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Abstract

The liquid biopsy procedure to screen for early-stage cancers and monitor treatment responses
involves the detection of cancer biomarkers in bodily fluids such as blood and urine. Recent ad-
vances in liquid biopsy techniques have involved detecting the presence of tumor-derived cell-free
DNA (circulating tumor DNA, ctDNA) in a simple blood test. This detection procedure is mini-
mally invasive and provides an attractive and reliable alternative to tissue biopsy. One of the major
challenges in ctDNA analysis lies in its relatively low concentration and the difficulty in detecting
ctDNA from the background cell-free DNA fragments derived from normal cells (cfDNA). Despite
some recent progress, accurate detection methods remain elusive. In this paper, I develop two types
of probabilistic classifiers for distinguishing ctDNA from cfDNA. The performance of the proposed
classifiers is evaluated and measured by the receiver operating characteristic (ROC) curve. Its accu-
racy is demonstrated by the area under the ROC curve. Both types of classifiers are easy to compute
and fairly accurate with the potential to become relatively cheap and applicable tools for the early
detection of cancers.
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1. Introduction

There has been a growing interest in the use of “liquid biopsy” technique to screen for
early-stage cancers and monitor treatment responses. Liquid biopsies involve the detection
of cancer biomarkers in bodily fluids such as blood and urine [1]. Recent advances in
liquid biopsy techniques have involved detecting the presence of tumor-derived cell-free
DNA (circulating tumor DNA, ctDNA) in a simple blood test. This detection procedure
is minimally invasive and provides an attractive and reliable alternative to tissue biopsy,
which has limited success and associated complications. One of the major challenges in
ctDNA analysis lies in its relatively low concentration and the difficulty in detecting ctDNA
from the background cell-free DNA fragments derived from normal cells (cfDNA) [2, 3].

One way to distinguish ctDNA from cfDNA relies on identifying cancer hot-spot mu-
tations in ctDNA and much progress has been made in this area, facilitated by the advance
in PCR (polymerase chain reaction, e.g. digital PCR) and specialized next generation se-
quencing techniques (e.g. targeted sequencing). Nevertheless, there are several disad-
vantages associated with these assay-based approaches. First, point mutations are overall
sparse and often unevenly distributed in human genome. Second, they are relatively expen-
sive and time-consuming. Third, prior knowledge of the cancer mutation profile is often
instrumental in achieving the desired sensitivity [1].

In this paper, using publicly available ctDNA sequencing data, I have developed two
types of probabilistic classifiers to distinguish cancerous ctDNA from normal cfDNA. They
are based on features such as fragment length and sequence content of the DNA fragment
with the potential to incorporate additional predictors as more distinguishing properties of
ctDNA become available. The performance of the proposed classifiers is evaluated and
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measured by the receiver operating characteristic (ROC) curve. Its accuracy is demon-
strated by the area under the ROC curve (AUC). In addition, my classifiers do not rely on
cancer hot-spot mutation detection and are generalizable to any form of cancer requiring
only training data to produce an initial model and bypassing the need for costly sequencing
techniques. Consequently they have the potential to become relatively cheap and applicable
tools for the early detection of cancers, monitoring recurrence, and evaluating responses to
therapy.

1.1 DNA Sequence Data

I obtained the raw sequence data used in this paper from Sequence Read Archive (SRA)
website hosted by the National Center for Biotechnology Information [4]. The sequence
data from two sequence files (SRA accession code: SRP040228) were used to build sta-
tistical models and test my classifiers. One file contains the ctDNA from the cell lines
of human non-small cell lung cancer. The other file contains the cfDNA from a healthy
control. Since the sequences downloaded from SRA are raw sequencing reads, I used the
Barrows-Wheeler Aligner [5] and mapped the reads against a reference genome. The ref-
erence genome is hg19 downloaded from the genome browser at University of California
Santa Cruz [6]. The alignment files were further processed and merged using software
from SAMTools [7] and bedtools [8] to produce the DNA fragments with information re-
garding their chromosomal position, length, and mutations. Over 192 thousand ctDNA and
720 thousand cfDNA fragments were produced after the alignment and processing. These
sequences were used in my subsequent model building and classifier development.

1.2 Features of DNA Sequences

In order to build a statistical model to classify ctDNA, I needed to find features capable of
distinguishing ctDNA from cfDNA. Based on the current research findings on ctDNA, the
length of the DNA sequences is a potentially important feature. In addition, there are other
biological meaningful features that may be relevant in classifying ctDNA. For example, the
GC-content of the DNA sequences. The four nucleobases found in DNA sequences are
adenine (A), cytosine (C), guanine (G) and thymine (T). The bases are covalently linked
together in a chain through the sugars and phosphates forming the backbone of DNA dou-
ble helix. Hydrogen bonds between the bases hold the two chains together. GC-content
of a DNA fragment is the percentage of bases that are either guanine or cytosine. GC-
content not only varies considerably among genomes from different species, it can also
differ greatly within the same genome. Higher GC-content is usually associated with in-
creased thermo-stability by virtue of base stacking and the presence of a triple hydrogen
bond between GC base pairs, compared with a double hydrogen bond between AT base
pairs. Regions with higher GC content also tend to have higher relative gene density than
regions with lower GC content. Therefore, variations in GC-content could be used to po-
tentially distinguish ctDNA from cfDNA. The GC-content of DNA fragments is expressed
as a percentage using the following standard formula: GC-content= (G+C)/(A+T+G+C).

2. Probabilistic Classifiers

2.1 Exploratory Data Analysis

To investigate which features are important in distinguishing ctDNA from cfDNA, I started
some exploratory data analysis of the potential features of GC-content and the length of
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the DNA sequences. For both ctDNA and cfDNA datasets, I computed some numerical
summary measures for each of these features as given in Table 1 and Table 2.

Table 1: GC Content

DNA Sequences Min 1st Quartile Median Mean 3rd Quartile Max
ctDNA 0.1089 0.4059 0.4828 0.4771 0.5484 0.7742
cfDNA 0.0707 0.4083 0.4800 0.4787 0.5461 0.8911

Table 2: Fragment Lengths

DNA Sequences Min 1st Quartile Median Mean 3rd Quartile Max
ctDNA 88 93 101 130.2 146 12520
cfDNA 94 150 166 170.8 180 11320

Table 1 shows that numerical measures such as sample means, medians, first quartiles,
and third quartiles for the GC-content variable are almost identical for both ctDNA and
cfDNA datasets. These results suggest that any procedure based on the summary measures
alone will not be effective in detecting the difference between ctDNA and cfDNA. On the
other hand, as seen in Table 2, there are significant differences between ctDNA fragment
lengths and cfDNA fragment lengths. The mean length of ctDNA and cfDNA is about
130 bp (base pairs) and 171 bp, respectively. These numbers are consistent with existing
findings in the literature [2, 9]. Furthermore, Table 2 shows that the lengths of ctDNA
sequences are much shorter than the lengths of cfDNA across all measures of quartiles, not
just the mean/median lengths.

2.2 Logistic Regression

Logistic regression is one of the most widely used statistical analysis and inferential tools
to explore and model the relationship between a categorical response variable and predic-
tor variables. My response variable is categorical with two categories coded via a class
indicator variable taking two discrete values with 1 representing ctDNA and 0 represent-
ing cfDNA. My predictor variables are GC-content and fragment lengths of the DNA se-
quences. To predict whether a given DNA sequence is ctDNA or cfDNA, I used the logistic
regression to model the posterior probabilities of the two classes (ctDNA and cfDNA) via
a linear function in my feature variables. The model is specified in terms of the logit trans-
formation or the log-odds: the logarithmic ratio of the probability that the tested sequence
is ctDNA to the probability that it is cfDNA given the feature variables. More specifi-
cally, to examine and quantify which of my feature variables are statistically important for
classifying ctDNA, I used the R base package and ran the logistics regression of my class
indicator variables on the linear combination of the GC-content and fragment length fea-
ture variables. However, this direct logistic regression approach caused numerical failures
leading to the estimated probability either exactly equal to 0 or 1. Upon close examination,
I found out that the failures were caused by some of excessively outlying fragment lengths
as shown by the boxplots and histograms in Figure 1 and Figure 2
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Figure 1: Boxplots for Fragment Lengths of ctDNA and cfDNA
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Figure 2: Histograms for Fragment Lengths of ctDNA and cfDNA
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To overcome these difficulties, I made the logarithmic transformation of the fragment
lengths, which significantly improved the separation of the fragment length distributions
between ctDNA and cfDNA as seen in Figure 3. Let X1 = log(Fragment Length) and

Figure 3: Histograms for Log Fragment Lengths of ctDNA and cfDNA

X2 = GC-content. Then the logistic regression is specified by the logit model:

log(
p

1− p
) = β0 + β1X1 + β2X2, (1)

where

p = P (Y = 1|X1, X2), Y =

{
1 if the sequence is ctDNA
0 if the sequence is cfDNA .

To develop a probabilistic classifier based on logistic regression, I partitioned the DNA
sequence data randomly into training data set (75% of the data) and testing data set (25%
of the data). Using the training data, all unknown model parameters were estimated by the
maximum likelihood (ML) method. Table 3 displays the results of my logistic regression.

As seen from Table 3, both feature variables have statistically significant Z scores with
p-values less than 2×10−16. Each of these Z scores corresponds formally to a Wald test of
the null hypothesis that the coefficient is zero. A nonsignificant Z score would suggest that
the corresponding coefficient can be dropped from the model. Since the Z scores for both
log(Fragment Length) and GC-content have extremely small p-values, they provide strong
evidence that these coefficients are not zero.

In addition, the signs of these estimated coefficients are also consistent with the log
odds interpretation. For example, the negative sign of the estimated coefficient (-4.41)
of log(Fragment Length) suggests that holding GC-content constant, for every increase
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Table 3: Significance of log(Fragment Length) and GC-content

Coefficients Estimate Std. Error z value Pr(> |z|)
(Intercept) 20.28 0.065 309.95 < 2× 10−16∗∗∗

log(Fragment Length) -4.41 0.013 -336.12 < 2× 10−16∗∗∗

GC-content 0.35 0.033 10.68 < 2× 10−16∗∗∗

of 1 unit in log(Fragment Length), the odds of the sequence as ctDNA decreases by a
factor of exp{−4.41}. In other words, for any given DNA sequence, the larger the value
of log(Fragment Length) is, the less likely it is ctDNA sequence, adjusting for the other
feature variable.

Given the fitted logistic regression, the classification rule is based on the estimated
logistic probability p̂. My decision rule is that if p̂ > 0.5, classify the sequence to be
ctDNA; otherwise, classify it to be cfDNA. The performance of this logit classifier was
evaluated by the testing data. Figure 4 shows the performance of the classifier as measured
by the receiver operating characteristic (ROC) curve. The area under the ROC curve (AUC)
for the logit classifier is 80% and the classification accuracy is 82%.

Figure 4: ROC Curve for Logistic Regression Classifier

3239



2.3 Relative Importance of Predictors

Given both log(Fragment Length) and GC-content are highly significant, it would be worth
investigating the relative importance of these two predictors. To assess the sole effect of
GC-content on the response variable, I used the training data and ran the logistic regres-
sion of my indicator variable on the GC-content predictor alone and the resulting output is
provided in Table 4.

Table 4: Significance of GC Content

Coefficients Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.26 0.015 -86.18 < 2× 10−16∗∗∗

GC-content -0.15 0.030 -5.08 3.71× 10−7∗∗∗

As seen from Table 4, GC-content is highly statistically significant and plays a signifi-
cant role in explaining the categorical response variable, which confirmed previous findings
in Table 3. To assess its predictive power, I used the testing data to evaluate its performance
in terms of ROC curve.

Figure 5: ROC Curve for Logistic Regression Classifier Based on GC Content

Figure 5 shows that the ROC curve for the classifier based on GC content almost coin-
cides with the chance diagonal indicating that its accuracy as measured by the AUC of this
classifier is slightly better than random guessing. Consequently the statistical significance
of GC-content did not translate into predictive power in classifying ctDNA. This finding is
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also consistent with the largely overlapping histograms given in Figure 6. Similar analysis

Figure 6: Histogram of GC Content for both ctDNA and cfDNA

of log fragment lengths showed that the log fragment lengths was the dominant predictor
in classifying ctDNA.

3. Likelihood Ratio Classifier

3.1 Negative Binomial Distributions for Modeling DNA Fragment Lengths

As we have seen, the length of DNA sequences plays a major role in tumor DNA classi-
fication, it would be interesting to model fragment lengths directly using some parametric
distributions. As seen in Figure 1 and Figure 2, the distributions of fragment lengths are
highly skewed by some extremely large observations leading to huge variations. In addi-
tion, fragment lengths as measured in base pairs are positive integers and the probability
that fragment lengths take the zero value is zero. These considerations motivated me to use
the negative ninomial distribution for modeling DNA fragment lengths. Let X denote the
fragment length. I assme that X has the negative binomial distribution with the probability
mass function given by

f(x|r, p) = P (X = x|r, p) =

(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, · · · , (2)

Specifically, I assume X ∼ f(x|rct, pct) for ctDNA and X ∼ f(x|rcf , pcf ) for cfDNA.
My classification rule is based on the likelihood ratio of these probabilities

LR(x) =
P (X = x|ctDNA)

P (X = x|cfDNA)
=

f(x|rct, pct)
f(x|rcf , pcf )

(3)
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For any given DNA sequence with length x, if LR(x) > 1, the sequence is classified as
ctDNA, otherwise, the sequence is classified as cfDNA. In practice, the negative binomial
model parameters are unknown and need to be estimated based on the training data. They
can be estimated either by the method of moments (MM) or maximum likelihood (ML)
method.

3.2 MM and ML Parameter Estimation

The MM estimates follow easily from the mean and variance of X , which are given by
E(X) = r/p and V ar(X) = r(1 − p)/p2, respectively. Consequently, given the training
data X1, · · · , Xn, the MM estimates for r and p are computed as

r̃ = X̄p̃, p̃ =
X̄

X̄ +
∑n

i=1X
2
i /n− X̄2

(4)

The ML estimates r̂ and p̂ for r and p are given by p̂ = r̂/X̄ , where r̂ is obtained by
solving the following log likelihood equation:

log(
r̂

X̄ − r̂
)− ψ(r̂) +

1

n

n∑
i=1

ψ(Xi − r̂ + 1) = 0 for 1 ≤ r̂ ≤ min
1≤i≤n

{Xi}, (5)

where ψ(x) denotes the digamma function. Since the equation cannot be solved for r̂ in
closed form, it is solved numerically by root-finding algorithms such as Brent’s method. I
applied both MM and ML methods to estimating the negative binomial model parameters
based on the training data (75% of my data) and used the remaining 25% of the data for
testing the likelihood ratio classifiers. Their performance and accuracy are measured by the
ROC curves and the AUCs shown in Figure 7 and Figure 8. These results demonstrated that
the likelihood ratio classifier based on ML estimates of the model parameters outperformed
the likelihood ratio classifier based on MM estimates.

4. Conclusions

In this paper, I have developed two types of probabilistic classifiers for distinguishing
ctDNA from cfDNA. The first type of probabilistic classifiers is the logit classifier based
on the logistic regression. The logit classifier incorporates the log fragment lengths and
GC-content of DNA sequences as distinguishing feature variables in the logistic regression
model with the potential to include additional predictors as more distinguishing proper-
ties of ctDNA become available. The second type of probabilistic classifiers is the likeli-
hood ratio classifier based on the negative binomial distributions for modeling the fragment
lengths. The performance of both types of classifiers is evaluated and measured by the re-
ceiver operating characteristic (ROC) curve. Its accuracy is demonstrated by the area under
the ROC curve. Both types of classifiers are easy to compute and fairly accurate. Con-
sequently they have the potential to become a relatively cheap and applicable tool for the
early detection of cancers.
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ROC Curve for Likelihood Ratio Classifier
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Figure 7: Negative Binomial Models Estimated by ML Method
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