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Abstract
Finitely-valued stationary time series are described by the collection of the conditional probabilities
of the possible values given the infinite pasts. The concept of context is extended to be an arbitrary
part – not necessarily a continuous ending – of the past that determines the transition probability.
The context set model of the time series consists of the collection of all contexts and the correspond-
ing transition probabilities. The likelihood is estimated from a sample using a double mixture over
the possible models and their parameters. An optimality of the estimator is proved and an algorithm
is shown to calculate the estimator in reasonable time despite the very large number of possible
models.

Key Words: context set; context tree; Markov chain; time series; statistical estimation; double
mixture

1. Source Coding

The problem of lossless source coding in information theory can be formulated in statistical
terms. An information source emitting symbols from a finite alphabet is equivalent to a time
seriesX1, X2, . . . taking values from a finite setA. Then a message, a length-n sequence of
emitted symbols, is equivalent to a statistical sample x1, . . . , xn = xn1 . Codes assign binary
strings to messages. The length of the binary string is the code length. If the distribution
Q of the source is known, there are methods to construct codes approaching the ideal code
length − logQ(xn1 ). If the distribution of the source is not known, it is estimated from
the message so that the obtained coding distribution PC can be used to construct codes
approaching the code length − logPC(xn1 ). This estimation problem is equivalent to the
statistical estimation of the likelihood Q(xn1 ) by a distribution PC(xn1 ) from the sample
xn1 . The (parameter) redundancy is the difference − logPC(xn1 ) + logQ(xn1 ), which is
equivalent to a log-loss function.

For example, for i.i.d. processes the likelihood is Q(xn1 ) =
∏
a∈AQ(a)Nn(a), where

Nn(a) is the number of occurrences of a ∈ A in xn1 . The maximum likelihood estimate of
Q(a) is Nn(a)/n, but the maximum likelihood

ML(xn1 ) =
∏
a∈A

(
Nn(a)

n

)Nn(a)

is not a possible coding distribution PC(xn1 ), because
∑

xn1
ML(xn1 ) is not necessarily 1.

Instead, the normalized maximum likelihood

NML(xn1 ) =
ML(xn1 )∑
xn1

ML(xn1 )

is used, that can be shown to minimize the worst-case redundancy. The normalized maxi-
mum likelihood is not sequentially computable as the sample size n increases. The Krichevsky-
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Trofimov distribution

KT(xn1 ) =

∏
a:Nn(a)≥1

(
Nn(a)− 1

2

) (
Nn(a)− 3

2

)
· · · 1

2(
n− 1 + |A|

2

)(
n− 2 + |A|

2

)
· · · |A|2

sums up to 1 over xn1 and has a nearly minimal redundancy, but it is also sequentially
computable as

KT(xn+1
1 ) =

Nn(xn+1) + 1
2

n+ |A|
2

KT(xn1 ).

This paper considers the above source coding problem for processes with memory.

2. Context Set Model

A stationary ergodic source over a finite alphabet A has finite memory if the conditional
probability of the next symbol xi given the infinite past . . . xi−2xi−1 depends only on
a finite number k of preceding symbols xi−k . . . xi−1. Then the process is said to be a
Markov source of order k. The Krichevsky-Trofimov (KT) distribution [4] tailored to these
processes can be used in arithmetic coding procedures [6]. The coding redundancy, the
cost of using arithmetic coding, is negligible to the parameter redundancy, the cost of not
knowing the actual distribution. Thus, the KT distribution for messages xn1 ∈ An provides
a universal code for Markov sources of order k as its worst case maximum redundancy is
1
2(|A| − 1)|A|k log n+O(1), which is the smallest possible, up to an additive constant [2].

The tree source [12, 13] allows the number k of the relevant preceding symbols to vary
with the past . . . xi−2xi−1. The strings of these relevant suffixes s = s−l(s) . . . s−1 of
the past are called contexts [5] and their lengths l(s) may be substantially shorter than the
Markov order. The set of all contexts for a source can be represented by a tree graph, and is
called context tree. The KT distribution tailored to a context tree S improves [2] the worst
case maximum redundancy to 1

2(|A| − 1)|S| log n + O(1) for the processes with context
tree S as the number of contexts |S| may be smaller than |A|k.

Given universal codes for countable number of models, weighting these coding distri-
butions is known to provide a twice-universal code [8] over all models. If only the maxi-
mum memory length k of the source is known but its context tree is not, then calculating a
mixture of the coding distributions over all possible context trees in a direct way would be
infeasible because of the large number of possible context trees. The Context Tree Weight-
ing (CTW) method [15] finds the mixture distribution in an efficient way and provides a
code with the worst case maximum redundancy upper bounded by Γk(S)+|S|γ (n/|S|)+2
for all tree sources with context lengths at most k, in case |A| = 2. Here, γ(z) = 1

2 log z+1
if z ≥ 1 and γ(z) = z if z < 1, and Γk(S) = |S|−1 + |{internal nodes of S}|. The model
redundancy Γk(S), the cost of not knowing the actual context tree S, is negligible to the
parameter redundancy.

If the maximum memory length k of the source is not known, an extension of the CTW
method is available for binary sources [14]. The extended method also allows the source to
have infinite memory. The symbols whose context is not available in the message remain
uncoded, that introduces a starting redundancy ∆S(xn1 ). The method provides a code with
the worst case maximum redundancy upper bounded by

2|S| − 1 + |S|γ
(
n−∆S(xn1 )

|S|

)
+ ∆S(xn1 ) + 2

for all tree sources.

3247



The context tree model is a parsimonious parametrization of the Markov model as
it merges a set of k-length pasts S(s−k′ , . . . , s−1) = {s−k, . . . , s−1 : si ∈ A,−k ≤
i ≤ −k′ − 1}, k′ ≤ k, together to their common suffix s′ = s−k′ , . . . , s−1 if Q(a|s),
s ∈ S(s−k′ , . . . , s−1), are equal for all a ∈ A, where Q denotes the transition probability.
More efficient parametrization than the tree source can be achieved [12] by merging arbi-
trary pasts if they share the same transition distribution. Universal codes can be obtained
efficiently by weighting the KT coding distribution over all models in this model class [16],
called Class I. The parameter redundancy for these models may be much less than for the
context tree models, but the model redundancy, the cost of not knowing the model, and the
computational complexity are much larger because of the large number of possible models.
To find a better trade-off, Class II models only allow successive splittings of the lexico-
graphically ordered k-length pasts [16]. Furthermore, Class III models allow sequential
merging of pasts that differ only in the value si of the arbitrary coordinate 1 ≤ i ≤ k [16].

The extended context tree model [9] adds a “don’t care” symbol to A. A don’t care
symbol in the i’th coordinate of a k-length context s represents thatQ(a|s) does not depend
on the value si. Dropping the don’t care symbols from the end of the k-length contexts [10]
makes the model equivalent to the context tree model with extending the alphabet by the
don’t care symbol and allows the application of the CTW method.

In this paper, we consider a new model that allows to conditionally drop j + r con-
secutive coordinates of the k-length strings if the proceeding symbol is not in T , for some
∅ ⊂ T ⊂ A, when the transition probability does not actually depend on the values of these
coordinates. That is, it allows to merge a set of k-length pasts S(s−k, . . . , s−m−j−r−1,
s−m, . . . , s−1) = {s−k, . . . , s−1 : si ∈ A,−m− j − r ≤ i ≤ −m− 1} together for each
s−m−j−r−1 6∈ T and all possible s−k, . . . , s−m−j−r−2 ifQ(a|s), s ∈ S(s−k, . . . , s−m−j−r−1,
s−m, . . . , s−1), are equal for each a ∈ A, s−m−j−r−1 6∈ T and s−k, . . . , s−m−j−r−2. For
the proceeding symbols in T , only the j consecutive coordinates of the k-length strings are
dropped. That is, it merges the set of k-length pasts S(s−k, . . . , s−m−j−1, s−m, . . . , s−1) =
{s−k, . . . , s−1 : si ∈ A,−m− j ≤ i ≤ −m− 1} together for each s−m−j−1 ∈ T and all
possible s−k, . . . , s−m−j−2 if Q(a|s), s ∈ S(s−k, . . . , s−m−j−1, s−m, . . . , s−1), are equal
for each a ∈ A, s−m−j−1 6∈ T and s−k, . . . , s−m−j−2. This merging may be applied suc-
cessively, even to the sets {s−k, . . . , s−m−j−r−2 : sj ∈ A,−k ≤ i ≤ −m− j−r−2} and
{s−m, . . . , s−1 : si ∈ A,−m ≤ i ≤ −1}. The above model can describe processes whose
transition distribution is determined if a certain symbol appears in a certain position of the
past, and then it does not depend on the symbols between that position and the present.
Some of the subsequent results were also presented at the IEEE International Symposium
on Information Theory in 2016. Such models are natural in some disciplines, for example,
in bioinformatics [7, 1].

Since arbitrary coordinates of the strings of the past symbols may be dropped, these
relevant parts of the pasts are not necessarily consecutive sequences of symbols. Such
broken strings are called stringoids. The collection of these stringoid contexts are called
context set.

In case r = 0, the above procedure drops j consecutive coordinates unconditionally on
the value s−m−j−1. Models with arbitrary subsets T of A are considered, except T = ∅
and T = A because these lead to the case r = 0. Dropping the coordinates from −k to
−k′ − 1 recovers context trees. Dropping coordinates not necessarily from the ending of
the k-length pasts is covered by the extended context tree model.

Example 1. Let A = {0, 1} and the process be a Markov source of order 4. The set of 4-
length pasts is C0 = {0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110, 0001, 1001, 0101,
1101, 0011, 1011, 0111, 1111}. Suppose that the transition probabilities are equal over
each of the subsets {0000, 0100}, {1000, 1100}, {0001, 1001, , 0101, 1101}, {0010, 1010,
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0011, 1011}, and {0110, 1110, 0111, 1111}. The context tree model merges {0010, 1010}
to 010, {0110, 1110} to 110, {0001, 1001, , 0101, 1101} to 01, {0011, 1011} to 011, and
{0111, 1111} to 111. Thus, the context tree consists of the 9 contexts C(1)

0 = {0000, 1000,
0100, 1100, 010, 110, 01, 011, 111}, see Fig. 1.

qq q qqqqq q q q q q q qq q q q q q q q q q q q q q q q

∅
0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 10 10 10 10 10 10 10 1

0000,1000 0110,1110 0111,1111] ] 3

qq q qq q qq q q q q qq q q q

∅
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0 1 0 1

0 1 0 1 0 1
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0000, 1000 0100, 1100

010 110
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011 111

I
y

Figure 1: Graphs of C0 (left) and C(1)
0 (right).

The extended context tree model further merges {0000, 0100} to the stringoid 000 with
the coordinate set {−4,−2,−1}, as the coordinate −3 is dropped. In Fig. 2 (left), the
notation 0α00 indicates the dropped coordinate. The set {1000, 1100} is merged similarly,
and the extended context tree C(2)

0 consists of 7 contexts. The context set model, allows to
conditionally drop the coordinate −1 if the symbol at coordinate −2 is 1, as the transition
probabilities are equal for s−3 = 0 and s−3 = 1, respectively, if s−2 = 1. Here, r = 1 and
h = 0. Hence, the context set C(3)

0 is further reduced to 5 contexts, see Fig. 2. �
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Figure 2: Graphs of C(2)
0 (left) and C(3)

0 (right).

In this paper, a universal code for the context set model class is achieved by weighting
the KT distributions determined by the context sets. The coding distribution is obtained
by calculating a weighted probability recursively for the possible stringoids. For extended
context trees, a weighted probability is calculated for the possible strings composed from
the alphabet A and the don’t care symbol. These extended strings can be organized into
a tree graph, whose nodes are identified with the extended strings and the children of a
node are the extended strings obtained by attaching one more symbol (from A or a don’t
care symbol) to the string of the parent node. The weighted probability at a node is cal-
culated from the KT distribution determined by the extended string of the node and from
the weighted probabilities at the children nodes [10]. In case of context sets, the stringoids
could be similarly organized to a tree graph, although not each node of such graph would
be identified by a stringoid, because a stringoid’s last coordinate cannot be a dropped co-
ordinate but an extended string’s last symbol can be a don’t care symbol. Moreover, the
weighted probability at a node identified by a stringoid is calculated from the KT distribu-
tion determined by the stringoid and from the weighted probabilities not only at the children
but also at many descendant. The values of the weighted probability at these descendant
are used multiple times as well.

The context set model allows to conditionally drop coordinates of strings. Namely,
for the strings s−k · · · s−1 with the same values s−m, . . . , s−1, the coordinates −m −
r, . . . ,−m − 1 may be dropped if s−k · · · s−m−r−1 ∈ B and then are not dropped if
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s−k · · · s−m−r−1 6∈ B, where B is a subset of (k − m − r)-length strings. In case of
the extended context tree model, the coordinates may be dropped or not uniformly for all
s−k · · · s−m−r−1. In case of Class III models (see above) the coordinates may be dropped
or not individually for each s−k · · · s−m−r−1. Hence, the context set model class is con-
siderably larger than the generalized context tree model class but still allows to define a
weighting method with a computational complexity significantly less than that for the Class
III models [16]. In this paper, we prove that the presented universal code can be computed
in a time polynomial in the message length. This version of the paper assumes that r = 0
or r = 1 in order to simplify the notation and the presentation of the results. Our results
do not assume a known maximum memory length of the source and allow infinite contexts.
The complete proofs of all of the results given in this paper are contained in [3].

3. Known Context Set

For a finite set A, |A| denotes its cardinality. A stringoid composed from A is defined as
s ∈ AI , where I is an arbitrary subset of the negative integers −N. I(s) denotes the index
set I of the stringoid. The projection of the stringoid to the coordinates with indices in an
interval [i, j] is denoted by sji , in particular, the i-coordinate is si ∈ A. The number of
coordinates of s is |I(s)|, and the length of s is l(s) = − inf I(s).

The empty stringoid is denoted by ∅, its length is l(s) = 0. Two stringoids s and u are
coherent, denoted by s g u, if si = ui for all i ∈ I(s) ∩ I(u). The composition of two
stringoids s and u with disjoint index sets is su ∈ AI(s)∪I(u), where (su)i = si if i ∈ I(s)
and (su)i = ui if i ∈ I(u).

Let X = { Xi,−∞ < i < ∞ } be a stationary ergodic process with each random
variable Xi taking values from the finite set A. For a stringoid s ∈ AI , write Q(s) =
Prob{Xi = si, i ∈ I} and, if Q(s) > 0, Q(a|s) = Prob{X0 = a|Xi = si, i ∈ I}.

Definition 1. A stringoid s ∈ AI is a context for the process X if Q(s−1
−i ) > 0 (i =

1, 2, . . .) and

Prob
{
X0 = a|X−1

−∞ = x−1
−∞
}

= Q(a|s) for all a ∈ A,

whenever s is coherent with the semi-infinite sequence x−1
−∞ ∈ A−N. A stringoid s with

l(s) <∞ and Q(s) = 0 is also a context.

Notice that if s is a context, then any ugswith I(u) ⊇ I(s) is a context, too. Motivated
by the definition of context, a context s can be called minimal if no ugs with I(u) ⊂ I(s)
is a context. For a semi-infinite sequence x−1

−∞, however, the minimal context s g x−1
−∞ is

not necessarily unique.

Definition 2. A collection C0 of contexts is a context set of the process X if it satisfies

1. for each semi-infinite sequence x−1
−∞ there exists one and only one context s ∈ C0 with

sg x−1
−∞

2. for any contexts s and u in C0 with s−1
−l = u−1

−l satisfying−l−1 ∈ I(s) and−l−1 /∈ I(u),
it follows that −l − 2 ∈ I(s), −l − 2 ∈ I(u), and s−l−2 6= u−l−2.

Clearly, no two contexts in C0 may be coherent. Moreover, C0 exists for the process X ,
but it is not unique. Note that if we selected one minimal context s g x−1

−∞ for each semi-
infinite sequence x−1

−∞, the collection of such minimal contexts would not necessarily be a
context set. The distribution Q of the process X is determined by the context set C0 and
the parameters QC0 = {Q(a|s) : s ∈ C0, Q(s−1

−i ) > 0 for all i ≤ l(s)}. Denote d(C0) the
depth of the context set C0: d(C0) = sup{l(s) : s ∈ C0}. Note that d(C0) may be infinite.
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Remark 1. Definition 2 implies that a graph representing a context set C0 can be obtained
using the rooted graphs F(j) and G(k, T ), where j ≥ 0, k ≥ 0 and ∅ ⊂ T ⊂ A, see Fig. 3.
In particular, any C0 can be obtained by setting C0(0) = {∅} and consecutively applying
the following procedure: C0(l + 1) is the disjoint union of C0(l) and F(j) or G(k, T ) for
some j, k, T with a leaf of C0(l) identified by the root of F(j) or G(k, T ). For example,
C(3)

0 in Example 1, C0(1) = G(0, {0})∪̇C0(0), C0(2) = F(1)∪̇C0(1) with 00 ∈ C0(1)
identified by the root of F(1), and C0(3) = F(0)∪̇C0(2) with 1α ∈ C0(2) identified by the
root of F(0), see Fig. 4.
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Figure 3: The rooted graphs F(j) (left) and G(k, T ) (right).
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Figure 4: Graph of C0(3).

In this paper, a universal code will be introduced for context sets. The pointwise redun-
dancy of a code C for a message xn1 ∈ A{1,2,...,n} is

RLC ,Q(xn1 ) = LC(xn1 ) + logQ(xn1 ), (1)

where LC is the code length.

Definition 3. The redundancy (1) is the sum of the coding redundancy

RLC ,PC
(xn1 ) = LC(xn1 ) + logPC (xn1 ) ,

where PC (xn1 ) is a coding distribution used to generate the code C, the model redundancy

RPC ,PC0
(xn1 ) = − logPC (xn1 ) + logPC0 (xn1 ) ,

where PC0 (xn1 ) is a coding distribution for known C0 and unknown parameters QC0 , and
the parameter redundancy

RPC0 ,Q(xn1 ) = − logPC0 (xn1 ) + logPC0,QC0 (xn1 ) ,

where PC0,QC0 (xn1 ) = Q (xn1 ) is the coding distribution for known C0 and known QC0 .

Here, the code redundancy can be upper bounded by 2 for, for example, arithmetic
coding [6]. If the context set is known but the parameters are unknown, the Krichevsky-
Trofimov [4] distribution can be used as follows.
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Note that in this case PC0(xn1 ) is used for PC (xn1 ) and RPC ,PC0
(xn1 ) = 0, and hence

RLC ,Q(xn1 ) = RLC ,PC
(xn1 ) + RPC0 ,Q(xn1 ) denoted by RLC0 ,Q(xn1 ). In Section 4, if both

the context set and the parameters are unknown, the Context Set Weighting method is
presented and proved to provide a code C with an upper bound on the model redundancy
RPC ,PC0

(xn1 ) not exceeding the order of the upper bound on the parameter redundancy
RPC0 ,Q(xn1 ) shown below.

For a stringoid s ∈ AI and a letter a ∈ A, Nn (s, a) denotes the number of occurrences
of s. For a message xn1 ∈ A{1,2,··· ,n}, ∆C0(xn1 ) denotes the number of symbols xt in
xn1 for which there is no s ∈ C0 such that sj = xt+j for all j ∈ I(s). Consequently,
∆C0(xn1 ) = n−

∑
s∈C0 Nn(s). Note that ∆C0(xn1 ) depends on both the context set C0 and

the message xn1 , and ∆C0(xn1 ) ≤ d(C0).

Definition 4. Given a message xn1 ∈ A{1,2,...,n}, the Krichevsky-Trofimov probability for
the context set C0 is

PC0 (xn1 ) =
1

|A|∆C0 (xn1 )

∏
s∈C0

KTxn1 (s)

where KTxn1 (s) is the Krichevsky-Trofimov probability [4] assigned to {xi : l(s) < i ≤
n, sj = xi+j for all j ∈ I(s)}, the set of symbols in the message following the stringoid s.

The redundancy of the corresponding code satisfies

RLC0 ,Q(xn1 ) ≤|A| − 1

2
|{s ∈ C0 : l(s) < n}| log

(
n−∆C0(xn1 )

|{s ∈ C0 : Nn(s) ≥ 1|
+
|A| − 1

2

)
+ |{s ∈ C0 : l(s) < n}| log

π
1
2

Γ( |A|2 )
+ ∆C0(xn1 ) + c (2)

for all xn1 ∈ A{1,2,...,n}, where Γ is Gamma function and c is a constant [11].

4. Context Set Weighting

In this section, the Context Set Weighting method is introduced to define a coding distri-
bution for unknown context sets. For 1 ≤ L < D, let BLD be the set of stringoids s with
0 ≤ l(s) ≤ D such that for all stringoid s with L−1 ≤ l(s) ≤ D, {k ∈ −N : −l(s) ≤ k ≤
−L+1} is a subset of I(s). The weighted probability of the stringoid s ∈ BLD is determined
recursively in l(s), starting from D. In particular, PL,Dw,xn1

(s) with L − 1 ≤ l(s) ≤ D − 1

is calculated from the values PL,Dw,xn1
(s′), l(s′) = l(s) + 1, and the value PL,Dw,xn1

(s) with

l(s) ≤ L − 2 is calculated from the values PL,Dw,xn1
(s′), l(s) < l(s′) ≤ L. Regarding a

message xn1 as a sequence proceeded by the unknown past . . . εεε, the quasi-stringoid εs
occurs if 0 ≤ l(s) < n and si = xl(s)+1+i for all i ∈ I(s). In that case the KT value is
1
|A| , which is assigned to the weighted probability PL,Dw,xn1

(εs). Similarly, the quasi-stringoid
εαhs occurs if 0 ≤ h + l(s) < n and si = xh+l(s)+1+i for all i ∈ I(s). The weights of
the weighted probability depend on the length of s and the sum of them is one. The latter
is implied by 1

2 = 1
2p +

∑
∅⊂T⊂A

1
2p(|T |+1) , that follows from (5) of Definition 5.
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Definition 5. Given a message xn1 ∈ A{1,2,...,n} and an arbitrary 1 ≤ L < D, for s ∈ BLD
define the weighted probability PL,Dw,xn1

(s)

= KTxn1 (s) if l(s) = D

=
1

2
KTxn1 (s) +

1

2
PL,Dw,xn1

(εs)
∏

a∈A{−l(s)−1}

PL,Dw,xn1
(as) if L− 1 ≤ l(s) ≤ D − 1

=
1

2
KTxn1 (s) +

1

(L− l(s))2p

L−l(s)−1∑
j=0

j∏
h=0

PL,Dw,xn1

(
εαhs

) ∏
a∈A{−l(s)−j−1}

PL,Dw,xn1
(as)


+

1

L− l(s)− 1

L−l(s)−2∑
k=0

∑
V⊂A{−l(s)−k−2}

1

2p(|V |+1)

k+1∏
h=0

PL,Dw,xn1

(
εαhs

)
×

∏
a∈A{−l(s)−k−1}

∏
b∈V

PL,Dw,xn1
(bas)

∏
b̄∈A{−l(s)−k−2}\V

PL,Dw,xn1

(
b̄s
)

if 0 ≤ l(s) ≤ L− 2

where 0 < |V | < |A|. p is the unique positive solution of the equation 2p−1 = (1 + 2−p)
|A|−

2−p|A|, and for a quasi-stringoid εαhs,

PL,Dw,xn1

(
εαhs

)
=


1
|A| if si = xh+l(s)+1+i for all

i ∈ I(s) and l(s) + h < n

1 otherwise.

Remark 2. The set BLD can be represented by a graph and the calculation of the weighted
probability can be regarded as a sequential procedure over the nodes of the graph. For each
node s with 0 ≤ l(s) ≤ L − 2, the computation uses the values from the related graphs
F(j), for all 0 ≤ j ≤ L−l(s)−1, and G(k, T ), for all 0 ≤ k ≤ L−l(s)−2 and ∅ ⊂ T ⊂ A,
whose root is s, see Remark 1. That is, such s has L − l(s) + (L − l(s) − 1)(2|A| − 2)
number of related graphs. In addition, the computation uses the values of j + 1 and k + 2
number of quasi-stringoids for the above related graphs, respectively. For each node s with
L− 1 ≤ l(s) ≤ D− 1, the computation uses the values only from the related graph CA(0),
whose root is s and from one quasi-stringoid, εs.

Definition 6. The coding distribution for a message xn1 is defined as the weighted proba-
bility for the empty stringoid ∅ with D = n and 1 ≤ L < D, i.e., PC (xn1 ) = PL,nw,xn1

(∅) .

A main result of this paper is the following bound on the redundancy of the above
code determined by the Context Set Weighting method. Let ΓLD denote the collection of
all possible context sets C′0 which satisfy d(C′0) ≤ D and {k ∈ −N : −l(s) ≤ k ≤
−L + 1} ⊆ I(s) for each s ∈ C′0 with l(s) ≥ L − 1. That is, the indices of the stringoids
in the context sets C′0 may be missing only up to the depth L − 1. For any context set
C0, there is a unique C′0 ∈ ΓL∞ satisfying that for each s ∈ C0, all the stringoids s′ with
I(s′) = I(s) ∪ {k ∈ −N : −l(s) ≤ k ≤ −L + 1} and s′ g s belong to C′0. The above
C′0 is denoted by CL0 . That is, CL0 completes the stringoids in C0 by substituting all possible
coordinates at the missing indices below the depth L− 1. For any CL0 ∈ ΓL∞, its truncation
at level D is denoted by CL0 |D. Clearly, CL0 |D ∈ ΓLD for any C0.

Theorem 1. Given a message xn1 ∈ A{1,2,...,n}, the model redundancy RPC ,PC0
(xn1 ) of the

code C provided by the Context Set Weighting method does not exceed the order of the
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upper bound (2) of the parameter redundancy. In particular, for any L > 1,

RPC ,PC0
(xn1 ) ≤

∣∣CL0 |n−1

∣∣ (p+ logL

|A| − 1
+ 1

)
+
|A| − 1

2
|{s ∈ CL0 : l(s) < n}| log

(
n−∆CL0

(xn1 )

|{s ∈ CL0 : Nn(s) ≥ 1|
+
|A| − 1

2

)

+ |{s ∈ CL0 : l(s) < n}| log
π

1
2

Γ( |A|2 )
. (3)

In particular, if L ≥ d(C0)

RPC ,PC0
(xn1 ) ≤ |C0|

(
p+ logL

|A| − 1
+ 1

)
. (4)

Remark 3. In bound (3), C0 is any context set of the process. The bound (2) on the
parameter redundancy suggests considering the context set with the smallest

∣∣CL0 |n−1

∣∣. By
the comments after Definition 2, such a context set may not be well-defined and seems
difficult to be identified. The bound (3) holds for the smallest

∣∣CL0 |n−1

∣∣ possible for the
process.

By Definition 3, a bound on the redundancy RLC ,Q(xn1 ) of the code C determined by
the Context Set Weighting method can be obtained as a sum of (2) and (3). The bound
shows that the Context Set Weighting method provides a universal code as
(1/n) maxxn1 RLC ,Q(xn1 )→ 0 (n→∞) if |C0| <∞.

The Context Set Weighting method suggests that the coding distribution is a mixture of
the Krichevsky-Trofimov distributions over all possible C ∈ ΓLD.

Theorem 2. For any xn1 ∈ A{1,2,...,n}, the coding distribution PC (xn1 ) is a mixture of
Krichevsky-Trofimov distributions over all C ∈ ΓLn ,

PC (xn1 ) =
∑
C′∈ΓL

n

2−ΛC′PC′(x
n
1 )

for some ΛC′ with
∑
C′∈ΓL

n
2−ΛC′ = 1.

Finally, we show an algorithm with practical computational complexity to calculate
the value of the coding distribution provided by the Context Set Weighting method for
a message xn1 . In particular, choosing L = O(log n) the computational complexity is
polynomial in n.

Theorem 3. Given a message xn1 ∈ A{1,2,...,n}, the coding distribution PC (xn1 ) provided
by the Context Set Weighting method can be computed with O(n32L) number of computa-
tions and storing O(n22L) data.

Acknowledgment

Research was supported in part by the ARO under Grant 65386-MA-II and the NSF under
Grant DMS 1407819.

3254



References

[1] G. Bejerano and G. Yona, “Variations on probabilistic suffix trees: statistical modeling
and prediction of protein families,” Bioinformatics, vol. 17, pp. 23–43, 2001.

[2] I. Csiszár and P. C. Shields, Information Theory and Statistics: A Tutorial, Hanover,
MA: now, 2004.

[3] H.S. Kim and Zs. Talata, “Context Set Weighting Method,” Manuscript, 33 pp, 2017.

[4] R. E. Krichevsky and V. K. Trofimov, “The performance of universal encoding,” IEEE
Trans. Inform. Theory, vol. 27, pp. 199–207, Mar. 1981.

[5] J. Rissanen, “A universal data compression system,” IEEE Trans. Inform. Theory,
vol. 29, pp. 656–664, Sep. 1983.

[6] J. Rissanen, and G. G. Langdon, Jr., “Universal Modeling and Coding,” IEEE
Trans. Inform. Theory, vol. IT-27, pp. 12–23, Jan. 1981.

[7] S. Robin, F. Rodolphe, and S. Schbath, DNA, Words and Models. New York: Cam-
bridge, 2005.

[8] B. Ya. Ryabko, “Twice-universal coding,” Probl. Peredachi Inform., vol. 20, No. 3,
pp. 24–28, 1984.

[9] J. Suzuki, “A CTW scheme for some FSM models,” In IEEE Int. Symp. on In-
form. Theory, p. 389, Whistler, British Columbia, Canada, 1995.

[10] P.A.J. Volf and F.M.J. Willems, “Context-tree weighting for extended tree sources,” In
Symp. on Inform. Theory in the Benelux, vol. 17, pp. 95–101, Enschede, The Nether-
lands, May 30-31 1996.

[11] Y. M. Shtarkov, T. J. Tjalkens, and F. M. J. Willems, “Multialphabet weighting uni-
versal coding of context tree sources,” Probl. Inform. Trans., vol. 33, No. 1, 1997.

[12] M. J. Weinberger, A. Lempel, and J. Ziv, “A sequentional algorithm for the universal
coding of finite memory sources,” IEEE Trans. Inform. Theory, vol. 38, pp. 1002–
1014, May 1992.

[13] M. J. Weinberger, J. Rissanen, and M. Feder, “A universal finite memory source,”
IEEE Trans. Inform. Theory, vol. 41, pp. 643–652, May 1995.

[14] F. M. J. Willems, “The context-tree weighting method: Extensions,” IEEE Trans. In-
form. Theory, vol. 44, pp. 792–798, Mar. 1998.

[15] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree weighting
method: Basic properties,” IEEE Trans. Inform. Theory, vol. 41, pp. 653–664, May
1995.

[16] F. M. J. Willems,Y. M. Shtarkov, and T. J. Tjalkens,“Context weighting for general
finite-context sources,” IEEE Trans. Inform. Theory, vol. 42, No. 5, Sep. 1996.

3255




