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Abstract  

The Current Employment Statistics (CES) State and Area program publishes seasonally 
adjusted data for over 2000 series each month, covering over 400 subnational geographic 
areas. The seasonal factors used to make these adjustments have traditionally been 
developed using historical employment data forecasted for one year.  A particular challenge 
in concurrent adjustment of these series is the outsized impact of various events on 
localized areas. These events range from natural disasters and strikes to unusual weather, 
and are often difficult to properly identify and model at the end of a time series. We 
describe the monitoring, screening, and review process used to model these events during 
concurrent adjustment. 

The empirical research tests how a stricter critical value policy would affect simulated time 
series data after an exogenous event is added to the concurrent adjustment process.  This 
exercise provides insight into how the procedure would fare under realistic circumstances 
and how to handle potential outliers in the data. The results provide evidence that a stricter 
critical value policy may be beneficial. 
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1. Introduction 

The Current Employment Statistics State and Area (CESSA) program publishes seasonally 
adjusted data for over 2000 series each month, covering over 400 subnational geographic 
areas. The seasonal factors used to make these adjustments have traditionally been 
developed using historical employment data forecasted for one year. As of March 2018, 
the way in which CESSA develops its seasonal adjustment factors will transition from this 
method based solely on historical employment to a concurrent seasonal adjustment. 

Concurrent seasonal adjustment is the process of recalculating the seasonal factors each 
month using the most recent data that are available. RegARIMA models are typically set 
during an annual review. Parameters are re-estimated during concurrent processing, but 
rarely are the models changed (i.e. by adding an outlier). A particular challenge in 
concurrent adjustment of these series is the outsized impact of various events on localized 
areas. These events range from natural disasters and strikes to unusual weather, and are 
often difficult to properly identify and model at the end of a time series.  

This research investigates how to improve the detection of these outsized impacts by 
adjusting the critical value used to evaluate potential outliers during the automatic outlier 
detection process in the X-13ARIMA-SEATS.2 Simulated data reflecting four different 
ARIMA models are randomly generated and an exogenous event is replicated and applied. 
The simulated data is then passed through concurrent seasonal adjustment and is compared 
to a baseline series. A root mean squared error statistic of the seasonal adjustment is then 
calculated to quantify the amount of error involved in the concurrent process with the event 
at the end of the time series. The outlier detection critical value is then adjusted and the 
simulation is repeated.  

Efficient outlier detection is also essential to the CESSA program. Reviewing seasonal 
factors is labor intensive with analysts needing to review over 2000 series. Better insight 
on setting a critical value policy will minimize the error of the adjusted series and will 
assist in the identification of events that should be set as an outlier in the model. 

Section 2 gives background on seasonal adjustment in CESSA and details the exogenous 
events of interest. Section 3 covers the methodology used in the research. Section 4 details 
the results gathered from the experiment and explains how the insights can be leveraged 
going forward. Finally, Section 5 offers some concluding remarks. 

2. Background 

CES State and Area currently relies on a forecast method to derive the seasonal factors for 
each month of the estimation year. Ten years of employment data are used to calculate 
these factors and five years of factors are replaced back in history. CESSA is also unique 
because of the “Two Step” seasonal adjustment method that must be employed.3 The Two 
Step method incorporates two sets of historical data, one based on data from the Quarterly 
Census of Employment and Wages (QCEW) and the other on data from the historical CES 
estimates. The pair of historic data is necessary due to the potential differences in 
seasonality as demonstrated by Berger and Phillips (1993). The forecasted seasonal factors 

                                                           
2 See Findely et al. (1998) for details regarding the X13ARIMA-SEATS methodology 
3 See Scott et al. (1994) for an analysis of seasonal adjustment of a hybrid series. 
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that are applied to the estimate data for the upcoming year cannot be determined by the 
seasonality of the benchmark data.  

Once the calculation of the seasonal factors transitions from an annual process to a monthly 
process the CESSA program will adjust its review procedure to accommodate. Model 
setting is initially done during the annual processing timeframe. Annual review determines 
the order of the ARIMA model along with the moving average filters.  These specifications 
remain unchanged when the series is processed through a concurrent seasonal adjustment. 

Programs that use concurrent seasonal adjustment at the Bureau of Labor Statistics (BLS) 
have generally been hesitant to add outliers to models mid-year except under extreme 
circumstances. It is difficult to determine whether an extreme value at the end point of a 
time series is a true outlier or whether it reflects, for example, changing seasonality without 
prior knowledge of the source. If a true outlier occurs, it is also difficult to determine what 
type of intervention should be added to the model since the future values of the time series 
are at that point unknown. 

An additional aspect that must be considered is how to properly identify a data point that 
is an outlier during concurrent seasonal adjustment. A sudden labor strike in a large 
company or impactful weather related events may affect the level of an employment series 
for a short period. Not accounting for these and other outliers may have an adverse 
influence the seasonal adjustment factors. More specifically, the outliers will have an effect 
on the moving averages that are used to isolate the irregular component from the de-trended 
SI ratios. Allowing the extreme value of a labor strike to persist will distort the series and 
potentially lead to a moving average that is unrepresentative of the seasonal effect. In the 
case of the level shift, when the moving averages are applied to the SI ratios, the estimates 
of the seasonal component before the shift will be underestimated and those after the shift 
will be overestimated. The inaccurate information from these two scenarios may then lead 
to the production of unreliable factors to be applied to future estimates. 

 

Figure 1: 
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Figure 2: 

Figure 1 and Figure 2 above depict two actual events that have affected CESSA series in 
the past. In Figure 1, a labor strike disrupted the routine fluctuations of the Information 
series in New York. On two occasions, in 2011 and 2016, workers for a large 
telecommunication company in the state went on strike for one month. Figure 2 depicts the 
Accommodation and Food Service series in Louisiana that was heavily affected by 
Hurricane Katrina in 2005. Like what occurred in Louisiana, a major hurricane can cause 
the level of an employment series to shift for an extended period of time.  

2.1 Concurrent Seasonal Adjustment Review 

Review of concurrent seasonal adjustment will be incorporated in the monthly estimation 
production cycle done by CESSA. Each month CESSA produces two estimates of the 
industries employment level. The first estimate is a preliminary estimate that is based off 
of the sample microdata collected at that time. A review is done by both national office 
analysts, as well as by analysts at the regional at state level. Preliminary estimates are then 
locked and released to the public. The final estimate cycle begins a few weeks later after 
additional microdata is incorporated into the sample. 

Seasonally adjusted data have always been reviewed during both estimation cycles with 
the projected factors developed during annual processing being applied to the newly 
estimated employment level. Concurrent seasonal adjustment, however, will only run 
during the preliminary estimation cycle. At this time, the current month’s factors will be 
developed along with the previous month’s final estimation factors.  

Although the quantity of concurrent factors an analyst must review is fewer than what is 
necessary during the annual production review of the seasonal adjustment models and 
forecasted factors, various monthly production deadlines require efficient review of the 
data. It is often the case that adjustments to the not seasonally adjusted data come late in 
the production cycle. In the concurrent adjustment environment where the seasonal factors 
are based off of the most recent data, late adjustments such as these can have an effect on 
the process. 

100

110

120

130

140

150

160

170

180

190

Jan
2003

Jul
2003

Jan
2004

Jul
2004

Jan
2005

Jul
2005

Jan
2006

Jul
2006

Jan
2007

Jul
2007

Em
p

lo
ym

en
t 

 (
Th

o
u

sa
n

d
s)

Date

Louisiana
Accommodation and Food Services

3349



Given the short timeframe an analyst has to review the concurrent factors, establishing a 
set of tools that can be used to effectively consider whether an outlier should be declared 
is desirable. The literature on outlier detection has generally considered knowing the source 
of an outlier as one of the best strategies in selection.4 Analysts in CESSA are trained to 
accumulate local knowledge of the area’s employment dynamics to use in monthly 
estimation. Knowledge of a local strike or a substantial weather related event, as described 
above, could be attained very early in the process. The analyst, in this case, would have an 
ample amount of time to decide whether the event should be treated as an outlier.  

In a case where the analyst does not have adequate knowledge of the source of an outlier 
or is not sufficiently accustomed to the trend and seasonal patterns of the series, a strategy 
such as automatic outlier detection may be helpful. McDonald-Johnson and Hood (2001) 
looked closely at various methods of outlier selection in the seasonal adjustment process. 
They tested a combination of automatic outlier detection with a default critical value versus 
various visual identification methods and found that the automatic detection was the 
superior method of selection. It is not clear at this point, however, how sensitive the CESSA 
program should set the critical value on the automatic outlier detection to adequately model 
outliers that would negatively affect the concurrent factors without causing too many 
outliers to be identified. A real risk to consider would be whether the outlier process is 
mistakenly identifying true seasonal changes in the data as atypical events.  

Testing in concurrent seasonal adjustment in the CESSA program has not utilized the 
automatic outlier detection capabilities thus far. Instead, the determination of an outlier 
when the concurrent factors are reviewed are based primarily on the analyst’s knowledge 
of the potential event in question. 

3. Empirical Simulations 

A series of simulations were conducted to gauge the extent in which an exogenous event 
would be identified in the concurrent adjustment process and if enhancing the detection 
capabilities would improve the seasonally adjusted data. To begin, 1000 time series were 
randomly generated using the Forecast package in R for four different ARIMA models. 
The models used, along with their autoregressive and moving average coefficient 
parameters are listed in Table 1.  

Table 1. 

ARIMA Models and Parameters 

ARIMA Model AR MA AR12 MA12 d d12 

(0,1,1)(0,1,1) - 0.23 - 0.68 1 1 

(0,2,1)(0,1,1) - 0.72 - 0.71 2 1 

(1,1,0)(0,1,1) 0.43 - - 0.71 1 1 

(0,1,0)(1,1,0) - - -0.54 - 1 1 

                                                           
4 See McDonald-Johnson and Hood (2001) for an overview on selecting outliers in the seasonal 
adjustment process 
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The columns titled “AR” and “MA” reflect the non-seasonal autoregressive and moving 
average coefficients. Columns “AR12” and “MA12” reflect the seasonal autoregressive 
and moving average coefficients, and columns “d” and “d12” reflect the non-seasonal and 
seasonal difference indicators in the model. The coefficients used reflect common ARIMA 
parameters derived during the CESSA model setting procedure. 

Next, a set of baseline seasonally adjusted data was generated to compare to the concurrent 
adjustment procedure. The simulated time series data was seasonally adjusted from January 
1997 to December 2016. This 20 year timeframe was meant to maximize the number of 
observations before and after the date (June 2007) in which the impact was applied. An 
exogenous event meant to simulate the type of variability that an employment series can 
encounter was then added to each newly seasonally adjusted series. These events include 
an Additive Outlier (AO), and a Level Shift (LS). Table 2 describes the type of impact 
applied.  

Table 2. 

Exogenous Events 

Event Description Scenario Model Graphic 

Additive 
Outlier (AO) 

Series is impacted at a 
single point in time (t) 

Labor 
Strikes 

1 for  t = t0 

0 for  t ≠  t0 

 

Level Shift 
(LS) 

Series is impacted and 
continues at new level 

Hurricane 
Katrina 

-1 for t < t0 

0 for t ≥ t0 

 

 

The magnitude of the event was controlled for by the equivalent t-value from the outlier 
detection process at the concurrent point. X-13 uses a t-test in the detection process. The t-
value of a given effect size is dependent on the ARIMA model, residual variance, and series 
length. The effect sizes were numerically derived effect to scale against equivalent t-values 
used in the detection process. 

Once the baseline seasonally adjusted series were developed, the next step was to simulate 
the concurrent process with the calculated impacts applied to the simulated time series. The 
concurrent process only ran for the 12-month span from January 2007 to December 2007. 
For each month in the timeframe, the concurrent process applied factors for the current 
month, as well as, update the concurrent factors for the previous month before moving on 
to the next period where the process repeated. This method of updating the seasonal factors 
for two months is consistent with established CESSA concurrent seasonal adjustment 
methodology. The exogenous event is realized at the end of the time series once June 2007 
is initiated and it remains in the simulated time series for the remainder of the 12-month 
span.  

Each simulation is then tested with the outlier detection critical value set at the t-value level 
used in calculating the impact level. To further understand this methodology, Figure 3 
outlines the combinations of impact levels with outlier detection critical values. 
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Event / 
Model 

Impact 
(In terms of equivalent t-value) 

0.00 3.85 5.00 8.00 10.00 99.00 

Critical 

Value 

3.85 
 

X 
    

5.00 
  

X 
   

8.00 
   

X 
  

10.00 
    

X 
 

No Detection 
     

X 
Figure 3: 

The columns in Figure 3 depict the t-values used to calculate the impacts applied to the 
simulated series for each combination of the event and ARIMA model. The rows depict 
the critical values that were set in order to test each impact level. The impacts range from 
a t-value of zero, which represents a time series not affected by an event, to 99.00, which 
represents a time series affected by an extremely large event. The initial set of simulations, 
represented by the bottom row of the figure, were tested without a critical value set. The 
diagonal line denoted by “X” indicates the simulated time series tested at a critical value 
equivalent to the t-value used to impact the series. The impact level of 99.00 is 
implemented as a control simulation. Large improvements are expected to occur when 
simulating this impact event even at the relatively large critical value levels of 10.00 and 
8.00. Outlier detection is limited to the same 12-month span that was tested the concurrent 
process. 

3.1 Measure of Gain 

The baseline seasonally adjusted data described above is established as the most accurate 
seasonal adjustment of the simulated series. In other research on concurrent seasonal 
adjustment a benchmark or “final” value is leveraged to contrast the data stemming from 
the concurrent process. For example, Pierce and McKenzie (1987) find that gain from 
concurrent seasonal adjustment is realized when initially published estimates of the Federal 
Reserve Board’s Industrial Production Index is revised once a year. Kropf et al. (2002) 
studied the replacement of projected factors to concurrent factors in the CES National 
employment data. They found that the concurrent factors had less error when a revision to 
final seasonal values was calculated.  
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Figure 4: 

Figure 4 above provides an example of a simulated AO series. The dotted line depicts the 
baseline series with the event applied after data is seasonally adjusted. The solid line 
depicts the concurrent adjustment of the series. The space between the two sets is the error 
adjusting the critical value policy aims to minimize. 

A root mean square error statistic that measures the difference between the two sets of data 
for each combination of events tested is derived. The measure to calculate the gains from 
having a stricter critical value policy is a ratio of these root mean square errors taking the 
form: 

𝑅𝑀𝑆𝐸 𝑟𝑎𝑡𝑖𝑜𝑒,𝑚 (𝑟) =  
𝑅𝑀𝑆𝐸(𝑟𝑒,𝑚

𝑠𝑣 )

𝑅𝑀𝑆𝐸(𝑟𝑒,𝑚
𝑛𝑣 )

 

The numerator in this formula represents a statistic (r) calculated from the concurrent 
adjustment having a stricter critical value sv of event e in model m. The denominator 
reflects the same event and model combination when no critical value policy nv is applied. 
Intuitively speaking, the ratio depicts how much could be improved on the error between 
the baseline data and the concurrent data if a progressively lower critical value is instituted. 
If no gain is to be made the ratio would be close to a value of 1.  

4. Results 

The measure of gain is presented for each combination of event and model in Figure 5. For 
all combinations of model and event most ratios indicate that there are gains to be made by 
instituting a stricter critical value policy. In particular, the data shows that as the impact 
gets larger, the gains from the stricter value policy get more and more significant. For 
example, consider model number 1 in which ARIMA model (0,1,1)(0,1,1) was impacted 
with an AO event. The bottom row, reflecting simulations with no outlier detection, have 
a ratio of 1. When the impact levels are small, gains only begin to be realized when the 
critical value is equally as small. For an impact of 3.85, gains made by having a critical 
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value of 5.00 improves the root mean square error by 3.5%. By having the critical value 
set at 3.85 the root mean square error is improved by 5.7%.  

 

Figure 5: The green shaded areas indicate the critical values level that result in the most 
gain. 

Once the impact levels begin to become larger in magnitude, gains begin to appear at less 
strict critical values. For an impact of 8.00, an immediate improvement of 2.1% in the root 
mean square error is realized once we incorporate the outlier detection at a critical value 
level of 10.00. At the three stricter critical value levels, the measure of gain reflects an 
8.5%, 13.2% and 13.2% improvement, respectfully. Finally, the most gains are made when 
the impact level is 10.00 and the critical value becomes very strict. An immediate gain of 
7.4% is realized once the least strict critical value policy considered (10.00) is 
implemented. The root mean square error is progressively improved upon at the critical 
value level of 8.00 and 5.00 but then improves the data slightly less at the 3.85 critical 
value level. At the critical value of 5.00, the measure of gain reflects an improvement of 
14.4% but an only an improvement of 14.3% at the 3.85 critical value level. 

Finally, there is an obvious and immediate gain when a critical value in implemented to 
test an outlier with an impact level of 99.00. These impacts are meant to simulate an 
extremely large event so it is expected that these measures of gain to be equally as large 
even at the critical value level of 10.00. If the counterfactual was observed and the gain at 
this level was relatively insignificant further investigation would take place. 

Model 8, in which ARIMA model (0,1,0)(1,1,0) was impacted with an LS event, shows the 
most gain from the simulations. When the level shift impact is relatively large at the 10.00 
level, an immediate gain of 10.9% is realized once a critical value policy is implemented. 
Another large gain is measured at the 8.00 critical value level where an improvement of 
31% is realized. The measure of gain is improved again slightly at the 5.00 critical value 

0.00 3.85 5.00 8.00 10.00 99.00 0.00 3.85 5.00 8.00 10.00 99.00

3.85 1.001 0.943 0.902 0.868 0.857 0.297 3.85 1.001 0.981 0.920 0.826 0.781 0.196

5.00 1.000 0.965 0.922 0.868 0.856 0.297 5.00 1.000 0.997 0.965 0.827 0.781 0.196

8.00 1.000 1.000 0.994 0.915 0.866 0.297 8.00 1.000 1.000 1.000 0.928 0.805 0.196

10.00 1.000 1.000 1.000 0.979 0.926 0.297 10.00 1.000 1.000 1.000 0.990 0.910 0.196

No Detection 1.000 1.000 1.000 1.000 1.000 1.000 No Detection 1.000 1.000 1.000 1.000 1.000 1.000

0.00 3.85 5.00 8.00 10.00 99.00 0.00 3.85 5.00 8.00 10.00 99.00

3.85 1.000 0.984 0.974 0.946 0.928 0.464 3.85 1.000 0.997 0.990 0.963 0.946 0.424

5.00 1.000 0.986 0.977 0.948 0.928 0.464 5.00 1.000 0.999 0.993 0.965 0.946 0.424

8.00 1.000 0.992 0.982 0.966 0.943 0.464 8.00 1.000 1.000 0.998 0.986 0.961 0.424

10.00 1.000 0.999 0.992 0.974 0.959 0.464 10.00 1.000 1.000 1.000 0.997 0.985 0.424

No Detection 1.000 1.000 1.000 1.000 1.000 1.000 No Detection 1.000 1.000 1.000 1.000 1.000 1.000

0.00 3.85 5.00 8.00 10.00 99.00 0.00 3.85 5.00 8.00 10.00 99.00

3.85 1.000 0.951 0.911 0.851 0.835 0.328 3.85 1.000 0.995 0.955 0.852 0.806 0.212

5.00 1.000 0.971 0.930 0.853 0.835 0.328 5.00 1.000 1.002 0.986 0.856 0.806 0.212

8.00 1.000 1.000 0.992 0.911 0.862 0.328 8.00 1.000 1.000 1.000 0.964 0.864 0.212

10.00 1.000 1.000 0.999 0.979 0.938 0.328 10.00 1.000 1.000 1.000 0.996 0.953 0.212

No Detection 1.000 1.000 1.000 1.000 1.000 1.000 No Detection 1.000 1.000 1.000 1.000 1.000 1.000

0.00 3.85 5.00 8.00 10.00 99.00 0.00 3.85 5.00 8.00 10.00 99.00

3.85 1.001 0.934 0.861 0.762 0.720 0.490 3.85 1.001 0.974 0.879 0.705 0.634 0.096

5.00 1.000 0.973 0.893 0.763 0.720 0.489 5.00 1.000 1.000 0.956 0.710 0.633 0.096

8.00 1.000 1.001 0.994 0.812 0.732 0.489 8.00 1.000 1.000 1.000 0.914 0.690 0.096

10.00 1.000 1.000 1.000 0.881 0.774 0.489 10.00 1.000 1.000 1.000 0.993 0.891 0.096

No Detection 1.000 1.000 1.000 1.000 1.000 1.000 No Detection 1.000 1.000 1.000 1.000 1.000 1.000
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level but is then depressed once then critical value level of 3.85 is tested. The reduction in 
gain as the critical value gets stricter may indicate an outlier detection policy that is too 
aggressive and is over fitting the seasonally adjusted data.   

Model 3 and Model 4 which depict an ARIMA model of (0,2,1)(0,1,1) saw the least amount 
of measured gains for their respective event. When the AO event was tested, a gain of 7.2% 
was realized when the impact level was at 10.00 and the critical value was set at 3.85. This 
was the scenario where the most gain was seen for this model. Similarly, when the LS event 
was tested, a gain of 5.4% was realized when the impact level was at 10.00 and the critical 
value was set at 3.85. 

In some cases, the results show losses to the root mean squared error when a stricter critical 
value policy is applied compared to the simulation where no critical value is applied. For 
example, when testing an impact level of 3.85 in Model 6, there seems to be no 
improvement on the root mean squared error until the simulation is tested at the 3.85 critical 
value level. When the concurrent process was tested using a critical value of 5.00, however, 
our measure of gain shows a loss of 0.2%. It remains unclear why this would be the case. 
It is possible that rounding abnormalities are causing the ratio to become greater than 1.  

In total, the results suggest that a stricter critical value policy may be beneficial, especially 
when the impacts are larger in magnitude. A less strict critical value policy may allow 
quantitatively insignificant events in the time series to influence the concurrent factors that 
ultimately allot for more error in the resulting seasonally adjusted data.   

5. Conclusion 

The transition to concurrent seasonal adjustment in the CESSA is set to be completed with 
the release of the 2018 benchmark. Mance (2015) evaluated how effective the transition 
would be for the program and discovered that the application of concurrent factors would 
reduce the over-the-month change of the seasonally adjusted series, as well as reduce the 
error when revised to seasonally adjusted benchmark data. Once concurrent adjustment 
goes live, analysts will be responsible for review of the concurrent factors each estimation 
cycle.  

Large labor strikes and natural weather events have had a noticeable impact on regional 
employment levels in the past. Accounting for these outsize impacts is critical in order to 
produce accurate concurrent factors. Automatic outlier detection is not utilized for the time 
being. The identification and selection of outliers is currently based on having knowledge 
of the source of the event affecting the time series.  

The results of this research suggest that setting a stricter critical value policy for outlier 
detection may be beneficial. There are slight distinctions in the amount of gain comparing 
across the ARIMA models tested. Having a strict critical value can improve the root mean 
square error by more than 30 percent in the best scenario. The simulations in general, 
however, find that improvement may be had across all model and event combinations.  

Further research is needed if setting a precise critical value is desired. An application using 
actual data should be tested but the infrequency of outliers may potentially hinder a robust 
study of its effects under different situations. Testing of CESSA concurrent process began 
in 2015. As of September 2017, only one potential outlier has been identified. 
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