
 

Conditional Median Run Length as Performance 

Measure of Shewhart 𝑺𝟐 Control Chart with Estimated 

Parameter  
 
 

Martin G. C. Sarmiento1, Subhabrata Chakraborti2, Eugenio K. Epprecht1 
1PUC-Rio, R. Marquês de São Vicente 225, 22451-900, Rio de Janeiro, Brazil  

2University of Alabama, Tuscaloosa, AL 35487, USA 
 

 

 
Abstract 

Several recent works, in Statistical Monitoring Process, have addressed the effect of 
parameter estimation on the performance of control charts. Although the measures of this 
performance are generally expressed based on particular associated characteristics of the 
unconditional run length (𝑅𝐿) distribution, recently, some researchers have proposed the 
use of the conditional 𝑅𝐿 distribution that is considered more meaningful in real 
applications. The most traditional performance indicator is the average 𝑅𝐿 (𝐴𝑅𝐿). 
Nevertheless, this expected value is not a good representative measure for the center 
because the 𝑅𝐿 distribution is usually right-skewed. Therefore, we study the 𝑞-quantiles 
of the conditional in-control run length (𝐶𝐼𝐶𝑅𝐿𝑞) of the 𝑆2 and 𝑆 control charts. It is 
worth to note that these quantiles, the distribution of which is obtained analytically, are 
random variables when the parameter of the 𝐼𝐶 process dispersion is estimated. One 
specific quantile is proposed: the conditional in-control median run length 𝐶𝐼𝐶𝑀𝑅𝐿  
(𝐶𝐼𝐶𝑅𝐿0.50). We analyze and compare the entire distribution of the 𝐶𝐼𝐶𝑀𝑅𝐿 and the 
conditional 𝐼𝐶 𝐴𝑅𝐿 (𝐶𝐼𝐶𝐴𝑅𝐿). The results show that the variability of the 𝐶𝐼𝐶𝑀𝑅𝐿 is 
smaller than the 𝐶𝐼𝐶𝐴𝑅𝐿. Moreover, the 𝐶𝐼𝐶𝑀𝑅𝐿 and  𝐶𝐼𝐶𝐴𝑅𝐿 requires similar 
minimum values of number of Phase I samples (𝑚), to guarantee a specified minimum 
limit (a percentage of its nominal value) with a high probability. For that reason, the 
proposed robust 𝐶𝐼𝐶𝑀𝑅𝐿 may be a good alternative performance measure.  
 
Key Words: 𝑆2 and 𝑆 Control Chart, Conditional Control Chart Performance, Run 
Length Distribution, Run Length Quantiles, Median Run Length (𝑀𝑅𝐿), Average Run 
Length (𝐴𝑅𝐿)  
 

 
1. Introduction 

 
The 𝑆2 control chart is a well-known and widely used tool to monitor the variability of a 
quality characteristic of interest in manufacturing and service processes. The run length 
(𝑅𝐿) of a control chart is a discrete random variable that can be defined as the number of 
collected samples (subgroups) until the occurrence of the first out-of-control (𝑂𝑂𝐶) 
signal. The control chart performance is usually measured in terms of its run length (𝑅𝐿) 
distribution. A customary metric of the control charts performance has been the average 
run length (𝐴𝑅𝐿) (see, for example, Montgomery (2012)). It represents “the mean value” 
of the 𝑅𝐿 distribution. However, since the 𝑅𝐿 distribution is not symmetrical, but rather 
is generally right -skewed (see, for instance, Teoh et al. (2016)), the 𝐴𝑅𝐿 is not anymore 
a reasonable summary measure of centrality. For that reason, several researchers (e.g., 
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see Chakraborti (2007), Mei (2008), Graham et al. (2014), Teoh et al. (2016)) have 
pointed out some disadvantages of the use of the 𝐴𝑅𝐿 as a unique performance metric, so 
the use of some representative 𝑅𝐿 quantiles (or percentiles), such as the median, have 
been proposed. It is well known that in the case of a right-skewed distribution, the 
extreme values can impact on the corresponding mean because it is pulled in the direction 
of the longest distribution tail and therefore it could end up excessively extended. Hence, 
as the 𝑅𝐿 distribution is generally right-skewed, the study of the complete 𝑅𝐿 distribution 
is fundamental. For one thing, the median run length (𝑀𝑅𝐿) is preferred since it is more 
robust central measure than the 𝐴𝑅𝐿. For another, using 𝑅𝐿 quantiles, summary measures 
for the variation or spread of the 𝑅𝐿 distribution, such as the interquartile range and the 
difference between two opposed and extreme percentiles (e.g., 95𝑡ℎ and 5𝑡ℎ) can be 
obtained. 
 
Barnard (1959) and Bissell (1969) started to work on the quantiles of the 𝑅𝐿 distribution 
as performance measures of control charts. The study of the main percentiles of the 𝑅𝐿 
distribution for the Shewhart �̅� chart, when the process parameters are specified or 
known, was dealt by Khoo (2004). He also proposed the percentiles of the time to signal 
and the percentiles of the number of individual units sampled in place of the traditional 
𝐴𝑅𝐿. Radson and Boyd (2005) presented a graphic display of the 𝑅𝐿 distribution that 
shows the main representative percentiles like a boxplot. Chakraborti (2007), contrary to 
Khoo (2004), examined the 𝑅𝐿 distribution when the process parameters are unknown. 
He put forward a design of control charts based on the 𝑀𝑅𝐿. In the same direction, others 
authors have advocated this 𝑀𝑅𝐿 criterion for applying on different types of control 
charts, for instance, Lee and Khoo (2006), Khoo et al. (2011), Teoh et al. (2014, 2016), 
among others. These researches just considered the unconditional (or marginal) 𝑅𝐿 
distribution.  
 
The 𝑅𝐿 of Shewhart chart, when the process parameters are known or specified, follows a 
geometric distribution with parameter equal to the probability of a signal. For the case of 
𝐼𝐶 process, this parameter is the constant 𝛼 (the probability of a false alarm or also called 
the false alarm rate (𝐹𝐴𝑅)). Nevertheless, this is an unrealistic situation because the 𝐼𝐶 
process parameters are generally unknown in practical application. So these process 
parameters have to be estimated from the Phase I reference, and then the (unconditional) 
𝐼𝐶 𝑅𝐿 no longer follows a geometric distribution and its corresponding parameter (𝐹𝐴𝑅) 
changes into a random variable. This reference sample is collected over time in Phase I 
analysis (e.g., see Chakraborti et al. (2009) and Jones-Farmer et al. (2014)) in order to 
estimate the 𝐼𝐶 process parameters, and subsequently, to estimate the control limits and 
monitoring the process in Phase II analysis. Since parameters are estimated, the 𝑆2 chart 
performance may be extremely different from the parameters known case one (see, for 
instance, Chen (1998), Castagliola (2009), Epprecht et al. (2015)).   
 
Most of the works about the effect of parameter estimation on the performance of control 
charts focus on the unconditional 𝑅𝐿 distribution (an overview of the related literature 
can be found in Jensen et al. (2006) and Psarakis et al. (2014)). However, the use of this 
unconditional distribution can be considered as conceptual and not practical. Indeed, 
theoretically, the unconditional 𝑅𝐿 distribution and its associated measures can be 
determinate using expectation of their conditional counterpart, for instance, the 
unconditional 𝐴𝑅𝐿 of the control chart for dispersion can be thought of as the value 
obtained by averaging 𝐴𝑅𝐿 given the standard deviation estimator over its distribution. In 
this way, the practitioner-to-practitioner effect (i.e., the variability among different 
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reference samples of practitioners even when coming from the same 𝐼𝐶 process) is 
averaged and is not considered in this unconditional distribution. It is important to remark 
that it is contrary to the real applications because the user will have a single reference 
sample to estimate the process parameter(s), the control limits, and the performance of 
the resulting chart. In this context, Epprecht et al. (2015) and Faraz et al. (2015) for the 
case of the 𝑆2 control chart, have claimed and argued that the use of the conditional 𝑅𝐿 
distribution (i.e., the 𝑅𝐿 distribution given an certain reference sample, or given the 
process parameter(s) estimated with that sample, or given the chart limit(s) estimated 
using that (or those) process parameter(s) estimated) is more proper and more real to the 
practitioner since a specific single reference sample is used and practitioner-to-
practitioner variability is considered.  
 
Since the 𝐼𝐶 chart performance depends on its right-skewed 𝐼𝐶 𝑅𝐿 distribution, it can be 
better described regarding the use of the 𝐼𝐶 𝑅𝐿 quantiles. Then, the study of them in this 
paper can enables us to obtain valuable information and an in-depth understanding of the 
Phase II chart performance. Hence, from a practical point of view, this work is looking 
for a more insight into the 𝐼𝐶 performance of the Shewhart 𝑆2 chart when the process 
variance is estimated, seeking to take advantage of the characteristics of the conditional 
𝐼𝐶 𝑅𝐿 distribution and quantiles that account the effects of the amount of 𝐼𝐶 Phase I 
reference sample and the practitioner-to-practitioner variability. We propose two 
performance measures related to the conditional 𝐼𝐶 𝑅𝐿 quantiles, namely, the 𝑀𝑅𝐿 and 
the 𝑅𝐿 0.05-quantile, and we argue that the use of them may be more proper and more 
robust than the 𝐶𝐴𝑅𝐿. The scope of this paper  is limited to the case of the one-sided 𝑆2 
chart with a probability upper control limit (𝑈𝐶𝐿𝑆2) that is calculated regarding a 
specified probability of type I error or probability of a false alarm (𝛼).  
 
This work is organized as follows: Section 2 presents the 𝑅𝐿 of Shewhart 𝑆2 chart and its 
properties in both the known and unknown 𝐼𝐶 process variance cases. In Section 3, based 
on analytical derivations, the general expression of the conditional 𝐼𝐶 𝑀𝑅𝐿 (𝐶𝐼𝐶𝑀𝑅𝐿 or 
𝐶𝐼𝐶𝑅𝐿0.5) and its corresponding distribution are provided. In Section 4, we obtain the 
required minimum 𝑚 to guarantee a specific minimum 𝐶𝐼𝐶𝑀𝑅𝐿 with a high probability. 
The general conclusions are given in Section 6. 
 

2. The Run Length of Shewhart 𝐒𝟐 Control Chart 

 
2.1 The Run Length of Shewhart 𝐒𝟐 Control Chart when the 𝐈𝐂 process variance is 

known or specified  

Once the 𝑈𝐶𝐿𝑆2 is calculated using the known 𝐼𝐶 process variation 𝜎0
2, the process 

variability of the future production can be examined in the Phase II monitoring process. 
We suppose that 𝑛 (𝑛 > 1) is the size of each sample (subgroup) taken from Phase II 
process. These 𝑛 observations of each sample are independent and identically distributed 
(iid) and follow a normal distribution with mean 𝜇 and variance 𝜎2 (𝑋𝑖𝑗~𝑁(𝜇, 𝜎2), 
where 𝑋𝑖𝑗 is the jth observation of the measure quality characteristic (𝑗 = 1, 2, … , 𝑛) in 
the ith sampling time). A standard deviation shift may occur during a given moment in 
Phase II monitoring process. Then, in order to figure out the effect of this shift on the 
Phase II performance, we define the standard deviation ratio (𝛾):   
 
     𝛾 = 𝜎 𝜎0⁄               (1) 
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When the Phase II process variability is IC (a state of statistical control just related to the 
process variability), then 𝜎 = 𝜎0 and 𝛾 = 1. On the other hand, if the process standard 
deviation increases (𝜎 > 𝜎0) at a given moment during Phase II monitoring process 
because of the existence of any special or assignable cause, then γ > 1 and the process is 
OOC. Likewise, if the process standard deviation decreases (σ < σ0), then γ < 1. The ith 
chart point (plotting statistic obtained using the ith sampling time) in the Phase II 
monitoring process represents the corresponding ith sample variance 𝑆𝑖

2. So, given a 
specified value of the nominal 𝐹𝐴𝑅 (𝛼), each 𝑆𝑖

2 value can be compared with the 𝑈𝐶𝐿𝑆2 
value in order to detect an OOC signal. 𝑈𝐶𝐿𝑆2 is obtained from Equation (2) as follow 
(see, for example, Montgomery (2012)): 
  

    𝑈𝐶𝐿𝑆2 =
𝜒𝑛−1,1−𝛼

2

𝑛−1
𝜎0

2                          (2) 
 
Where 𝜒𝑛−1,1−𝛼

2  denotes the1 − 𝛼 () quantile of the distribution of a chi-squared random 
variable with n − 1 degrees of freedom (df), that is, Fχn−1

2
−1 (1 − α). Let Ai be the ith 

signalling event, namely, the event that Si
2 exceeds the UCLS2, whose probability of 

occurrence is called the probability of a signal (an alarm) ps, i.e., the probability that any 
chart point fall outside the upper control limit (P(Ai) = P(Si

2 > UCLS2) = ps). Then, 

using Equations (1) and (2), we have ps = P (Si
2 >

χn−1,1−α
2

n−1
σ0

2 ) = P (
(n−1)Si

2

σ2 >

χn−1,1−α
2 σ0

2

σ2). It is known that (n − 1) Si
2 σ2⁄  follows a chi-square distribution with n − 1 

df. So, it can be reduced as 
 

   𝑝𝑠 = 𝑃(𝑆𝑖
2 > 𝑈𝐶𝐿𝑆2) = 1 − 𝐹𝜒𝑛−1

2 (
𝜒𝑛−1,1−𝛼

2

𝛾2  )                      (3) 
 
Where 𝐹𝜒𝑛−1

2  is the cumulative distribution function (cdf) of the chi-square random 
variable with 𝑛 − 1 df. The RL is a discrete random variable that is defined as the number 
of collected samples from the Phase II process until the occurrence of the first signaling 
event (including the sample that causes this event), and it is considered as a paramount 
performance measure of the control charts. It is widely known that the RL of the S2 
control chart follows a geometric distribution with parameter ps (see, for example, 
Montgomery (2012)) since, in the first place, the samples of the Phase II monitoring 
process are independent (then, the samples variances {𝑆𝑖

2} are also independent random 
variables and the corresponding signalling events {𝐴𝑖} are independent) and, in the 
second, n, γ, α and σ0 are known or specified values (thus, from Equations (2) and (3), 
the control limits and ps are constant known values). Hence, we can figure out the 
performance of control charts for dispersion through the properties of the geometric 
distribution. Then, the probability mass function (pmf) and the cdf of the 𝑅𝐿 (𝑓𝑅𝐿(𝑙) and 
𝐹𝑅𝐿(𝑙), respectively) may be obtained as: 
 
   𝑓𝑅𝐿(𝑙) = 𝑃(𝑅𝐿 = 𝑙) = 𝑝𝑠(1 − 𝑝𝑠)𝑙−1                       (4) 
 
   𝐹𝑅𝐿(𝑙) = 𝑃(𝑅𝐿 ≤ 𝑙) = 1 − (1 − 𝑝𝑠)𝑙             (5) 
 
Where 𝑙 = {1,2,3, … }. If the process is 𝐼𝐶 (𝛾 = 1), ps is the probability of a false alarm 
(𝑝𝑠 = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐹𝐴𝑅 = 𝛼), otherwise (𝑂𝑂𝐶 process with 𝛾 > 1) ps is called the 
probability of a true alarm or the power of the chart 𝑝𝑠 = 1 − 𝛽 (, where 𝛽 is the type II 
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error probability). Thus, in both situation (IC and OOC Phase II process), given specified 
values of (α, n, γ), the parameter of the RL distribution (𝑝𝑠) is a constant known value that 
can be obtained from Equation (3). Typically, the mean and the standard deviation of the 
RL (ARL and SDRL) are examined to characterize the performance of the chart. Thus, 
 
    𝐸(𝑅𝐿) = 𝐴𝑅𝐿 =

1

𝑝𝑠
              (6) 

 

    𝑆𝐷(𝑅𝐿) = 𝑆𝐷𝑅𝐿 = √
(1−𝑝𝑠)

𝑝𝑠
2              (7) 

 
As was explained earlier, both measures should not be used as the singles indicators of 
the control chart because of the shape of the RL distribution. Then, the RL quantiles 
provide relevant and meaningful additional information to clarify the description of the 
RL through summary measures for the center and for the variation of its distribution. The 
𝑞-quantile (or the 100qth percentile, where 0 < q < 1) of the run length (RLq) is defined 
as the smallest integer so that the cdf at RLq is at least equal to q (i.e., 𝐹𝑅𝐿(𝑅𝐿𝑞) =

𝑃(𝑅𝐿 ≤ 𝑅𝐿𝑞) ≥ 𝑞). Next, using Equation (5), 1 − (1 − 𝑝𝑠)𝑅𝐿𝑞 ≥ 𝑞. Thus, 
 
     𝑅𝐿𝑞 = ⌈

𝑙𝑛 (1−𝑞)

𝑙𝑛 (1−𝑝𝑠)
⌉                (8) 

 
Where ⌈𝑎⌉ denotes the smallest integer greater or equal to 𝑎, then 𝑅𝐿𝑞 = {1,2,3, … }. For 
example, when the process is 𝐼𝐶 and 𝛼 = 0.0027, the 0.5-quantile of the in-control run 
length (𝐼𝐶𝑅𝐿0.5), or also called the in-control median run length (𝐼𝐶𝑀𝑅𝐿), is obtained 
from Equation (8), using 𝑞 = 0.5 and 𝑝𝑠 = 𝛼 = 0.0027. Thus, the 𝐼𝐶𝑀𝑅𝐿 = 257. In 
addition, using Equation (6), the in-control average run length (𝐼𝐶𝐴𝑅𝐿) is equal to 370.4. 
Both performance measures are quite different and the practitioners should avoid 
misleading and confusing interpretations. The 𝐼𝐶𝐴𝑅𝐿 just points out that a false alarm 
will be detected, on average approximately, by the 370th sample, but it does not provide 
any likelihood of this occurring. Conversely, the 𝐼𝐶𝑀𝑅𝐿 indicates that, at least 50% of 
the time, a false alarm will be detected within the first 257 samples.           
          
In this work, as well as in several other researches (see, e.g., Khoo (2004), Chakraborti 
(2007) and Teoh et al. (2016)), the RLq is defined in such a way that the cdf at this q-
quantile is at least (and not just exactly) equal to q. It is due to the RL is a discrete 
random variable (as was defined above). Thus, 𝑃(𝑅𝐿 ≤ 𝑅𝐿𝑞 − 1) < 𝑞 ≤ 𝑃(𝑅𝐿 ≤ 𝑅𝐿𝑞),. 
 
2.2 The Run Length of Shewhart 𝐒𝟐 Control Chart when the 𝑰𝑪 process variance is 

unknown 

The IC process parameters are unknown in most often real control chart applications. As 
a result, the control limit (see Equation (2)) is no longer a known constant value and need 
to be estimated based on the estimator of the IC process variance σ̂0

2, which, in turn, is 
obtained using a specific reference sample taken from the IC Phase I process. We 
consider mn as the number of Phase I reference sample observations {XIij} such that m is 
the number of independent random samples each of size 𝑛 (these observations are iid, 
𝑋𝐼𝑖𝑗~𝑁(𝜇0, 𝜎0

2), where 𝑖 = {1, 2, … , 𝑚} and 𝑗 = {1, 2, … , 𝑛}).  
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After the control limit of the S2 Control Chart is estimated (using Equation (10)), the 
Phase II monitoring process can be started (prospective) using independent samples 
(plotting statistics) of the same size of the Phase I samples (n). We assume that the 
observations of each sample are iid in Phase II process, and follow a normal distribution 
with an unknown standard deviation σ. Moreover, as mentioned before, the performance 
of the S2 Control Chart is affected by the variance estimation. Next, we need to measure 
this estimation effect. So k is defined as the error factor of the estimate �̂�0

2:  
 
     𝑘 = �̂�0

2 𝜎0
2⁄               (9) 

 
Given a control chart application, we have  
 

    𝑈𝐶�̂�𝑆2 =
𝜒𝑛−1,1−𝛼

2

𝑛−1
�̂�0

2                    (10) 
 
    𝑃(𝐵𝑖) = 𝑃(𝑆𝑖

2 > 𝑈𝐶�̂�𝑆2) = 𝑝𝑠                   (11) 
 
Because the random variables (Si

2 − UCL̂S2) and (Sj
2 − UCL̂S2) have σ̂0

2 in common, the 
signaling events Bi and Bj are dependent for i ≠ j. Hence, the distribution of the 
(unconditional) RL is no longer geometric. Next, using Equations (1), (9) and (10), the ps 

from Equation (11) can be expressed as 𝑝𝑠 = 𝑃 (𝑆𝑖
2 >

𝜒𝑛−1,1−𝛼
2

𝑛−1
�̂�0

2) = 𝑃 (
(𝑛−1)𝑆𝑖

2

𝜎2 >

𝜒𝑛−1,1−𝛼
2 �̂�0

2

𝜎0
2

𝜎0
2

𝜎2), which can be reduced as follow 
 
   𝑝𝑠 = 𝑃(𝑆𝑖

2 > 𝑈𝐶�̂�𝑆2) = 1 − 𝐹𝜒𝑛−1
2 (

𝑘

𝛾2 𝜒𝑛−1,1−𝛼
2  )                 (12) 

 
The value of ps can be obtained unconditionally, i.e., averaging ps (given 𝑘) over the 
distribution of 𝑘 (𝑝𝑠 = 𝐸𝑘2[𝑝𝑠 | 𝑘]), or equivalently, by averaging over all possible values 
of the estimation of σ0

2 (σ̂0
2) that are calculated using a very large amount of reference 

samples collected from the same IC Phase I process. In a similar way, we can determinate 
the unconditional RL distribution and its associated measures for the estimated process 
variance case (see, for example, Chen (1998), Maravelakis et al. (2002) and Castagliola 
et al. (2009)). However, because the users just have a single IC Phase I reference sample 
to estimate the process parameter(s) in real applications and given the practitioner-to-
practitioner variability, the value of ps obtained conditionally on 𝑘 (or σ̂0

2) is more proper 
and more practical to the control chart users. So, from Equation (12), ps is a function of 
the random variable k, then the ps given a specific Phase I estimator of σ0 (σ̂0) is called 
the conditional probability of a signal (CPS) 
          
      𝐶𝑃𝑆(�̂�0

2, 𝛾) = 𝑃(𝑆𝑖
2 > 𝑈𝐶�̂�𝑆2  | �̂�0

2) =  1 − 𝐹𝜒𝑛−1
2 (

𝑘

𝛾2 𝜒𝑛−1,1−𝛼
2  | 𝑘)           (13) 

 
The random variable CPS can assume a particular realization given a value of σ̂0

2 which, 
in turn, is computed using a specific IC Phase I reference sample. Hence, this particular 
value of CPS is the geometric parameter (i.e., the probability of a success) of the 
conditional run length (CRL) distribution. Thus, the cdf of the CRL is 
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𝐹𝐶𝑅𝐿(𝑡) = 𝑃(𝐶𝑅𝐿 ≤ 𝑡) = 𝑃(𝑅𝐿 ≤ 𝑡 | �̂�0
2) = 1 − (1 − 𝐶𝑃𝑆(�̂�0

2, 𝛾))
𝑡

= 1 − (𝐹𝜒𝑛−1
2 (

𝑘

𝛾2
𝜒𝑛−1,1−𝛼

2  | 𝑘))

𝑡

 

 
We considered the traditional unbiased estimator of the σ0

2, i.e., the pooled sample 
variance (𝑆𝑝

2):  
 

     �̂�0
2 = 𝑆𝑝

2 =
∑ 𝑆𝐼𝑖

2𝑚
𝑖=1

𝑚
                     (14) 

 
Where 𝑆𝐼𝑖

2 =
1

𝑛−1
∑ (𝑋𝐼𝑖𝑗 − �̅�𝐼𝑖)

2𝑛
𝑗=1  and �̅�𝐼𝑖 =

1

𝑛
∑ 𝑋𝐼𝑖𝑗

𝑛
𝑗=1  are the sample variance and the 

sample mean that are obtained in the IC Phase I process from a specific reference sample. 
Then, we can take advantage of the fact that when �̂�0

2 = 𝑆𝑝
2, the random variable Y 

(𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎0

2⁄ ) follows a chi-square distribution with 𝑚(𝑛 − 1) df. In addition, 
we focus on CRL when the process is IC, it means that the standard deviation is the same 
in Phase II and Phase I processes (𝜎 = 𝜎0 and γ = 1). Then, we address the conditional 
in-control run length (𝐶𝐼𝐶𝑅𝐿) of the 𝑆2 chart that follows a geometric distribution and 
whose parameter is one realization of the conditional false alarm rate (𝐶𝐹𝐴𝑅), that is, 
from Equation (13), 𝐶𝐹𝐴𝑅(�̂�0) = 𝐶𝑃𝑆(�̂�0

2 = 𝑆𝑝
2, 𝛾 = 1). Thus, the random variable 

CFAR can be rewritten as  
 

  𝐶𝐹𝐴𝑅(𝑌) = 1 − 𝐹𝜒𝑛−1
2 (

𝑆𝑝
2

𝜎0
2 𝜒𝑛−1,1−𝛼

2 ) = 1 − 𝐹𝜒𝑛−1
2 (

𝑌

𝑚(𝑛−1)
𝜒𝑛−1,1−𝛼

2 )           (15) 
 
Epprecht et al. (2015) presented a thorough examination of the behavior of 𝐶𝐹𝐴𝑅 (by a 
particular 𝑆2 control chart with a specific estimator σ̂0

2 or Y) and its distribution and 
quantiles, while we study the quantiles of the CICRL as a performance measures, which 
also represent the characteristics of the control charts. The 𝐶𝐼𝐶𝑅𝐿 and its associated 
measures can be derived through the known properties of the geometric distribution. 
Then, the 𝐶𝐼𝐶𝑅𝐿 distribution is obtained as the cdf of the ICRL conditioned on (or given) 
�̂�0

2 (or equivalently, conditionally on the corresponding 𝑌). Thus, similar to Equation (5), 
the cdf of the 𝐶𝐼𝐶𝑅𝐿 can be expressed as 
 

𝐹𝐶𝐼𝐶𝑅𝐿(𝑡) = 𝑃(𝐶𝐼𝐶𝑅𝐿 ≤ 𝑡) = 𝑃(𝐼𝐶𝑅𝐿 ≤ 𝑡 | �̂�0
2) = 𝑃(𝐼𝐶𝑅𝐿 ≤ 𝑡 | 𝑌)

= 1 − (1 − 𝐶𝐹𝐴𝑅(𝑌))
𝑡
  

 
Where 𝑡 = {1,2,3, … }. Then, substituting Equation (15) in the latter expression, the cdf of 
the CICRL (FCICRL) can be rewritten as 
 

  𝐹𝐶𝐼𝐶𝑅𝐿(𝑡) = 𝑃(𝐶𝐼𝐶𝑅𝐿 ≤ 𝑡) = 1 − (𝐹𝜒𝑛−1
2 (

𝑌

𝑚(𝑛−1)
𝜒𝑛−1,1−𝛼

2 ))

𝑡

         (16) 

 
Note that, from Equation (16), the cdf of 𝐶𝐼𝐶𝑅𝐿, given a specified value of α, depends on 
the random variable Y which, in turn, depends on the error factor of the estimate �̂�0

2 
(𝑘 = 𝑆𝑝

2 𝜎0
2⁄ ) and its distribution depends on the number (𝑚) and size (n) of the Phase I 

reference sample, namely, 𝑌~𝜒𝑚(𝑛−1)
2 . The pmf, the conditional in-control average run 
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length (𝐶𝐼𝐶𝐴𝑅𝐿) and the conditional in-control standard deviation run length (𝐶𝐼𝐶𝑆𝐷𝑅𝐿) 
may be obtained straightaway by substituting 𝐶𝐹𝐴𝑅 (Equation (15)) for 𝑝𝑠 in Equations 
(4), (6) and (7), respectively. Next, in Section 3, we will evaluate the quantiles of the 
𝐶𝐼𝐶𝑅𝐿.  
  
For the case of the 𝑅𝐿 properties of the Shewhart �̅� Chart (pmf, cdf, 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿 and 
quantiles) when the process parameters are known were examined and studied, for 
example, by Khoo (2004). On the other hand, the case when parameters are unknown was 
addressed, for example, based on the unconditional RL distribution, by Chakraborti 
(2006, 2007).    
 
3. Conditional In-Control Run Length 𝐪-Quantile (𝐂𝐈𝐂𝐑𝐋𝐪) of the Shewhart 𝐒𝟐 and 

𝐒 Control Charts 

 
3.1 The expression of 𝑪𝑰𝑪𝑹𝑳𝒒  

The study of the 𝑅𝐿 distribution and its quantiles provide more information and a better 
understanding of 𝑆2 and 𝑆 charts performance. Since the 𝐶𝐼𝐶𝑅𝐿, by definition, is a 
discrete random variable as the 𝐶𝑅𝐿, its 𝑞-quantile (𝐶𝐼𝐶𝑅𝐿𝑞), where 0 < 𝑞 < 1, is 
defined as the smallest positive integer 𝐶𝐼𝐶𝑅𝐿𝑞 so that the cdf at 𝐶𝐼𝐶𝑅𝐿𝑞 is greater or 
equal to 𝑞 (𝐹𝐶𝐼𝐶𝑅𝐿(𝐶𝐼𝐶𝑅𝐿𝑞) ≥ 𝑞). Therefore, similar to the procedure for obtaining the 
expression of Equation (8) in the known process variance case, the 𝐶𝐼𝐶𝑅𝐿𝑞 can be 
calculated using Equation (16), as being the smallest integer that satisfies: 1 −

(𝐹𝜒𝑛−1
2 (

𝑌

𝑚(𝑛−1)
𝜒

𝑛−1,  1− 𝛼
2 ))

𝐶𝐼𝐶𝑅𝐿𝑞

≥ 𝑞. Thus, 

 

   𝐶𝐼𝐶𝑅𝐿𝑞 = ⌈
𝑙𝑛 (1−𝑞)

𝑙𝑛 (𝐹
𝜒𝑛−1

2 (
𝑌

𝑚(𝑛−1)
𝜒

𝑛−1,  1− 𝛼
2 ))

⌉                   (17) 

 
Where ⌈𝑏⌉ denotes the smallest integer greater or equal to 𝑏, then 𝐶𝐼𝐶𝑅𝐿𝑞 = {1, 2, 3, … }. 
Thus, from Equation (17), we can obtain and examine any quantile of the 𝐶𝐼𝐶𝑅𝐿. Our 
work proposes the use of the 𝐶𝐼𝐶𝑅𝐿0.50 (i.e., the conditional in-control median run length 
(𝐶𝐼𝐶𝑀𝑅𝐿)). As was mentioned earlier, since the 𝐼𝐶 𝑅𝐿 is right-skewed, the 𝐼𝐶𝑀𝑅𝐿 is 
more proper and more useful summary measure of centrality than the 𝐼𝐶𝐴𝑅𝐿. Then, we 
consider the 𝐶𝐼𝐶𝑀𝑅𝐿. It indicates that the first false alarm is detected after the 
𝐶𝐼𝐶𝑀𝑅𝐿𝑡ℎ sample with approximately (a little less than) 50% probability. Put another 
way, it means that approximately 50% of the conditional 𝐼𝐶 𝑅𝐿′𝑠 will be larger than the 
𝐶𝐼𝐶𝑀𝑅𝐿 (for a very large number of reference sample taken from the same 𝐼𝐶 process 
or, equivalently, for a very large amount of control chart constructed with the 
corresponding reference samples).  
 

3.2 The 𝑪𝑰𝑪𝑹𝑳𝒒 distribution  

The probability mass function (pmf) and the cumulative distribution function (cdf) of the 
Conditional 𝐼𝐶 𝑅𝐿 𝑞-Quantile (𝐶𝐼𝐶𝑅𝐿𝑞), that is, 𝑓𝐶𝐼𝐶𝑅𝐿𝑞

(𝜏) and 𝐹𝐶𝐼𝐶𝑅𝐿𝑞
(𝑡), are presented 

in this section. We can find the pmf of 𝐶𝐼𝐶𝑅𝐿𝑞 as  

𝑓𝐶𝐼𝐶𝑅𝐿𝑞
(𝜏) = 𝑃(𝐶𝐼𝐶𝑅𝐿𝑞 = 𝜏) 
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   = 𝐹𝜒𝑚(𝑛−1)
2 (

𝑚(𝑛−1)𝜒
𝑛−1,(1−𝑞)1 𝜏⁄
2

𝜒
𝑛−1, 1−𝛼
2 ) − 𝐹𝜒𝑚(𝑛−1)

2 (
𝑚(𝑛−1)𝜒

𝑛−1, (1−𝑞)1 (𝜏−1)⁄
2

𝜒
𝑛−1, 1−𝛼
2 ), 𝜏 = {1,2,3, … }  

                              (18) 
 
Note that, from Equation (18), the pmf of 𝐶𝐼𝐶𝑅𝐿𝑞 depends on 𝑚, 𝑛 and 𝛼 values. We can 
obtain the pmf of the 𝐶𝐼𝐶𝑀𝑅𝐿, substituting 𝑞 = 0.50 (𝑓𝐶𝐼𝐶𝑀𝑅𝐿(𝜏)) into Equation (18).  
 
The pmfs of the proposed performance measures is displayed in Figures 1 (for 𝑚 =
{25, 50, 100, 200, 1000}, 𝑛 = 5, 𝛼 = 0.0027). We can note that, the right-skewed shape 
of the 𝐶𝐼𝐶𝑀𝑅𝐿 distribution is more pronounced for small values of 𝑚. For another side, 
when the value of 𝑚 increases, the pmf curve tends to be more peaked and its modal 
value (the 𝐶𝐼𝐶𝑀𝑅𝐿 value at which its pmf takes its maximum value) tends to the 
corresponding nominal value, i.e., 𝐼𝐶𝑀𝑅𝐿 = 257. For instance, the 𝑓𝐶𝐼𝐶𝑀𝑅𝐿(𝜏) (see 
Figure 1), the modal values are 91, 147, 192, 222, 249 for the five considered values 
of 𝑚.   
 

 

Figure 1: 𝑓𝐶𝐼𝐶𝑀𝑅𝐿(𝜏): Probability mass function (pmf) envelope of the Conditional 𝐼𝐶 
𝑀𝑅𝐿 (𝐶𝐼𝐶𝑀𝑅𝐿) for 𝑚 = {25, 50, 100, 200, 1000}, 𝑛 = 5 and 𝛼 = 0.0027 (nominal 

𝐼𝐶𝑀𝑅𝐿 = 257). 

Note that since the 𝐶𝐼𝐶𝑅𝐿𝑞 is a discrete random variable (positive integer values), its pmf 
is zero for all non-integer values of 𝐶𝐼𝐶𝑅𝐿𝑞. Thus, the pmf is a non-continuous function, 
but we decided to draw the curve connecting the points (pmf envelope, see Figure 1) in 
order to make easier the visualization of important patterns of pmf.   
 
Next, we can find the cdf of 𝐶𝐼𝐶𝑅𝐿𝑞 as  
 

         𝐹𝐶𝐼𝐶𝑅𝐿𝑞
(𝑡) = 𝑃(𝐶𝐼𝐶𝑅𝐿𝑞 ≤ 𝑡) = {

0,  𝑡 < 1

𝐹𝜒𝑚(𝑛−1)
2 (

𝑚(𝑛−1)𝜒
𝑛−1, (1−𝑞)1 ⌊𝑡⌋⁄
2

𝜒
𝑛−1, 1−𝛼
2 ) ,  𝑡 ≥ 1 

              

                  (19) 
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Where 𝑡 is a real value and ⌊𝑡⌋ denotes the largest integer less or equal to 𝑡. Note that, 
from Equation (19), the cdf of 𝐶𝐼𝐶𝑅𝐿𝑞, which is a non-decreasing step function, depends 
on 𝑚, 𝑛 and 𝛼 values. We obtained the cdf of the 𝐶𝐼𝐶𝑀𝑅𝐿, substituting 𝑞 = 0.50 
(𝐹𝐶𝐼𝐶𝑀𝑅𝐿(𝑡)) into Equation (19).  
 
3.3 𝑪𝑰𝑪𝑴𝑹𝑳 assessment 

In order to evaluate the proposed performance measure 𝐶𝐼𝐶𝑀𝑅𝐿, we compare it to the 
𝐶𝐼𝐶𝐴𝑅𝐿 (the conditional value of the most traditional performance, the 𝐴𝑅𝐿). Then, as an 
initial assessment, the expected value (𝐸), standard deviation (𝑆𝐷), coefficient of 
variation (𝐶𝑉) and skewness (measured with Pearson's moment coefficient) of these three 
performance measures are shown in Table 1 for 𝑚 = {25,50,100,200,1000, ∞}, 𝑛 = 5 
and 𝛼 = 0.0027 (nominal 𝐼𝐶𝐴𝑅𝐿 = 370.4 and nominal 𝐼𝐶𝑀𝑅𝐿 = 257). These 
theoretical values were obtained using the formula of the 𝑟th moment of a random 
variable (continuous and discrete) as a function of its cdf (see Chakraborti et al. (2017)):  
 

𝐸(𝐶𝐼𝐶𝐴𝑅𝐿𝑟) = 1 + 𝑟 ∫ 𝑡𝑟−1(1 − 𝐹𝐶𝐼𝐶𝐴𝑅𝐿(𝑡))𝑑𝑡
∞

1

 

𝐸((𝐶𝐼𝐶𝑀𝑅𝐿)𝑟) = 1 + ∑((𝑖 + 1)𝑟 − 𝑖𝑟)(1 − 𝐹𝐶𝐼𝐶𝑀𝑅𝐿(𝑖))

∞

𝑖=1

 

 
The cdf of the 𝐶𝐼𝐶𝐴𝑅𝐿 (𝐹𝐶𝐼𝐶𝐴𝑅𝐿(𝑡)) is related to the cdf of the 𝐶𝐹𝐴𝑅, that is, 
𝐹𝐶𝐼𝐶𝐴𝑅𝐿(𝑡) = 𝑃(𝐶𝐼𝐶𝐴𝑅𝐿 ≤ 𝑡) = 𝑃(𝐶𝐹𝐴𝑅 ≥ 𝑡−1) = 1 − 𝐹𝐶𝐹𝐴𝑅(𝑡−1)). An expression 
for the 𝐹𝐶𝐹𝐴𝑅(𝑡−1) was obtained by Epprecht et al. (2015). We also used the cdf of the 
𝐶𝐼𝐶𝑀𝑅𝐿 (𝐹𝐶𝐼𝐶𝑀𝑅𝐿(𝑖)) for 𝑞 = 0.5 given by Equation 19. The expected values and 
standard deviation values from Table 1 were verified using computer simulations. The 
values of the corresponding nominal performance measures are given in the last column 
from Table 1, i.e., when the process variance is known (𝑚 = ∞). We can note that, for 
𝑚 = 1000, the expected values of both performance measures are close to those when 
process variance is known (nominal values); conversely, when 𝑚 is small, these expected 
values and standard deviation values are significantly large, for instance, for 𝑚 = 25, the 
expected values (i.e., 𝐸(𝐶𝐼𝐶𝐴𝑅𝐿) and 𝐸(𝐶𝐼𝐶𝑀𝑅𝐿)) are roughly 80% larger than their 
corresponding nominal values and the standard deviation values of these performance 
measures (i.e., 𝑆𝐷(𝐶𝐼𝐶𝐴𝑅𝐿) and 𝑆𝐷(𝐶𝐼𝐶𝑀𝑅𝐿) are roughly 90% larger than their 
corresponding expected values. A comparison of the variability (or spread), based on 𝑆𝐷 
and 𝐶𝑉 values, across these three performance measures, from Table 1, displays that the 
variability of the 𝐶𝐼𝐶𝑀𝑅𝐿 is smaller than the 𝐶𝐼𝐶𝐴𝑅𝐿 variability. When 𝑚 becomes 
smaller, the differences in variability among these measures increase. The numerical 
skewness results given in Table 1 support the highly skewed to the right shape of the 
𝐶𝐼𝐶𝑀𝑅𝐿 distribution (when 𝑚 is small) shown in Figure 1. On the other side, when 𝑚 
becomes larger, these distributions tend to be symmetric. For each value of 𝑚, the three 
performance measures distributions have similar skewness values. 
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Table 1: The expected values (𝐸), standard deviation (𝑆𝐷), coefficient of variation (𝐶𝑉) 
and skewness of the 𝐶𝐼𝐶𝐴𝑅𝐿 and 𝐶𝐼𝐶𝑀𝑅𝐿 and  for 𝑚 = {25, 50,100,200,1000}, 𝑛 = 5 

and 𝛼 = 0.0027 (nominal 𝐼𝐶𝐴𝑅𝐿 = 370.4, and nominal 𝐼𝐶𝑀𝑅𝐿 = 257). 

 
Given the number and size of a specific Phase I reference sample (𝑚 and 𝑛), Probability-
Integral Transformation can be used, i.e., the cdf of 𝑌 (𝐹𝜒𝑚(𝑛−1)

2 (𝑌)) can be expressed as 
a uniform random variable 𝑈 (0 < 𝑢 < 1), then one particular realization of 𝑌 (𝑌 = 𝑦) is 
the 𝑢-quantile of the chi-square distribution with 𝑚(𝑛 − 1) df (𝐹𝜒𝑚(𝑛−1)

2 (𝑦) = 𝑢) so that 

𝑦 = 𝐹
𝜒𝑚(𝑛−1)

2
−1 (𝑢). Therefore, from Equation (17), the 𝐶𝐼𝐶𝑅𝐿𝑞 can be expressed as a 

function of 𝑌 (say, a monotonically non-decreasing function 𝑔), then we have: 
 

     𝐶𝐼𝐶𝑅𝐿𝑞 = ⌈𝑔(𝑌)⌉ = ⌈𝑔 (𝐹
𝜒𝑚(𝑛−1)

2
−1 (𝑈))⌉ = ℎ(𝑈) 

It can be rewritten as a function of 𝑈 (we use the notation (𝐶𝐼𝐶𝑅𝐿𝑞)
𝑈

):  

       (𝐶𝐼𝐶𝑅𝐿𝑞)
𝑈

= ℎ(𝑈) = ⌈
𝑙𝑛 (1−𝑞)

𝑙𝑛 (𝐹
𝜒𝑛−1

2 (
𝐹𝑌

−1(𝑈)

𝑚(𝑛−1)
𝜒

𝑛−1,  1− 𝛼
2 ))

⌉                 (20) 

 
Where ℎ is a positive integer-valued function. Moreover, from Equation (15), the 
conditional in-control average run length (𝐶𝐼𝐶𝐴𝑅𝐿) is obtained as the reciprocal of 
𝐶𝐹𝐴𝑅(𝑌), i.e., 𝐶𝐼𝐶𝐴𝑅𝐿 = 1 1 − 𝐹𝜒𝑛−1

2 (
𝑌

𝑚(𝑛−1)
𝜒

𝑛−1,  1− 𝛼
2 )⁄ . Next, 𝐶𝐼𝐶𝐴𝑅𝐿 can also be 

expressed as a function 𝑣 of 𝑈: 
 

   (𝐶𝐼𝐶𝐴𝑅𝐿)𝑈 = 𝑣(𝑈) =
1

1−𝐹
𝜒𝑛−1

2 (
𝐹𝑌

−1(𝑈)

𝑚(𝑛−1)
𝜒

𝑛−1,   1−𝛼
2 )

           (21) 

Note that, from Equations (20) and (21), the 𝐶𝐼𝐶𝑅𝐿𝑞 and 𝐶𝐼𝐶𝐴𝑅𝐿 are expressed as 
monotonically non-decreasing functions (ℎ is discrete and 𝑣 is continuous) of a uniform 
random variable 𝑈. Then, we can take advantage of the fact that the cdf of 𝐶𝐼𝐶𝑅𝐿𝑞 at 

  𝑚 
   25 50 100 200 1000 ∞ 

𝐶𝐼𝐶𝐴𝑅𝐿 

𝐸(𝐶𝐼𝐶𝐴𝑅𝐿) 674.15 490.76 424.61 396.18 375.34 370.40 
𝑆𝐷(𝐶𝐼𝐶𝐴𝑅𝐿) 1292.88 458.14 244.10 151.57 61.39 0 
𝐶𝑉(𝐶𝐼𝐶𝐴𝑅𝐿) 1.9178 0.9335 0.5749 0.3826 0.1636 0 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 33.60 4.76 2.25 1.37 0.55 0 

𝐶𝐼𝐶𝑀𝑅𝐿 

𝐸(𝐶𝐼𝐶𝑀𝑅𝐿) 467.44 340.33 294.47 274.76 260.32 257 
𝑆𝐷(𝐶𝐼𝐶𝑀𝑅𝐿) 896.15 317.56 169.20 105.06 42.55 0 
𝐶𝑉(𝐶𝐼𝐶𝑀𝑅𝐿) 1.9171 0.9331 0.5746 0.3824 0.1635 0 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 33.00 4.76 2.25 1.37 0.55 0 

3314



 

ℎ(𝑢) is greater or equal to the cdf of 𝑈 at 𝑢, i.e., 𝐹𝑈(𝑢) = 𝑢. Thus, we have the cdf of 
𝐶𝐼𝐶𝑅𝐿𝑞 at ℎ(𝑢): 

 𝐹𝐶𝐼𝐶𝑅𝐿𝑞
(ℎ(𝑢)) = 𝑃 (𝐶𝐼𝐶𝑅𝐿𝑞 ≤ ℎ(𝑢)) ≥ 𝐹𝑈(𝑢) = 𝑃(𝑈 ≤ 𝑢) = 𝑢             (22) 

 
Note that ℎ(𝑢) (namely, from Equation (20), ℎ(𝑢) = (𝐶𝐼𝐶𝑅𝐿𝑞)

𝑢
) is the 𝑢-quantile of the 

𝐶𝐼𝐶𝑅𝐿𝑞. In the case of the 𝐶𝐼𝐶𝐴𝑅𝐿, its cdf at 𝑣(𝑢) is equal to the cdf of 𝑈 at 𝑢 (i.e., 
𝐹𝐶𝐼𝐶𝐴𝑅𝐿(𝑣(𝑢)) = 𝑃(𝐶𝐼𝐶𝐴𝑅𝐿 ≤ 𝑣(𝑢)) = 𝐹𝑈(𝑢) = 𝑃(𝑈 ≤ 𝑢) = 𝑢). Likewise, 𝑣(𝑢) 
((𝐶𝐼𝐶𝐴𝑅𝐿)𝑢) is the 𝑢-quantile of the 𝐶𝐼𝐶𝐴𝑅𝐿. In this way, these performance measures 
can be calculated and plotted as functions of  𝑈 that only take values in the 〈0, 1〉 interval 
(while 𝑌 and 𝑘 take values in 〈0, +∞〉) in order to figure out the distributions, the 
quantiles and the asymptotic behavior of the 𝐶𝐼𝐶𝑅𝐿𝑞 and 𝐶𝐼𝐶𝐴𝑅𝐿. Hence, this described 
transformation enables us to obtain the quantile functions of the 𝐶𝐼𝐶𝑅𝐿𝑞 and 𝐶𝐼𝐶𝐴𝑅𝐿 
(Equations (20) and (21), respectively), which are the inverse of their corresponding cdfs.  
 
Despite that the plots shown in Figure 1enable us to see the 𝐶𝐼𝐶𝑀𝑅𝐿 distribution shape 
for different values of 𝑚, we want to compare the entire distribution and quantiles values 
of the 𝐶𝐼𝐶𝑀𝑅𝐿 and 𝐶𝐼𝐶𝐴𝑅𝐿 for each value of 𝑚. Hence, from Figure 2, a graphical 
representation that is similar to the one used by Radson and Boyd (2005) depicts the 
comparison of the distributions and quantiles (using Equations (20) and (21)) of the 
𝐶𝐼𝐶𝐴𝑅𝐿 and 𝐶𝐼𝐶𝑀𝑅𝐿 for 𝑚 = {25, 50,100,1000}, 𝑛 = 5, and 𝛼 = 0.0027 (nominal 
𝐼𝐶𝐴𝑅𝐿 = 370.4 and nominal 𝐼𝐶𝑀𝑅𝐿 = 257 are indicated with dashed vertical lines). 
This graph, like the standard boxplots, displays the extremes percentiles: 1th and 99th 
(large vertical lines), 5th and 95th (added short vertical lines); and the three quartiles: 
25th, 50th and 75th (vertical lines in the box). Thus, using the plots from Figure 2, we 
can easily distinguish the right tails of the three analyzed performance measures.  In 
addition to Figure 2, the quantile values of the two analyzed performance measures are 
given and compared in Tables 2 and 3.   
 
Furthermore, using Equations (21) and (20), the 𝐶𝐼𝐶𝐴𝑅𝐿 is compared with the proposed 
performance measure 𝐶𝐼𝐶𝑀𝑅𝐿. Table 2 shows and compares some 𝑢-quantiles values of 
both random variables ((𝐶𝐼𝐶𝐴𝑅𝐿)𝑢 and (𝐶𝐼𝐶𝑀𝑅𝐿)𝑢)) for five different numbers of 
Phase I samples (𝑚 = {25,50,100,200,1000}) each of size 𝑛 = 5 and 𝛼 = 0.0027. 
Additionally, some summary measures of these performance measures are provided, 
complementing information given in Table 1. Figure 3 is the graphical representation of 
quantiles values from Tables 2. It is worth to note that, although the plot of 𝐶𝐼𝐶𝑀𝑅𝐿 is 
expressed as a function of 𝑈 (Figures 3) is non-decreasing step function, which have 
infinite number of 𝑈-intervals, it was drawn as a continuous curve (similar to Figure 1).  
 
In relation to the first comparison, Figure 3 shows the plots of the 𝑢-quantiles of 𝐶𝐼𝐶𝐴𝑅𝐿 
and 𝐶𝐼𝐶𝑀𝑅𝐿 and some of their values are show in Table 2 considering 𝑢 =
{0.01, 0.05, 0.1, 0.25, 0.50, 0.75, 0.90, 0.95 and 0.99} and five additional values of 𝑢 (𝑢∗, 
where 𝑢∗ varies between 0.5033 and 0.5188). 𝑢∗ is a value so that, for each one of the 
five values of 𝑚, the mean of 𝑌 is the 𝑢∗-quantile of 𝑌 (𝐹

𝜒𝑚(𝑛−1)
2

−1 (𝑢∗) = 𝑌 = 𝐸(𝑌) =

𝑚(𝑛 − 1)), then each 𝑢∗ satisfies (from Equations (20) and (21)): 𝑢∗ = ℎ−1(257) =
𝑣−1(370.4), i.e., both conditional 𝐼𝐶 𝑅𝐿 measures equal the corresponding nominal 
values (𝐶𝐼𝐶𝑀𝑅𝐿 = 257 and 𝐶𝐼𝐶𝐴𝑅𝐿 = 370.4, see the diagonal values in the middle of 
Table 2). The estimate of the 𝐼𝐶 process standard deviation has a strongly influence in 
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determining the 𝐶𝐼𝐶𝐴𝑅𝐿 and 𝐶𝐼𝐶𝑀𝑅𝐿, thus we can quantify this influence using the 
〈0, 1〉 𝑈-interval. Note that when 𝑌 < 𝐸(𝑌) (𝑈 < 𝑢∗), the process standard deviation is 
underestimated (𝑆𝑝 < 𝜎0, then 𝑘 < 1), and on the other hand, when 𝑌 > 𝐸(𝑌) (𝑈 > 𝑢∗), 
the process standard deviation is overestimated (𝑆𝑝 > 𝜎0, then 𝑘 > 1). From Table 2 and 
Figure 5, we can deduce that the intersections between curves of the 𝐶𝐼𝐶𝑀𝑅𝐿 (or the 
𝐶𝐼𝐶𝐴𝑅𝐿) plots and one horizontal straight line equal to 257 (or 370.4) correspond to 
values of 𝑢∗ between 0.5033 and 0.5188 (see the diagonal values in the middle of Table 
2). The curves displayed in Figure 3 show that as the value of 𝑚 increases, each 
conditional 𝐼𝐶 𝑅𝐿 measure tends to a horizontal straight line, the equation of which 
equals the corresponding nominal value. Next, the asymptotic behavior of the 𝐶𝐼𝐶𝑀𝑅𝐿 
and 𝐶𝐼𝐶𝐴𝑅𝐿 is examined. In relation to the left tail, if 𝑢 → 0, then 𝑌 → 0 and 
𝐶𝐼𝐶𝑀𝑅𝐿, 𝐶𝐼𝐶𝐴𝑅𝐿 → 1. On the other hand, in relation to the right tail, if 𝑢 → 1, then 
𝑌 → ∞ and 𝐶𝐼𝐶𝑀𝑅𝐿, 𝐶𝐼𝐶𝐴𝑅𝐿 → ∞.  
 
From Figure 3 (both plots with the same scale) and Table 2, we can note that even though 
the 𝐶𝐼𝐶𝐴𝑅𝐿 and 𝐶𝐼𝐶𝑀𝑅𝐿 curves have similar shape, the variability of them are different. 
The skewness of the distribution of both performance measures (see the values of the 
Pearson's moment coefficient of skewness from Table 1) makes the curves much steeper 
for the upper than for the lower 𝑢-quantiles. Therefore, from Figure 3 and Table 2, it is 
easier to note that, unless 𝑚 is large (say, 1000 or more), standard deviation 
overestimation has a very larger impact on these performance measures values than the 
underestimation case. It is due to the longer right tails. For example, for 𝑚 = 25, when 
𝑢 = 0.01 (𝜎0 underestimation) 𝐶𝐼𝐶𝐴𝑅𝐿 = 44.3 (11.96% of its nominal value) and 
𝐶𝐼𝐶𝑀𝑅𝐿 = 31 (12.06% of its nominal value), on the other hand, when 𝑢 = 0.99 (𝜎0 
overestimation) 𝐶𝐼𝐶𝐴𝑅𝐿 = 5152.6 (1391% of its nominal value) and 𝐶𝐼𝐶𝑀𝑅𝐿 = 3572 
(1390% of its nominal value). Moreover, as was indicated before, we can note that the 
variability (or spread) of the 𝐶𝐼𝐶𝑀𝑅𝐿 is smaller than the variability of the 𝐶𝐼𝐶𝐴𝑅𝐿 and it 
can be verified from Table 2 using the values of summary measures for dispersion based 
on percentiles, such as the difference between 0.95-quantile and 0.05-quantile (95𝑡ℎ −
5𝑡ℎ) or the interquartile range (𝐼𝑄𝑅). For instance, from Table 1, for 𝑚 = 25, the 
extreme quantiles difference (95𝑡ℎ − 5𝑡ℎ) for 𝐶𝐼𝐶𝐴𝑅𝐿 is  2123.4  and for 𝐶𝐼𝐶𝑀𝑅𝐿 is 
1472; for 𝑚 = 1000, this difference for 𝐶𝐼𝐶𝐴𝑅𝐿 is  199.9 and for 𝐶𝐼𝐶𝑀𝑅𝐿 is 139.  
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Figure 2: Comparison of the 𝐶𝐼𝐶𝐴𝑅𝐿 and 𝐶𝐼𝐶𝑀𝑅𝐿 distributions and quantiles for 
𝑚 = {25, 50,100,1000}, 𝑛 = 5, and 𝛼 = 0.0027 (nominal 𝐼𝐶𝐴𝑅𝐿 = 370.4 and nominal 
𝐼𝐶𝑀𝑅𝐿 = 257 are indicated with dashed vertical lines). These plots (like boxplots) show 

1th, 5th, 25th, 50th, 75th, 95th and 99th percentiles. 
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Table 2: The 𝑢-quantiles of 𝐶𝐼𝐶𝐴𝑅𝐿 ((𝐶𝐼𝐶𝐴𝑅𝐿)𝑢) and the 𝑢-quantiles of 𝐶𝐼𝐶𝑀𝑅𝐿 
((𝐶𝐼𝐶𝑀𝑅𝐿)𝑢) for some values of  𝑈 (0 < 𝑢 < 1). Comparison between some summary 
measures (𝑆𝑀) of the 𝐶𝐼𝐶𝐴𝑅𝐿 and 𝐶𝐼𝐶𝑀𝑅𝐿: the expected value (𝐸), standard deviation 

(𝑆𝐷), coefficient of variation (𝐶𝑉), interquartile range (𝐼𝑄𝑅) and difference between 
0.95-quantile and 0.05-quantile (95𝑡ℎ − 5𝑡ℎ) (for 𝑚 = {25, 50, 100, 200, 1000}, 𝑛 = 5 

and 𝛼 = 0.0027 (nominal 𝐼𝐶𝐴𝑅𝐿 = 370.4 and nominal 𝐼𝐶𝑀𝑅𝐿 = 257)). 

 𝑚 
 25 50 100 200 1000 

𝑢, 𝑆𝑀 𝐶𝐼𝐶𝐴𝑅𝐿 𝐶𝐼𝐶𝑀𝑅𝐿 𝐶𝐼𝐶𝐴𝑅𝐿 𝐶𝐼𝐶𝑀𝑅𝐿 𝐶𝐼𝐶𝐴𝑅𝐿 𝐶𝐼𝐶𝑀𝑅𝐿 𝐶𝐼𝐶𝐴𝑅𝐿 𝐶𝐼𝐶𝑀𝑅𝐿 𝐶𝐼𝐶𝐴𝑅𝐿 𝐶𝐼𝐶𝑀𝑅𝐿 
0.01 44.3 31 78.3 54 120.1 83 164.8 114 255.8 177 
0.05 76.7 53 118.9 83 163.9 114 207.0 144 284.6 197 
0.1 104.8 73 150.0 104 194.5 135 234.3 163 301.4 209 
0.25 182.1 126 225.0 156 260.9 181 289.4 201 331.9 230 
0.50  353.0 245 361.6 251 365.9 254 368.1 255 369.9 257 
0.5033         370.4 257 
0.5066       370.4 257   
0.5094     370.4 257     
0.5133   370.4 257       
0.5188 370.4 257         
0.75 719.8 499 595.9 413 519.8 360 471.3 327 412.8 286 
0.90 1429.5 991 955.3 662 720.9 500 591.9 410 456.2 316 
0.95 2200.1 1525 1280.1 887 881.2 611 680.1 472 484.5 336 
0.99 5152.6 3572 2262.9 1569 1297.5 900 887.1 615 543.1 377 
𝐸 674.15 467.44 490.76 340.33 424.61 294.47 396.18 274.76 375.34 260.32 
𝑆𝐷 1292.88 896.15 458.14 317.56 244.10 169.20 151.57 105.06 61.39 42.55 
𝐶𝑉 1.9178 1.9171 0.9335 0.9331 0.5749 0.5746 0.3826 0.3824 0.1636 0.1635 
𝐼𝑄𝑅 537.7 373 370.9 257 258.9 179 181.9 126 80.9 56 
95𝑡ℎ − 5𝑡ℎ 2123.4 1472 1161.2 804 717.3 497 473.1 328 199.9 139 
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Figure 3: Comparison between the 𝑢-quantiles of 𝐶𝐼𝐶𝐴𝑅𝐿 ((𝑣(𝑢))) and the 𝑢-quantiles 
of 𝐶𝐼𝐶𝑀𝑅𝐿 (ℎ(𝑢)) (0 < 𝑢 < 1) for different values of 𝑚 = {25, 50, 100, 200, 1000}, 

𝑛 = 5 and 𝛼 = 0.0027 (nominal 𝐼𝐶𝐴𝑅𝐿 = 370.4 and nominal 𝐼𝐶𝑀𝑅𝐿 = 257). 

 
4. Minimum number of Phase I samples (𝒎) for a guaranteed in-control Phase II 

performance 

 
In this section, the Phase II 𝐼𝐶 performance is measured using the proposed 𝐶𝐼𝐶𝑀𝑅𝐿. It 
may be useful information for the users to know the minimum number 𝑚 of Phase I 
reference samples that guarantees that 𝐶𝐼𝐶𝑅𝐿𝑞 is greater or equal to a tolerated lower 
bound 𝑡𝑙𝑏𝑝 (a given percentage of the nominal 𝐼𝐶𝑅𝐿𝑞, i.e., 
𝑡𝑙𝑏𝑝 = (1 − 𝜀)𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐼𝐶𝑅𝐿𝑞) with a specified high probability 1 − 𝑝 (e.g., 90%) such 
that 𝑃(𝐶𝐼𝐶𝑅𝐿𝑞 ≥ 𝑡𝑙𝑏) = 1 − 𝑝. The value of 𝑡𝑙𝑏𝑝 considers the effect of parameter 
estimation and practitioner-to-practitioner variability and the users can choose the value 
of 𝜀 (0 ≤ 𝜀 < 1, e.g., 𝜀 = 10%).  
 

𝑃(𝐶𝐼𝐶𝑅𝐿𝑞 ≥ (1 − 𝜀)𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐼𝐶𝑅𝐿𝑞) ≥ 1 − 𝑝 

 
Then, 𝑃(𝐶𝐼𝐶𝑅𝐿𝑞 ≤ ⌈𝑡𝑙𝑏⌉ − 1) ≤ 𝑝, where ⌈𝑡𝑙𝑏⌉ denotes the smallest integer greater or 
equal to 𝑡𝑙𝑏. Next, using using Equation (19), we obtain 
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                     𝑚(𝑛 − 1)𝜒

𝑛−1, (1−𝑞)1 (⌈(1−𝜀)𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐼𝐶𝑅𝐿𝑞⌉−1)⁄  

2 ≤ 𝜒
𝑚(𝑛−1), 𝑝
2 (𝜒

𝑛−1,  1− 𝛼
2 )      (23) 

 
Note that, from Equation (23), the solution of  𝑚 needs a search, since the number of 
degrees of freedom of 𝜒

𝑚(𝑛−1), 𝑝
2  (chi-squared quantile) is a function of 𝑚. Then, 𝑚 is the 

smallest integer value that satisfies Equation (23). 
 
For given values of 𝑛, 𝛼, 𝜀 and 𝑝, we are also interested in finding the minimum value of 
𝑚 for a guaranteed 𝐼𝐶 performance that is based on the traditional 𝐶𝐼𝐶𝐴𝑅𝐿 (i.e., 
𝑃(𝐶𝐼𝐶𝐴𝑅𝐿 ≥ (1 − 𝜀)𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐼𝐶𝐴𝑅𝐿) ≥ 1 − 𝑝) in order to compare this 𝑚 value to the 
ones based on the 𝐶𝐼𝐶𝑀𝑅𝐿 in Table 3. Next, in a similar way that a search is needed to 
find the minimum value of m that satisfies Equation (23), for a guaranteed 𝐶𝐼𝐶𝐴𝑅𝐿 value, 
a search is needed to find the minimum value of 𝑚 that satisfies 
 
                                 𝑚(𝑛 − 1)𝜒

𝑛−1,1−(𝛼 (1−𝜀)⁄ )  
2 ≤ 𝜒

𝑚(𝑛−1), 𝑝
2 (𝜒

𝑛−1,  1− 𝛼
2 )                   (24) 

 
Epprecht et al. (2015) dealt with the minimum 𝑚 for a guaranteed 𝐶𝐹𝐴𝑅 value (when the 
process is 𝐼𝐶), using an equivalent expression to Equation (24).     
 
Table 3 shows, for different values of 𝑛, the minimum number of Phase I samples 
required (𝑚) for guaranteeing a desired 𝐼𝐶 performance in terms of the 𝐶𝐼𝐶𝑀𝑅𝐿 and in 
terms of the 𝐶𝐼𝐶𝐴𝑅𝐿 (namely, as a percentage of their nominal value), for same values of 
𝛼, 𝜀 and 𝑝. We consider 𝜀 = { 20%}, 𝑝 = {0.05, 0.10} and 𝛼 = 0.0027 (nominal 
𝐼𝐶𝐴𝑅𝐿 = 370.4 and nominal 𝐼𝐶𝑀𝑅𝐿 = 257). For instance, when 𝜀 = 20% and 𝑝 =
0.10, we have, in Table 3, the minimum values of 𝑚 that satisfy: 𝑃(𝐶𝐼𝐶𝑀𝑅𝐿 ≥
205.6) ≥ 0.9 and 𝑃(𝐶𝐼𝐶𝐴𝑅𝐿 ≥ 296.3) ≥ 0.9. Then, these values of 𝑚, as was indicated 
by Epprecht et al. (2015) for the case of maximum tolerated values of 𝐶𝐹𝐴𝑅, are much 
larger than the customary and recommended values of 𝑚 = 25 or 30 and 𝑛 = 4 or 5 
(see, e.g., Montgomery (2012)) and also larger than the recommended values (with values 
of 𝑚 of up to 200 and values of 𝑛 of up to 10 units) by Chen (1998), Maravelakis et al. 
(2002) and Castagliola et al. (2009), who based their recommendations on the analysis of 
the unconditional 𝑅𝐿 distribution. 
 
From Table 3 when 𝜀 = 20%, the values of 𝑚 for guaranteeing a minimum limit of the 
𝐶𝐼𝐶𝑀𝑅𝐿 are slightly smaller than the corresponding values of 𝑚 for guaranteeing a 
minimum limit of the 𝐶𝐼𝐶𝐴𝑅𝐿, for same values of p. These differences of 𝑚 values vary 
between 0 and 3. 
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Table 3. Minimum number of Phase I samples required (𝑚) as a function of 𝑛 for a 
guaranteed specified minimum limit of the 𝐶𝐼𝐶𝑀𝑅𝐿 (𝐶𝐼𝐶𝐴𝑅𝐿 in parentheses) value, with 

𝜀 = {20%}, 𝑝 = {0.05, 0.10} and 𝛼 = 0.0027 (nominal 𝐼𝐶𝑀𝑅𝐿 = 257 and nominal 
𝐼𝐶𝐴𝑅𝐿 = 370.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 
5. Conclusions  

 
It is known that, when the process parameters are unknown, the control charts 
performance may be substantially affected by the effect of parameter estimation. This 
study was addressed by several authors, including Chen (1998), Maravelakis et al. 
(2002), Jensen et al. (2006), Castagliola (2009) and Psarakis et al. (2014), among others. 
However, these researches are based on the unconditional 𝑅𝐿 distribution. Recent papers 
(e.g., Saleh et al. (2015)) have pointed out the practitioner-to-practitioner variability (not 
explicitly considered by previous research works). Indeed, given the fact that the 
practitioner just has a single Phase I reference sample (m subgroups of size n) for 
estimating the 𝐼𝐶 process parameters, the use of the conditional 𝑅𝐿 distribution 
(conditioned on the Phase I standard deviation estimator) is more proper and more 
meaningful. Previous papers (e.g., Epprecht et al. (2015), Faraz et al. (2015), Goedhart et 
al. (2017)) have considered the distribution of the conditional in-control 𝐴𝑅𝐿 (𝐶𝐼𝐶𝐴𝑅𝐿). 
Since the conditional 𝑅𝐿 follows a geometric distribution, which is generally right-
skewed, the study of the complete distribution and quantiles of the 𝑅𝐿, as its median or 
some of its extreme quantiles, should be recommended to the practitioner and can be 
preferred to the traditional 𝐴𝑅𝐿, not just in analyzing the chart performance, but also in 
chart design. This study was addressed by several authors, including Khoo (2004), 
Radson and Boyd (2005), Lee and Khoo (2006), Chakraborti (2007), Khoo et al. (2011) 
and Teoh et al. (2014, 2016), among others. Nevertheless, these works consider the 
unconditional 𝑅𝐿 distribution, i.e., when the quantiles of the 𝑅𝐿 distribution are not 

 𝜀 = 20% 
 𝑝  

  0.05 0.10  
𝑛 

2  2591 (2594) 1584 (1586)  
3  1868 (1871) 1141 (1143)  
4  1568 (1570) 957 (958)  
5  1397 (1399) 853 (854)  
6  1285 (1287) 784 (785)  
7  1204 (1206) 734 (735)  
8  1143 (1144) 697 (698)  
9  1094 (1096) 667 (668)  
10  1055 (1056) 643 (644)  
15  930 (932) 567 (567)  
20  862 (863) 525 (526)  
25  818 (819) 498 (499)  
30  786 (787)  479 (479)  
35  763 (764) 464 (465)  
40  744 (745) 453 (453)  
45  728 (729) 443 (444)  
50  716 (717) 435 (436)  
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random variables (constant values). Thus, we consider here the conditional 𝑀𝑅𝐿. We 
argue that it can be preferred to the traditional 𝐴𝑅𝐿 (or, in this case, the 𝐶𝐼𝐶𝐴𝑅𝐿), when 
analyzing the effect of parameter estimation on the chart performance. To the best of our 
knowledge, there is no study in the literature, focusing on the quantiles of the conditional 
in-control 𝑅𝐿 (𝐶𝐼𝐶𝑅𝐿𝑞) of the 𝑆2 and 𝑆 control charts. Note that such quantiles, in the 
typical case of estimated parameters, are random variables. Here, the pmf and cdf of the 
𝐶𝐼𝐶𝑅𝐿𝑞 are obtained analytically. The results show that the variability (spread) of the 
proposed 𝐶𝐼𝐶𝑀𝑅𝐿 is smaller than the variability of the 𝐶𝐼𝐶𝐴𝑅𝐿.  
 
Since these conditional performance measures (𝐶𝐼𝐶𝑀𝑅𝐿 and 𝐶𝐼𝐶𝐴𝑅𝐿) are random 
variables, we think that, in control chart performance analysis, it is useful to assess the 
probability of a guaranteed minimum value of each one of these measures. This minimum 
limit of each measure is a specified percentage ((1 − 𝜀)100%) of its nominal value. 
Then, given specified values of 𝑛 and 𝛼, and for a same value of 𝜀, the 𝐶𝐼𝐶𝑀𝑅𝐿 requires 
similar values of 𝑚 for guaranteeing a minimum limit with a specified high probability 
(1 − 𝑝) to the 𝐶𝐼𝐶𝐴𝑅𝐿 require to guarantee their minimum limit with the same 
probability. Finally, it is clear that these required numbers of 𝑚 obtained in our results 
are impractically large. For this reason, a follow-up of this work will focus on the use of 
an adjusted control limit, given realistic and practical values of 𝑚 and 𝑛, for guaranteeing 
a specified minimum value of 𝐶𝐼𝐶𝑀𝑅𝐿 with a specified high probability. In this way, we 
advocate the use of the 𝐶𝐼𝐶𝑀𝑅𝐿 as a performance measure of 𝑆2 charts, and we also 
propose a future work using them as a criterion in chart design. 
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