis and sometimes as the item
response theory model. In order to investigate the challenges of a large number of variables and
intense computations, a comparison of the statistics reviewed in the previous section will be pre-
sented using this model with one factor.

According to the categorical factor model, the probability of the response to a manifest variable,
sometimes also referred to as an item, can be given by a logistic item response function:

P (Yi = 1 | βββ ′i, X = x) = (1 + exp(−βi0 − βi1x))−1 (3.4)

where Yi represents the response to item i,

βi0 = intercept parameter for item i

βi1 = slope parameter for item i

βββ ′i = (β0i, β1i)

x = value taken on by latent random variable X

Since
P (Yi = 0 | βββ ′i, X = x) = 1.0− π(Yi = 1 | βββ ′i, X = x),

it follows that

P (Yi = yi | βββ ′i, x) = P (Yi = 1 | βββ ′i, x)yi [1.0− P (Yi = 1 | βββ ′i, x)]1−yi

It is assumed that, conditional upon the latent variable, responses to the manifest variables are
independent. Let YYY represent a random vector of responses to the items, with element Yi, and let
y represent a realized value of YYY . Then

P (YYY = y | βββ, x) =

k∏
i=1

π(Yi = 1 | βββ, x)yi [1− π(Yi = 1 | βββ, x)]1−yi (3.5)
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where βββ =


β01 βi1
β02 β12

β03 β13
...

...
β0q β1q

 .

Finally, the probability of response pattern s, say, is obtained by taking the expected value of
the conditional probability over the distribution ofX in the population, and is sometimes called the
marginal probability:

πs(βββ) = π(YYY = ys | βββ) =

∫ ∞
−∞

π(YYY = ys | βββ, x)f(x)dx (3.6)

where f(x) is the density function of X in the population of respondents.
If UUU represents a T -dimensional multinomial random vector of frequencies associated with the

response patterns, the distribution of UUU is given by

π(UUU = n) = n!
T∏
s=1

[πs(βββ)]

ns!

ns

(3.7)

where n =vector of observed frequencies

ns =element s of n

n =total sample size =

T∑
s=1

ns

4. Feasibility of χ2
red statistic when the number of manifest variables is large

Some popular statistics based on lower-order marginals have been discussed in Section 3. However,
when the manifest variables exceed 20, most of these statistics will become difficult or impossi-
ble to calculate due to computer resource limitations. From these statistics, calculation of χ2

Ch

is fairly straightforward since the covariance matrix, Σr̄ = D(p) − pp′ can be calculated from
the observed counts or proportions. Simulations reported by Reiser and VandenBerg (1994) show
that chi-square approximation for the distribution of χ2

Ch is valid only up to 8 to 10 variables for
typical sample sizes. For larger number of variables the data table becomes very sparse and then
Σr̄ is not a consistent estimator. On the other hand, χ2

[t:u] tends to perform well under commonly
encountered sparse situations, and has been calculated for up to 20 variables. However, calculating

χ2
[t:u] requires calculation of G =

∂πππ(βββ )

∂βββ
which requires 2 ∗ 2q+1 integrals, where q is the number

of manifest variables to be evaluated by numerical quadrature for the factor analysis model. Using
SAS PROC IML, these calculations can be accomplished in random access memory for 20 man-
ifest variables if 6 to 8 GB of RAM are available, for G,H,A, πππ(βββ) and p̂̂p̂p, in approximately 4
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minutes of CPU time (Reiser, 2012). If the calculations are done using virtual memory, reading
and writing to disk, then processing time for 20 variables is on the order of 30 hours. With 25
manifest variables, these calculations can take up to 64 GB of RAM. On the other hand, Tollenaar

and Mooijaart (2003) statistic, stated in Section 3 does not require calculation of G =
∂πππ(βββ )

∂βββ
. The

Tollenaar and Mooijaart (2003) statistic

χ2
red = ne′(H[1:2]T̂H′[1:2])

−1e (4.1)

where,

T̂ = D(πππ(β̂̂β̂β))− πππ(β̂̂β̂β)πππ(β̂̂β̂β)′

is a reduced version of χ2
[1:2] statistic. It is a statistic for simple null hypothesis but with adjusted

degrees of freedom for estimated parameters. The difference lies in the covariance matrix T̂, which
does not include the term G(Â′Â)−1G′ in the χ2

red statistic. This term represents variance due
by estimating model parameters βββ . As indicated by Tollenaar and Mooijaart (2003), omitting this
term may substantially reduce computations. For instance, if the two parameter IRT model is fitted
to 20 manifest variables, it requires 8∗220∗40 bytes or 0.335 GB to store just the G matrix in SAS.
With 25 variables, this amount will increase to 8 ∗ 225 ∗ 50 bytes or approximately 13.4 GB. Note
that the two parameter IRT model contains both intercept and slope parameters, thus, it requires to
take derivatives with respect to both intercept and slope. Hence, the G matrix will have 2q rows.
The memory requirement when both the A matrix and G matrix are in memory is approximately
2*13.4 = 26.8 GB for 25 manifest variables. After calculation of the term (A′A)−1, the A matrix
can be be discarded from the memory, which will save around 13.4 GB.

While χ2
red does not require the term G(A′A)−1G′, it still requires the H[1:2] matrix, which

becomes very large with a large number of manifest variables. For instance, with 20 manifest vari-
ables, it requires 8 ∗ 220 ∗ 210 bytes or approximately 1.76 GB to store H[1:2] matrix. With 25
manifest variables this amount will increase up to 87.24 GB. This is a huge memory requirement
for just one matrix, even with modern computer standards. One way to remedy this problem is to
replace matrix operations with loops over vectors that consists of the rows of H. Another technique
that maybe useful for calculating the entire H matrix is sparse matrix operations. There are two
aspects to sparse matrix techniques, namely, sparse matrix storage and sparse matrix computations.
Typically, computer programs represent an M by N matrix in a dense form as an array of size M
by N , making row-wise and column-wise arithmetic operations particularly efficient to compute.
However, if many of these M by N numbers are zeros, then correspondingly many of these opera-
tions are unnecessary or trivial. Sparse matrix techniques exploit this fact by representing a matrix
not as a complete array, but as a set of nonzero elements and their location (row and column) within
the matrix. This will be ideal for our case since not only observed proportions are sparse but also
the H matrix is sparse. By combining these techniques we have created a program to calculate the
χ2
red statistic that can be used for a larger number of manifest variables. This program will not store

the H[1:2] matrix but rather generate the rows of H[1:2] matrix at each element of (H[1:2]T̂H′[1:2]).
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Therefore, to calculate the term (H[1:2]T̂H′[1:2]) of the χ2
red statistic, this program only need to store

two columns of V matrix to generate the second-order marginal H(2,i) and another two columns of
V matrix to generate the second-order marginal H(2,j), where j ≥ i and i,j=1,...,q*(q-1)/2. Note,
it also need to store the fitted proportions πππ(β̂̂β̂β) and the vectors H(2,i) and H(2,j). Hence, by using
this method for 25 manifest variables, it will only require 7∗225 bytes or approximately 0.2348 GB
to generate the elements of (H[1:2]T̂H′[1:2]). This is huge memory saving compared to the 87.24
GB that is required to store just the H[1:2] matrix for 25 manifest variables, but there will be a very
large increase in number of loops. A brief description of the steps of this program are given as
follows:

1. For each l and m create two corresponding columns of the V matrix, l = 1, ..., q and m =
l + 1, ..., q.

2. Do a element-wise multiplication of those two columns to obtain the second-order H(2,i).

3. Use an embedded loop and create column l and n of the V matrix, where n ≥ m.

4. Do a element-wise multiplication of the two columns in Step 3 to obtain second-order
marginal H(2,j), where j ≥ i and i,j=1,...,q*(q-1)/2.

5. Then, use the equation Σvecp =
∑

i,j ((H(2,i) ◦ πππ(β̂̂β̂β) ◦H(2,j))−H′(2,i) ∗ πππ(β̂̂β̂β) ∗ πππ(β̂̂β̂β)′ ∗H(2,j))

to generate the pth element of the Σvec where, Σvec is the covariance matrix (H[1:2]T̂H′[1:2])
in vector form.

6. Use another loop over rows of H to obtain the vector e using the equation eee = H[1:2](p̂ −
πππ(β̂ββ)), where p̂ is the observed proportions. As in the Step 1 and 2, the loop is used to reduce
the memory requirement of the H[1:2] matrix. Calculation of the rows of the H[1:2] matrix
is similar to Step 1 and 2. For each element, rows of H[1:2] will be multiplied by the vector
(p̂− πππ(β̂ββ)) to create the rth element of the vector e, r = 1, ..., q ∗ (q − 1)/2.

7. Use SQRVECH function in SAS to transform Σvec into a symmetric square matrix, say
Σ̂χ2

red
.

8. Finally, use the equation χ2
red = ne′(H[1:2]T̂H′[1:2])

−1e = ne′(Σ̂χ2
red

)−1e to calculate the
χ2
red statistic.

The table below shows results for given observed and fitted probabilities for calculating χ2
red

in SAS using this method. Note, these results are for only one pseudo data set.

Table 1: Time and memory requirements for χ2
red

No. of variables Real time User CPU time System CPU time Memory
15 variables 8.32 sec. 6.81 sec. 1.51 sec. 0.0037 GB
20 variables 13 min 3 sec 10 min 28 sec 2 min 35 sec 0.0996 GB
25 variables 19 min 21 sec 14 min 5 sec 5 min 16 sec 3.15 GB
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Next, a Monte-Carlo simulation study was performed to test the performance of χ2
red for 25

manifest variables. Due to the time limitations only Type I error study was performed. Empirical
power study is recommended as a future work.

The design of Type I error study is as follows:

Model (data generation) categorical variable factor analysis model
with one latent factor

Model (fitted) categorical variable factor analysis model
with one latent factor

Number of observed variables q=25
Number of simulation samples 500
Sample size n=500

For the Monte-Carlo simulation study, data was generated from one factor IRT model. For the
slope parameters of the model, pattern (.1, .1, .1, 2.4, 2.4, 2.4, .2, .2) was repeated. Intercepts of
the model were kept at zero. Result related to the simulation is given in the table below.

Table 2: Type I error results

No. varaibles Type I error rates
25 var 0.066

According to the results in the Table 2, the empirical Type I error rates are within 0.05± 1.96 ∗√
0.05 ∗ 0.95/n. Note, with 25 manifest variables and sample size, n=500 there can be spareness

even in the 2 ∗ 2 sub-table. Yet, the above Type I error results indicates χ2
red has good performance

for Type I error rate even when the number of manifest variables are large as 25.

5. Bootstrap method

The section will introduce a bootstrap method to obtain p-values for Pearson-Fisher statistic, fit to
confirmatory dichotomous variable factor analysis model when the number of manifest variables is
large.

When there are 25 manifest variables, the cross-classified table has 225, or 33,554,432 cells. If
the sample size for testing the fit of a model is a few hundred observations, then the data table will
be sparse and many cells will have counts of zero or 1. As discussed in the previous sections, when
the data are sparse, the asymptotic chi-square approximation for the distribution of the Pearson and
likelihood ratio statistics may not be valid. Extensive simulations have also shown that p-values
obtained from the chi-square distribution for a test of the categorical factor analysis model on a
sample of size 1000 start to become unreliable at about 6 to 8 manifest variables, depending on the
skew of distribution of the frequencies (Reiser and VandenBerg, 1994).

Not only sparseness, but also computer resources become an issue when the number of manifest
variables exceeds 20. There are limits on individual objects statistical software can store. For
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example, having 30 manifest variables would require approximately 8 ∗ 30 ∗ 230 bytes or 257.6
GB to store the H matrix in R or SAS assuming double precision storage. If the interest is to
store only observed probabilities and fitted probabilities, with 30 manifest variables it will only
require approximately 16 GB. Due to these reasons most of the simulations found in the literature
are limited to 20 manifest variables. But, in an application such as educational testing, the number
of manifest variables could be 50 or more, and with 50 manifest variables, it will require 8 ∗ 250

bytes or 9,007,199.25 GB to store the fitted probabilities.
We will introduce the following method using the omnibus χ2

PF statistic to overcome these
issues. Calculation of the Pearson statistic itself does not necessarily encounter memory limits
for large number of manifest variables because the contribution of each cell can be calculated
individually and cumulated. Processing requirements of χ2

PF are not a concern for 30 or more
variables because calculation of πππs(β̂̂β̂β) is required only for the cells where ns > 0, and even with
a large number of manifest variables, the number of cells where ns > 0 can be no more than the
sample size. The contribution for the cells with ns = 0 is equal to n

∑
s I(ns = 0)πs(β̂̂β̂β) and can

be obtain by subtraction since,∑
s

I(ns > 0)πs(β̂̂β̂β) +
∑
s

I(ns = 0)πs(β̂̂β̂β) = 1 (5.1)

where, I is the indicator function. Calculation of χ2
[2], for example, requires much more storage.

Since computational requirements may not present a barrier, obtaining p-values for χ2
PF by using

the parametric bootstrap may be feasible even for a very large number of variables. The theory of
the parametric bootstrap is quite similar to that of the nonparametric bootstrap, the only difference
is that instead of simulating bootstrap samples that are independent and identically distributed
(iid) from the empirical distribution (the nonparametric estimate of the distribution of the data)
the parametric bootstrap procedure simulates bootstrap samples that are iid from the estimated
parametric model.

The method that is introduce here will require only the observed patterns and hence less mem-
ory requirement. A brief description of the steps of this method are given as follows:

1. Assume πππ(β̂̂β̂β) is true. The model πππ(β̂ββ) could be any categorical variable model.

2. Treat the fitted proportions πππs(β̂ββ) under the model as population proportions.

3. Draw random samples from the multinomial distribution with these fitted proportions as
parameters of the distribution.

4. For each sample, estimate the categorical variable model used in Step 1. For a instance, if
the IRT model was used in Step 1 to get πππ(β̂ββ) then, IRT model will be estimated for each
sample from Step 3.

5. If ns > 0, use multivariate Gaussian quadrature to obtain the expected proportions and
calculate χ2

PFns>0
.
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6. If ns = 0, use the equation 5.1 to obtain χ2
PFns=0

.

7. Sum χ2
PFns=0

and χ2
PFns>0

to obtain χ2
PF .

8. Repeat step 5,6 and 7 for each sample.

9. Obtain p-value by calculating the proportion of χ2
PF values from bootstrap samples that are

greater than the χ2
PF value from the original sample.

In order to evaluate the performance of this method, Type I error study was performed. Note, the
χ2
PF is an omnibus test that gives little guidance of the source of poor fit and can be outperformed

by focused or directional tests of lower-order.

The design of Type I error study is as follows:

Model (data generation) categorical variable factor analysis model
with one latent factor

Model (fitted) categorical variable factor analysis model
with one latent factor

Number of observed variables q=8, q=15, q=18, q=20, q=25
Number of simulation samples 1000
Sample size n=500
Number of bootstrap samples 500

A Monte-Carlo simulation studies were performed with the information described in the Table
above. One thousand data sets were generated from the one factor model. For the slope parameters
of the one factor model, the pattern (.1, .1, .1, 2.4, 2.4, 2.4, .2, .2) was repeated. Intercepts of the
model were kept at zero. After generating the data, a two-parameter IRT model was estimated for
each of these data sets and Type I error rate related to the χ2

PF was calculated. Results related to 8,
15, and 20 variables are given in the Table below.

Table 3: Type I error rates comparison

No. varaibles Bootstrap Method Mplus(MonteCarlo)
8 var 0.046 0.042

15 var 0.044 0.161
20 var 0.342 0.380

Table 4: Time requirements for the Bootstrap method

No. varaibles Time (in sec)
8 var 29

15 var 68
20 var 360
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According to the results in the Table 3, for moderately large number of manifest variables, the
bootstrap method performed well in terms of Type I error rates. When the number of manifest
variables exceeds 20, the Type I error rates started to inflate. However, we believe the Type I error
rates can be improved by increasing the number of bootstrap samples. Due to the time limitations
we had to restrict our simulation to 500 bootstrap samples.

6. Discussion, Drawbacks and Future work

In this study we have investigated performance of the Tollenaar and Mooijaart (2003) χ2
red statistics

when the number manifest variables is large. Results indicate χ2
red has good performance for

Type I error rate even when the number of manifest variables as large as 25. One of the other
goals of this research was to create memory and time efficient program to calculate goodness-of-fit
statistics for large number of variables. The program that we have created improved the memory
consumption. The largest amount of RAM the program consumed during the calculation of the
Tollenaar and Mooijaart (2003) statistics was 3.15 GB. However, the number of loops this program
require thus the computer time increased rapidly with q. For instance, 15 manifest variables would
require 105 ∗ (106/2) = 5, 565 loops to calculate components of the matrix (H[1:2]T̂H′[1:2]) and
15 ∗ (14/2) = 105 loops to calculate the e vector. Similarly, 20 manifest variables would require
20∗(19/2)+190∗(191/2) = 18, 335 loops and 25 manifest variables would require 25∗(24/2)+
300 ∗ (301/2) = 45, 450 loops. Therefore, the drawback of the this method is the large number of
loops and cpu time.

Performance of a bootstrap based method to obtain p-values for Pearson-Fisher statistic was
also investigated when the number of manifest variables is large. For moderately large number
of manifest variables, the bootstrap method performed well in terms of Type I error rates. When
the number of manifest variables exceeds 20, the Type I error rates started to inflate. This might
be due to the small number of bootstrap samples used in the simulations study. Therefore, as a
future work, we suggest to increase the number of bootstrap samples to 2000 or more. The main
issue that we encountered with the bootstrap method is it requires 2q expected probabilities to
generate the bootstrap samples. When the number of manifest variables increases this may cause
computer resource limitations. For a instance, 30 manifest variables would require calculation of
230 = 1, 073, 741, 824 expected probabilities.
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