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Abstract 
In human movement biomechanics, healthy and injured populations are often differentiated 
based on discrete measures, such as peak knee flexion angles. Discrete measures do not 
capture the changing dynamics that can characterize altered joint motion in injured 
populations. To capture these changing dynamics, spectral analyses will be employed. The 
results of these analyses will be used to develop a regression model to classify individuals 
into healthy and injured populations. 
 
This study will use fast Fourier transform and control theory techniques to obtain 
frequency, phase, and stability metrics to characterize the gait in healthy individuals and 
individuals who have undergone an anterior cruciate ligament (ACL) reconstruction. Then, 
linear discriminant analysis will be used to reveal the critical variables that best classify 
the healthy and injured populations. It will also yield a model that describes the relationship 
between these variables that are very important to identifying individuals with adverse gait 
biomechanics. This analysis will allow us to potentially predict individuals with future risk 
of injury and to design more targeted ACL prevention and rehabilitation programs. 
 
Key Words: Time series, Spectral Analysis, Regression, Linear Discriminant Analysis, 
Anterior Cruciate Ligament Reconstruction 
 
 

1. Introduction 

Anterior Cruciate Ligament (ACL) sprain or tear is encountered by one in 3,000 individuals 
annually (Boden et al. 2000). Despite advancements in research and ACL injury prevention 
programs, ACL injury rates have continued to rise (Donnelly et al. 2012). ACL injury 
results in loss of dynamic knee stability which is vital for movements like running and 
single-leg jump landing (Arden et al. 2014). Many studies have been conducted to 
understand the causes of ACL injury.  In their research, Morgan et al. (2014) revealed how 
elevated gastrocnemius forces compensate for decreased hamstring forces during the 
weight-acceptance phase of single-leg jump landing and highlighted the implications for 
anterior cruciate ligament injury risk. Most dynamic knee stability data recorded on 
individuals during running and jump landing studies are in a time series (i.e., a sequence 
of data points, typically consisting of successive measurements made over a time interval. 
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However, quite often discrete measures are used to evaluate this data.  Additional 
information, not unveiled in the time domain, could possibly provide valuable insight into 
alterations in knee gait patterns in post-ACL reconstructed (ACLR) individuals. De 
Fontenay et al. (2014) and Gao et al. (2010) have assessed dynamic gait stability via 
methods such as Lyapunov exponents. Also, Morgan et al. (2016) used the Nyquist and 
Bode stability criteria to assess changes in dynamic knee stability in healthy and anterior 
cruciate ligament reconstructed individuals during walking.  

This work proposes the use of fast Fourier Transform (FFT) frequency-based techniques 
to capture and quantify changing knee dynamics using amplitude, frequency, and phase 
metrics. Past research has demonstrated that frequency domain information can be 
clinically relevant when analyzing gait patterns (e.g., Osgood, 2007; Shabani et al., 2015; 
Almekinders et al., 1995). Both Giakas et al. (1997) and Stergiou et al. (2002) successfully 
used frequency domain analyses to differentiate between healthy controls and individuals 
with scoliosis and elderly individuals, respectively, when the time domain variables failed 
to do so. This study uses FFT to compare differences in knee gait patterns between healthy 
and post-ACL reconstructed individuals.  Unlike past studies that focused on the frequency 
component of FFT alone, this study focuses on the amplitude and phase metrics as well. 
Hence, multiple techniques will be used to evaluate dynamic knee stability from sagittal 
knee kinematics in individuals during running.  We hypothesize that by using these 
techniques it will be possible to differentiate between stable and unstable knee 
biomechanics and the amplitude, frequency, and phase components will be employed to 
detect changes in gait patterns for the healthy individuals and post-ACL individuals. Linear 
discriminant analysis (LDA) will be employed to identify the key gait features that are 
associated with gait biomechanics and contribute to separating the healthy and injured 
groups.  The results will be utilized to develop rule(s) to classify healthy and post-ACL 
reconstructed individuals into groups using the key gait features identified.  

 
 

2. Methods 
 

 
2.1 Human Subject Study Population 
The were 32 participants in the study. Sixteen subjects (height 1.7±𝟎.1 m; mass 66.7±13.5 
kg; age 20.88±3.9 years) were healthy and sixteen injured subjects (height 1.7±𝟎.1 m; 
mass 68.83±10.5 kg; age 19.4±𝟓. 𝟏 years) had experienced an ACL injury and surgery 
had been performed on the injured limb. All the participants were between the ages of 16 
and 40 years old. The individuals were cleared by their physician to participate and they 
each provided written informed consent as required by the institutional review board. All 
subjects wore the same type of running sneaker. 

Three population groups – CTLR, ACLI and ACLNI – were defined for this study. Based 
on the findings from prior research, after surgery for an ACL injury on either limb, the risk 
for injury (especially an ACL injury) increases. The CTLR group included the sixteen 
healthy control subjects with no ACL injury. For this group, sagittal knee joint signal time 
domain data measurements were captured on the right limb only. For the ACLR subjects, 
sixteen sagittal knee joint signal data measurements were captured on the injured limb 
(ACLI group) and sixteen measurements were captured on the non-injured (ACLNI 
group) limb. 
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2.2 Study Design and Measurement Protocol 
Each participant ran at a self-selected speed (control 2.7 ±0.4  𝑚/𝑠;  𝐴𝐶𝐿𝑅 2.7 ±
0.3 𝑚/𝑠).  Fifty-six reflective markers were placed on each subject using an established 
design protocol. Sagittal plane knee joint kinematics time domain data were extracted from 
the processed marker data and converted to a frequency domain representation using FFT. 
The FFT converts a discrete time domain signal into the frequency domain by representing 
the signal as a series of sinusoids. Converting the signal from the time to frequency domain 
does not alter the signal in any way but rather highlights certain characteristics; such as, 
the amplitude, frequency and phase of the signal that were not as apparent and easy to 
measure in the time domain. Figure 1 provides a plot of sagittal knee flexion (deg) 
measurements in the time domain and its related frequency domain data for a subject in the 
control group and the ACL reconstructed group. It is interesting to note the differences in 
the general patterns of the plots of the time domain and frequency domain measurements.  
Power and phase spectrums were generated for each signal using a custom MATLAB code.  
The power spectrum revealed that most of the signal energy was contained in the two 
dominant sinusoids. Dominant means the sinusoids with the largest amplitude were 
selected out.  Differences in amplitude, frequency and phase represent kinematics 
deviations in gait biomechanics between healthy and ACLR individuals.  
 

 

Figure 1: Plot of the time domain and frequency domain sagittal knee flexion 
measurements for subjects in the CTLR control group and the ACLI reconstructed group 

Thus, the amplitude, frequency, and phase components of the ACLR and control limbs 
were chosen for this investigation. The amplitude computed from the FFT represents the 
magnitude of the oscillations of the knee flexion signal (Robertson et al. 2014). The FFT 
frequency describes how fast the signal oscillates, which in our study, reveals how fast the 
knee is oscillating during the gait cycle. The phase component of the FFT depicts when a 
time shift or a delay in the signal occurs, which illustrates when a time shift in gait events 
happens; for example, when a shift in peak knee flexion occurs.  

Fifteen FFT or spectral measurements were captured on each member of the study groups. 
The measurements recorded were the frequency, phase, and amplitude measurements for 
the first five FFT signals. The candidate study measurements variables obtained are listed 
below in Table 1. 
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• 1st Frequency (Hz),  1st Phase (Deg), and  1st Amplitude (𝐷𝑒𝑔2

𝐻𝑧
) 

• 2nd Frequency (Hz),  2nd Phase (Deg), and  2nd Amplitude (𝐷𝑒𝑔2

𝐻𝑧
) 

• 3rd Frequency (Hz),  3rd Phase (Deg), and  3rd Amplitude (𝐷𝑒𝑔2

𝐻𝑧
)  

• 4th Frequency (Hz),  4th Phase (Deg), and  4th Amplitude(
𝐷𝑒𝑔2

𝐻𝑧
)  

• 4th Frequency (Hz),  5th Phase (Deg), and  5th Amplitude (𝐷𝑒𝑔2

𝐻𝑧
) 

 
 
The 1st Frequency and 1st Phase predictor variables were not used in the analyses because 
the variable values were the same constant value for each of the subjects in the three 
groups. Hence, only thirteen candidate predictor variables were used. 
 

3. Linear Discriminant Analysis 
 
3.1 Overview 
Given that multiple measurements were obtained on each subject in the study, discriminant 
analysis, a multivariate analysis technique, was employed in this research exploration. 
Discriminant function analysis is a statistical method used to predict a categorical 
dependent variable or grouping variable using one or more continuous or categorical 
independent or predictor variables. The method is useful in determining whether a set of 
variables is effective in predicting category or group membership. Discriminant analysis is 
used in statistics, pattern recognition, supervised learning or supervised classification to 
find a linear combination of features that characterizes or separates two or more classes of 
objects or events. It is a classification technique, where two or more groups or clusters or 
populations are known a priori and one or more new observations are classified into one 
of the known populations based on the measured characteristics. The goal is to find a 
classification rule(s) that minimizes the total error of classification, i.e. makes the 
proportion of subjects misclassified as small as possible. The resulting combination may 
be used as a linear classifier, or, quite often for dimensionality reduction before later 
classification. If the groups are linearly separable, then the groups can be separated by a 
linear combination of features that describe the objects. If only two features are used, the 
separators between the object groups will become lines.  If there are three features, the 
separator is a plane and if the number of features (i.e., independent variables) is more than 
3, the separators become a hyper-plane. 
 
With linear discriminant analysis, all groups are assumed to have the same covariance 
matrix. Hence, the assumption is the variance-covariance matrices are homogeneous for 
the g groups, i.e.,  

∑ =
1

∑ = ⋯ = ∑ =
𝑔2

∑  

In this case the variance-covariance matrix does not depend on the population from which 
the data are obtained.  A quadratic discriminant analysis is used for heterogeneous 
variance-covariance matrices, i.e.,  

∑ ≠
𝑖

∑   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ≠ 𝑗
𝑗

 

Table 1: Candidate FFT Predictor Variables for the Linear Discriminant 
Analysis Model  
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This allows the variance-covariance matrices to depend on which population we are 
considering. The analysis is quite sensitive to outliers and the size of the smallest group 
must be larger than the number of predictor variables. The assumptions of discriminant 
analysis are 

 Multivariate normality: Independent variables are normal for each level of the 
grouping variable. 

 Homogeneity of variance/covariance (homoscedasticity): Variances among group 
variables are the same across levels of predictors. Equality of the variance-
covariance matrices for the groups can be tested using Bartlett’s test. Linear 
discriminant analysis may be used when the covariances are equal, and quadratic 
discriminant analysis may be used when covariances are not equal. 

 Multicollinearity: Predictive power can decrease with an increased correlation 
between predictor variables. 

 Independence: Participants are assumed to be randomly sampled, and a 
participant’s score on one variable is assumed to be independent of scores on that 
variable for all other participants. 

It has been suggested that discriminant analysis is relatively robust to slight violations of 
these assumptions, and it has also been shown that discriminant analysis may still be 
reliable when using dichotomous variables. 

3.2 Discriminant Analysis Procedure 
A key statistical assumption for linear discriminant analysis is that the predictor variables 
are normally distributed (i.e., each variable is shaped like a bell curve when plotted) and 
that each attribute has the same variance (i.e., the values of each variable vary around the 
mean by the same amount on average). LDA makes predictions by estimating the 
probability that a new set of inputs belongs to each class or group. The class that gets the 
highest probability is the output class and a prediction is made. 

An exploratory data analysis was conducted to validate the assumptions that the predictor 
variables exhibit a Gaussian distribution. Figure 2 provides univariate histogram plots of 
the 1st amplitude, 2nd amplitude, 3rd amplitude, 4th amplitude, and 5th amplitude variables 
for each of the three groups.  Figure 3 provides univariate histogram plots of the 2nd 
frequency, 3rd frequency, 4th frequency, and 5th frequency variables for each of the three 
groups. Figure 4 provides univariate histogram plots of the 2nd phase, 3rd phase, 4th phase, 
and 5th phase variables for each of the three groups. Histograms are not provided for the 1st 
Frequency and 1st Phase data since all the data values were the same for each of these 
variables for all groups. The variables appear to have a Gaussian distribution with 
comparable variances.  
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Figure 2: Histogram plots of the Amplitude Data for each of the three populations – 
ACLI, ACLNI and CTLR.  

 

 

 

Figure 3: Histogram plots of the Frequency Data for each of the three populations – 
ACLI, ACLNI and CTLR.  
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Figure 4: Histogram plots of the Phase Data for each of the three populations – ACLI, 
ACLNI and CTLR.  

 
Since there were 13 candidate predictor variables, LDA investigations were conducted 
using all 13 of the predictor variables as well as selected subsets of the variables.  The 
results of the investigations with the most promising findings will be presented in this 
paper. Bartlett’s test was used to test the null hypothesis that the variance-covariance 
matrices for the predictor variables used in the model are homogeneous for the three 
population groups. If the null hypothesis is rejected, a quadratic discriminant analysis will 
be fit to the data rather than a linear one. The plots and the LDA analysis were performed 
in Minitab 18.  

The description of the analysis method and procedures used in the Minitab 18 analyses are 
provided below.  In linear discriminant analysis, an observation x is classified into a group 
if the squared distance, also called the Mahalanobis distance,  

    
 
of the observation x to the group t center or mean is the minimum.  The generalized squared 
distance from x to group t for the linear discriminant function is given as  
 

 
 
In addition, there is a unique squared distance formula for each group and that is called the 
linear discriminant function for the group t. This function corresponds to the regression 
coefficients in multiple regression and is given by  
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where 

x column vector of length p containing the values of the predictors for this 
observation (this column vector is stored as one row) 

p number of predictors 

n total number of observations 

t group subscript 

nt number of observations in group t 

qt the prior probability of group t, which equals nt/n 

Sp pooled covariance matrix for linear discriminant analysis 

Si covariance matrix of group i for quadratic discriminant analysis 

mt column vector of length p containing the means of the predictors calculated from 
the data in group t 

St covariance matrix of group t 
 

For any given observation x, the group with the smallest squared distance has the largest 
linear discriminant function and the observation is then classified into this group. In some 
cases, subjects from different groups are encountered according to different probabilities.  
With the assumption that the data have a normal distribution, the linear discriminant 
function is increased by ln (𝑝𝑖) where 𝑝𝑖  is the prior probability of group i.  Since the 
groups were of the same size (i.e., 𝑛𝑖 = 16, 𝑖 = 1, 2, 𝑎𝑛𝑑 3 𝑎𝑛𝑑 𝑛 = 48),  then 𝑝𝑖 =
 𝑛𝑖 𝑛⁄ = 1/3  and  
 

ln(𝑝𝑖) is the natural log of the prior probability for group 𝑖 
 
In comparing the performance of the proposed models, it will be important to assess how 
well the LDA model has performed in predicting the group for each observation.  Thus, we 
will evaluate the proportion of observations correctly placed into their true group using the 
model. Quite often the percent of misclassified observations is optimistic because the data 
being classified are the same data used to build the classification function or model.  The 
cross-validation technique works by omitting each observation one at a time, recalculating 
the classification function using the remaining data, and then classifying the omitted 
observations. This technique is used to compensate for a possible overly optimistic error 
rate or percent of misclassified observations.  The cross-validation rates for each model 
will also be presented. We will also compare the distance values of the variables for the 
three groups and the magnitude of the regression coefficients for the variables in the LDA 
model. 
 
 

4. Results 
Our goal was to identify the best LDA model with the most parsimonious number of 
predictor variables. The first LDA analysis was conducted using all thirteen of the 
candidate predictor variables described above. Although linear discriminant analyses were 
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conducted using other subsets of the thirteen variables, Table 2 only provides the results 
for a selected subset of the analyses performed.   
 
 
   
Table 2: Summary of the Proportion of Correct Classifications – Overall and by Group 
– Without and With Cross-Validation for each Linear Discriminant Model  
 
 

Predictor 
Variables 

Used 
in 

LDA 
 

 
 

Proportion of 
Correctly 
Classified 

For all 
groups 

Without 
Cross-

validation 
 

(with Cross-
validation) 

 
 

Proportion of 
ACLI 

Correctly 
Classified 

Without Cross-
validation 

 
 

(with Cross-
validation) 

 
 

Proportion of 
ACLNI 

Correctly 
Classified 
Without 
Cross-

validation 
 

(with Cross-
validation) 

 
 

Proportion of 
CTLR 

Correctly 
Classified 

Without Cross-
validation 

 
 

(with Cross-
validation) 

 
All 

Thirteen   
Variables 

0.854 
(0.646) 

0.938 
(0.563) 

0.813 
(0.688) 

0.813 
(0.688) 

 
2nd 

Frequency 
3rd 

Frequency 
4th 

Amplitude 
5th 

Amplitude 

 
 

0.708 
(0.604) 

 
 

 
 

0.938 
(0.813) 

 
 

0.750 
(0.688) 

 

 
 

0.438 
(0.313) 

 
2nd 

Frequency 
3rd 

Frequency 
3rd 

Phase 
 

 
 

0.688 
(0.604) 

 
 

0.875 
(0.750) 

 
 

0.750 
(0.750) 

 
 

0.438 
(0.313) 

2nd 
Frequency 

3rd 
Frequency 

 
0.625 

(0.625) 

 
0.750 

(0.750) 

 
0.750 

(0.750) 

 
0.375 

(0.375) 
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Note, when all thirteen variables were used in the LDA, 85.4% of all the observations were 
correctly placed, 93.8% of the observations in ACLI group were correctly placed, 81.3% 
of the observations in the ACLNI group were correctly placed, and 81.3% of the 
observations in the CTLR group were correctly placed.  Thus, classifying observations into 
the ACLNI and CTLR groups has the most challenges when using all thirteen variables. 
However, when cross-validation was used, 64.6% of all the observations were correctly 
placed, 56.3% of the observations in ACLI group were correctly placed, 68.8% of the 
observations in the ACLNI group were correctly placed, and 68.8% of the observations in 
the CTLR group were correctly placed.  Again, classifying observations into the ACLNI 
and CTLR groups has the most challenges when using all thirteen variables. This challenge 
was also noted when using the other LDA models. It is particularly interesting to see that 
the CTLR group has the lowest proportion of correct classifications.  The most notable 
findings were the large difference in the proportion of correctly classified observations in 
each group using cross-validation when all thirteen variables were in the model.  This 
supported the need to explore other possible subsets of the thirteen variables to be used for 
the LDA. The additional models that yielded the best results are listed in Table 2 and 
discussed further below.  
 
For LDA it is also important to identify those variables that contribute most to the 
classification of observations into each group and review the squared distance from one 
group center (mean) to another group center (mean). It is important to compare the 
distances to see how different the groups are. Table 3 provides information on the 
differences between the squared distance for two groups and the variables that contributed 
the most for each LDA model. For example, when all thirteen of the variables are used in 
the LDA model, Table 3 highlights that the greatest distance is between the ACLI and 
CTLR groups (7.903). The difference between the ACLNI and CTLR groups is 7.350, and 
the smallest difference (5.469) is between the groups ACLI and ACLNI. This is not 
surprising given that the ACLI and CTLR populations should demonstrate vastly different 
gait patterns and the patterns for the ACLI and ACLNI groups should not differ as 
drastically. In reviewing the results in Table 3 for the LDA model with all thirteen 
variables, the ACLI group has the largest linear discriminant function for 2nd Amplitude, 
3rd Frequency, 3rd Phase, 4th Amplitude, 5th Amplitude, 5th Frequency, and 5th Phase, which 
indicates that these variables for the ACLI group contribute more than those of the ACLNI 
group or CTLR group to the classification of group membership. Also, group ACLNI has 
the largest linear discriminant function for 1st Amplitude, 2nd Frequency, 4th Frequency, 
and 4th Phase which indicates that these variables for the ACLNI group contribute more 
than those of the ACLI group or CTLR group to the classification of group membership. 
The CTLR group has the largest linear discriminant function for 2nd Phase and 3rd 
Amplitude which indicates that these variables for the CTLR group contribute more than 
those of the ACLI group or ACLNI group to the classification of group membership.  
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Table 3: Summary of the Difference for the Squared Distance between the 
Groups and the Variables that Contributed Most to the Classification of Group 
Membership   

Predictor 
Variables 

Used 
in 

LDA 

Difference 
For the 

Squared Distance Between 
Groups 

 

Variable(s) that 
Contributed Most 

To Classification of  
Group Membership 

 
All 

Thirteen   
Variables 

 
ACLI and ACLNI 

(5.469) 
 

ACLI and CTLR 
(7.903) 

 
ACLNI and CTLR 

(7.350) 
 

 
ACLI to 

2nd Amplitude 
3rd Frequency 

3rd Phase 
4th Amplitude 
5th Amplitude 
5th Frequency 

5th Phase 
 

ACLNI to 
1st Amplitude 
2nd Frequency 
4th Frequency 

4th Phase 
 

CTLR to  
2nd Phase 

3rd Amplitude 
 

2nd Frequency 
3rd Frequency 

4th 
Amplitude 

5th 
Amplitude 

 

 
ACLI and ACLNI 

(3.176) 
 

ACLI and CTLR 
(1.926) 

 
ACLNI and CTLR 

(2.977) 

 
ACLNI to 2nd Frequency 
ACLI to 3rd Frequency 
ACLI to 4th Amplitude 
ACLI to 5th Amplitude 

 

 
2nd Frequency 
3rd Frequency 

3rd   Phase 
 

 
ACLI and ACLNI 

(2.966) 
 

ACLI and CTLR 
(1.125) 

 
ACLNI and CTLR 

(2.710) 

 
ACLNI to 2nd Frequency 
ACLI to 3rd Frequency 

CTL to 3rd Phase 

 
2nd Frequency 
3rd Frequency 

 
ACLI and ACLNI 

(2.934) 
 

ACLI and CTLR 
(1.132) 

 
ACLNI and CTLR 

(2.475) 

 
ACLNI to 2nd Frequency 
ACLI to 3rd Frequency 
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For the other LDA models in the table, the largest two coefficient values in the model are 
for the 2nd Frequency and 3rd Frequency variables.  In most instances, the magnitude of the 
two coefficient values are about the same.  The 2nd Frequency variable contributed most 
for the ACLNI group and the 3rd Frequency variable is identified as the variable that 
contributed the most for the ACLI variable for all the models listed in Table 3. 
 
The remainder of the discussion will focus primarily on the model with only the 2nd 
Frequency and 3rd Frequency variables since the proportion of correct classifications for 
all groups, the ACLI group, the ACLNI group, and the CTLR group with and Without 
Cross-validation are the same.  Given that the 2nd Frequency and 3rd Frequency variables 
appeared to follow a normal distribution, Bartlett’s test was used to determine if the 
variance-covariance matrices are homogeneous for the three populations involved. No 
significant difference between the variance-covariance matrices for the three populations 
was found (Bartlett’s test statistic L' = 2.38 d.f. = 6; p = 0.881). Thus, linear discriminant 
analysis was appropriate for the data. 
 
 

5. Discussion and Conclusions 
This research was conducted to demonstrate the use of fast Fourier transform and control 
theory techniques to obtain frequency, phase, and stability metrics to characterize the gait 
in healthy individuals and individuals who have undergone an anterior cruciate ligament 
(ACL) reconstruction. In addition, the goal was to assess the use of linear discriminant 
analysis to identify the critical variables that best classify the healthy and injured 
populations and develop a model that describes the relationship between these variables 
that are very critical to identifying individuals with adverse gait biomechanics. Using 
control theory and FFT techniques, we could identify, quantify, and stratify gait factors 
that delineate the three groups of subjects in the study.  It does indeed appear that the 
thirteen candidate FFT predictor variables did perform well in capturing important 
performance metrics for classifying the three study population groups.   
 
It is particularly interesting to see that the CTLR group has the lowest proportion of correct 
classifications. It will be important to follow these subjects who are currently in the CTLR 
group and assumed to be “healthy” to see if our model has identified subjects who will 
potentially encounter a gait problem.  We are interested in predicting future gait problems 
and this model may helpful in doing this. 
 
The most notable findings were the large difference in the proportion of correctly classified 
observations in each group without and with cross-validation using all thirteen of the FFT 
variables.  This supported the need to explore other possible subsets of the thirteen 
variables to be used for the LDA to see if this large difference would disappear with other 
subsets of the variables. Although this large difference did not reveal itself when the LDA 
model with only the 2nd Frequency and 3rd Frequency variables was used, the proportion of 
correctly classified subjects was low. 
 
It was remarkable how the 2nd Frequency variable contributed most for the ACLNI group 
and the 3rd Frequency variable was identified as the variable that contributed the most for 
the ACLI variable for all the models listed in Table 3.  In summary, linear discriminant 
analysis performed well to identify a classification model using FFT data.  Also, the LDA 
model results are consistent with the findings obtained using the nominal logistic 
regression model in another study. Both statistical techniques selected the 2nd and 3rd 
Frequency metrics as key variables that contribute to group separation. The results of the 
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research will allow us to potentially predict individuals with future injury risk and design 
more targeted ACL prevention and rehabilitation programs. Future work will involve 
conducting more studies and collecting data to validate and build on the LDA classification 
model results. 
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