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Abstract
We propose a Bayesian adaptive design for early phase drug combination cancer trials

incorporating ordinal grade of toxicities. Parametric models are used to describe the rela-
tionship between the dose combinations and the probabilities of the ordinal toxicities under
the proportional odds assumption. Trial design proceeds by treating cohorts of two patients
simultaneously using Escalation With Overdose Control (EWOC) and Continual Reassess-
ment Method (CRM). At the end of the trial, we estimate the MTD curves as a function of
Bayes estimates of the model parameters. We evaluate design operating characteristics in
terms of safety of the trial and percent of dose recommendation at dose combination neigh-
borhoods around the true MTD by comparing this design to the one that uses a binary
indicator of DLT.

1. Introduction

Cancer phase I clinical trials are sequential designs enrolling late stage cancer pa-
tients who have exhausted standard treatment therapies. [1] The primary aim of a
phase I trial is to estimate the maximum tolerated dose (MTD) of a new drug or
combination of drugs for future efficacy evaluation in phase II/III trials. The estima-
tion of the MTD is guided by the occurrence of dose-limiting toxicities (DLT) that
are pre-specified adverse events classified as grade 3 or higher, based on common
toxicity criteria for adverse events (CTCAE) [2].

CTCAE are international guidelines that measure the severity of an adverse
event from mild (grade 1) to death related (grade 5). Most of the phase I clin-
ical trials dichotomizes DLT as 0-2 (absence) and 3-5 (presence) entailing lost of
information in the sense that the dose escalation algorithm should proceeds more
cautiously when a grade 2 toxicity is observed instead of grade 1 or no toxicity.

There are several methodologies [3–16] taking into account all grades and types
of toxicities for a single agent trial. Some of these methods use multivariate models
for characterizing the different grades of toxicities as a function of dose while others
summarize the information from all toxicity grades into a continuous score.

In particular, Van Meter et al. [17] extended the Continual Reassessment Method
(CRM) with the assumption of proportional odds considering toxicities grades 0
(absence), 1, 2, 3, and 4-5. Tighiouart et al. [18] proposed the proportional odds
Escalation With Overdose Control (EWOC) modeling toxicities 0-1, 2, 3-5. They
both show some benefits either in safety or precision of the MTD estimate when
lower grade toxicities are incorporated in comparison to the classical designs [19,20]
for single agent.

Even though dose-finding designs for two agents have been the focus of statistical
research in the last decade [21–33], all the proposed designs for two agents ignore
lower grade toxicities. Noteworthily, Tighiouart et al. [33] presents an early phase
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I EWOC design that estimates a MTD curve lying anywhere within the Cartesian
plane defined by the range of the continuous doses of two agents.

Thus we propose to extend such phase I design modeling toxicities 0-1, 2 and 3-4
with the proportional odds assumption similarly as done in [18]. This manuscript
is organized as follows: section 2 poses the proportional odds model for two agents
and trial design using EWOC and CRM schemes; section 3 describes the simulation
scenarios and the operating characteristics for grade and binary toxicity; section 4
presents some concluding remarks.

2. Method

2.1 Dose-Toxicity Model

Let G = 0, 1, . . . , 4 be the maximum grade of toxicity experienced by a patient by
the end of one cycle of therapy and define DLT as a maximum of grade 3 or 4
toxicity. Let Z indicates the aggregated maximum grade of toxicity defined below

Z =


0 if G = 0, 1

1 if G = 2

2 if G = 3, 4,

(2.1)

such that Z ∼ Multinomial(p1, p2, p3) where pi = P (Z = i). The cytotoxic agents
are denoted by A with doses x ∈ [Xmin, Xmax] and B with doses y ∈ [Ymin, Ymax].
A dose-toxicity model can be considered as

P (Z ≥ z|x, y) = F (αz + βx+ γy + ηxy) for z = 1, 2, (2.2)

where F (.) is a known cumulative distribution function (cdf), x is the standardized
dose level of agent A, y is the standardized dose level of agent B. We will assume
that the probability of DLT increases with the dose of any one of the agents when
the other one is held constant. A necessary and sufficient condition for this to hold
is to assume that β > 0, γ > 0, and η > 0. In addition, α2 < α1 since F is strictly
increasing cdf.

In this way, the MTD is defined as any dose combination (x∗, y∗) satisfying

P (Z = 2|x∗, y∗) = θ, (2.3)

where θ is a target probability pre-specified by the clinicians and depends on the
severity and clinical manageability of the DLT; it is set relatively high when the
DLT is a transient, correctable, or nonfatal condition and low when it is lethal or
life threatening.

Then a set C of dose combinations can be characterized as MTD from (2.2) and
(2.3),

C =

{
(x∗, y∗) : y∗ =

F−1(θ)− α2 − βx∗

γ + ηx∗

}
. (2.4)

Model (2.2) can be reparametrized with parameters that clinicians can easily
interpret. These are ρ200, the probability of grade toxicity 3 or 4 (DLT) at dose
(0, 0), ρ100, the probability of grade 2 toxicity or more at dose (0, 0), ρ210, the
probability of grade 3 or 4 toxicity (DLT) at dose (1, 0), and ρ201, the probability
of grade 3 or 4 toxicity (DLT) at dose (0, 1). The restrictions β, γ ≥ 0 and α2 ≤ α1

translate into ρ200 < min{ρ210, ρ201} and ρ200 < ρ100, respectively.
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The original parametrization can be recovered as follows

α1 = F−1(ρ100)

α2 = F−1(ρ200)

β = F−1(ρ210)− F−1(ρ200)

γ = F−1(ρ201)− F−1(ρ200). (2.5)

Similarly, the MTD set can be rewritten as

C =

{
(x∗, y∗) : y∗ =

F−1(θ)− F−1(ρ200)− [F−1(ρ210)− F−1(ρ200)]x∗

[F−1(ρ201)− F−1(ρ200)] + ηx∗

}
. (2.6)

2.2 Prior and posterior distributions

The parameters are assumed independent a priori with ρ100 ∼ Beta(a100, b100),
ρ210 ∼ Beta(a210, b210), ρ201 ∼ Beta(a201, b201), and conditionally on ρ210, ρ201, ρ100,
ρ200/min{ρ210, ρ201, ρ100} ∼ Beta(a200, b200). The prior distribution for the inter-
action parameter η is given by a Gamma distribution with mean E(η) = a/b and
variance V ar(η) = a/b2.

Let Dn = {(xi, yi, zi), i = 1, . . . , n} be the data after enrolling n patients in
the trial. Using Bayes rule, the posterior distribution of the model parameters is
proportional to the product of the likelihood and prior distribution

π(ρ210, ρ201, ρ200, ρ100, η|Dn)

∝
n∏

i=1

H1(ρ210, ρ201, ρ200, ρ100, η;xi, yi)
I(zi=0)

× [H1(ρ210, ρ201, ρ200, ρ100, η;xi, yi)−H2(ρ210, ρ201, ρ200, η;xi, yi)]
I(zi=1)

× H2(ρ210, ρ201, ρ200, η;xi, yi)
I(zi=2)π(ρ210, ρ201, ρ200, ρ100, η), (2.7)

where

H1(ρ210, ρ201, ρ200, ρ100, η;x, y)

= 1− F (F−1(ρ100) + [F−1(ρ210)− F−1(ρ200)]x+ [F−1(ρ201)− F−1(ρ200)]y + ηxy),

H2(ρ210, ρ201, ρ200, η;x, y)

= 1− F (F−1(ρ200) + [F−1(ρ210)− F−1(ρ200)]x+ [F−1(ρ201)− F−1(ρ200)]y + ηxy).

We used JAGS [34] to sample from the posterior distribution of these parame-
ters and estimate design operating characteristics of cancer phase I trials described
below.

2.3 Trial Design

We use a dose escalation/de-escalation algorithm treating cohorts of two patients
simultaneously based on the Escalation With Overdose Control (EWOC) and the
Continual Reassessment Method (CRM) for drug combination principles as similarly
described in [33]. The design proceeds as follows:

1. Each patient in the first cohort of 2 patients receives the same dose combina-
tion (x1, y1) = (x2, y2) = (0, 0).

2. In the i-cohort of 2 patients,
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(a) If i is even, then patient 2i − 1 receives dose (x2i−1, y2i−3) and patient
2i receives dose (x2i−2, y2i), where

x2i−1 = π−1
ΓA|B=y2i−3

(α|D2i−2)

y2i = π−1
ΓB|A=x2i−2

(α|D2i−2)

for EWOC criterion.

x2i−1 = argmin
x
|H2(ρ̂210, ρ̂201, ρ̂200, η̂;x, y2i−3)− θ|

y2i = argmin
y
|H2(ρ̂210, ρ̂201, ρ̂200, η̂;x2i−2, y)− θ|

for CRM criterion.

(b) If i is odd, then patient 2i− 1 receives dose (x2i−3, y2i−1) and patient 2i
receives dose (x2i, y2i−2), where

x2i = π−1
ΓA|B=y2i−2

(α|D2i−2)

y2i−1 = π−1
ΓB|A=x2i−3

(α|D2i−2)

for EWOC criterion.

x2i = argmin
x
|H2(ρ̂210, ρ̂201, ρ̂200, η̂;x, y2i)− θ|

y2i−1 = argmin
y
|H2(ρ̂210, ρ̂201, ρ̂200, η̂;x2i−1, y)− θ|

for CRM criterion.

3. Repeat step 2 until n patients are enrolled to the trial subject to the stopping
rule.

Stopping rule: We stop enrollment to the trial if P(P(DLT|(x, y) = (0, 0)) >
θ + δ1|data) > δ2, i.e. if the posterior probability that the probability of DLT at
the minimum available dose combination in the trial exceeds the target probability
of DLT is high. The parameters δ1 and δ2 are design parameters chosen to achieve
desirable model operating characteristics.

At the end of the trial, we estimate the MTD curve using Bayes estimates of
the parameters defining this curve as

Ĉ =

{
(x∗, y∗) : y∗ =

F−1(θ)− F−1(ρ̂200)− [F−1(ρ̂210)− F−1(ρ̂200)]x∗

[F−1(ρ̂201)− F−1(ρ̂200)] + η̂x∗

}
, (2.8)

where ρ̂200, ρ̂100, ρ̂210, ρ̂201, η̂ are the posterior medians given the data Dn.

3. Simulations

3.1 Set-up and scenarios

We studied four scenarios for the true continuous MTD curve. In all cases, the target
probability of DLT is fixed at θ = 0.33 and the trial sample size is n = 42 patients.
Scenario (1), (ρ100, ρ200, ρ210, ρ201, η) = (2×10−7, 10−7, 3×10−6, 3×10−6, 10), shows
two drugs that are very safe within the range of available doses in the trial but the
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true MTD curve lies near the upper-right corner of the xy plane. In scenario (2),
(0.005, 0.001, 0.01, 0.6, 10), the MTD of agent A when agent B is at its minimum
dose level is within the range of doses of drug A but the MTD of agent B when
drug A is at its minimum dose level is above the maximum dose level of agent B.
Scenario (3), (0.05, 0.01, 0.9, 0.2, 100), is a case where drug A is safe but the MTD
of agent B when drug A is at its minimum dose level is just above 0.8 and scenario
(4) (0.25, 0.2, 0.9, 0.9, 100) presents a very low MTD curve with high probability
of grade 2 toxicity.

3.2 Operating Characteristics

We evaluate the performance of the two designs using CRM and EWOC schemes
by assessing the safety of the trial designs as well as the efficiency of the estimate
of the MTD curve based on 1000 simulated trials.

3.2.1 Safety

We assess trial safety by reporting the average percent of grade 3 DLT across all
1000 trials and the percent of trials that have a DLT rate exceeding θ+δ, for δ = 0.1.
The threshold θ+ 0.1 is usually considered to be an indication of an excessive DLT
rate.

3.2.2 Efficiency

We present an estimate of the MTD curve using the average posterior medians of
the model parameters. Under the reparameterization, the estimate is

Ĉ =

{
(x∗, y∗) : y∗ =

(F−1(θ)− F−1(ρ̂200))− (F−1(ρ̂210)− F−1(ρ̂200))x∗

(F−1(ρ̂201)− F−1(ρ̂200)) + η̂x∗

}
, (3.1)

where F (.) is the logistic function and ρ̂200, ρ̂201, ρ̂210, η̂ are the average posterior
medians of the parameters ρ200, ρ201, ρ210, η from all m = 1000 trials. The next
measure of efficiency is the pointwise average relative minimum distance from the
true MTD curve to the estimated MTD curve. For i = 1, . . . ,m, let Ci be the
estimated MTD curve and Ctrue be the true MTD curve. For every point (x, y) ∈
Ctrue, let

d
(i)
(x,y) = sign(y′ − y)×min{(x∗,y∗):(x∗,y∗)∈Ci}((x− x

∗)2 + (y − y∗)2)1/2, (3.2)

where y′ is such that (x, y′) ∈ Ci. This is the minimum relative distance of the
point (x, y) on the true MTD curve to the estimated MTD curve Ci. If the point

(x, y) is below Ci, then d
(i)
(x,y) is positive. Otherwise, it is negative. Let

d(x,y) =
1

m

m∑
i=1

d
(i)
(x,y). (3.3)

This is the pointwise average relative minimum distance from the true MTD curve
to the estimated MTD curve and can be interpreted as the pointwise average bias in
estimating the MTD. Let ∆(x, y) be the Euclidian distance between the minimum
dose combination (0, 0) and the point (x, y) on the true MTD curve and 0 < p < 1.
The last measure of efficiency we consider is

P(x,y) =
1

m

m∑
i=1

I(|d(i)
(x,y)| ≤ p∆(x, y)). (3.4)
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This is the pointwise percent of trials for which the minimum distance of the
point (x, y) on the true MTD curve to the estimated MTD curve Ci is no more
than (100 × p)% of the true MTD. This statistic is equivalent to drawing a circle
with center (x, y) on the true MTD curve and radius p∆(x, y) and calculating the
percent of trials with MTD curve estimate Ci falling inside the circle. This will give
us the percent of trials with MTD recommendation within (100 × p)% of the true
MTD for a given tolerance p.

3.3 Results

Table 1 presents the average percent of DLTs varies between 8.28% and 43.53% for
the design with a binary indicator of DLT and 16.54% and 44.12% for the design
with ordinal toxicity grades. In addition, the percent of trials with an excessive
DLT rate is less than 1% for the first two scenarios. The last scenario still needs
further investigation since the results are the opposite as expected.

Figure 1 shows the plots of the true and estimated MTD curves obtained using
(3.1). The two designs are similar for both schemes EWOC and CRM in the four
scenarios.

Figure 2 displays the pointwise average relative minimum distance from the true
MTD curve to the estimated MTD curved under the four scenarios (1)-(4) as defined
in (3.3). Under scenarios (1) and (4), the proposed design with ordinal grades has
relatively smaller pointwise average bias, and the difference between two designs is
negligible for scenarios (2) and (3).

Figure 3 contains the pointwise percent of MTD recommendation for tolerance
p = 0.2 as defined in (3.4). Under scenario (1), the proposed design with ordinal
toxicity grades is better than the design with a binary indicator of DLT; under
scenarios (2) and (3), there is no difference between designs, and in scenario (4) the
binary designs present higher percent values than the ordinal designs for EWOC
and the difference is ignorable for CRM.
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Table 1: Average DLT rate and % trials: DLT rate > θ + 0.10 under scenarios
(1)-(4)

Scenario Design
Average % DLTs G3 %Trials: DLT rate G3 > 0.43

Binary Ordinal Binary Ordinal

1
EWOC 8.28 16.54 0.0 0.0
CRM 9.28 19.35 0.0 0.0

2
EWOC 25.28 23.55 0.0 0.0
CRM 27.77 25.93 0.0 0.0

3
EWOC 32.82 33.26 0.1 0.3
CRM 34.00 33.81 0.1 0.5

4
EWOC 43.53 44.12 44.2 48.6
CRM 39.50 41.43 11.5 27.0

scenario: 3 scenario: 4

scenario: 1 scenario: 2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 1: True and estimated MTD curves under scenarios (1)-(4)
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scenario: 3 scenario: 4

scenario: 1 scenario: 2
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Figure 2: Pointwise average relative minimum distance from the true MTD curve
to the estimated MTD curve under scenarios (1)-(4)

scenario: 3 scenario: 4

scenario: 1 scenario: 2
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Figure 3: Pointwise percent of MTD recommendation for p = 0.2 under scenarios
(1)-(4)
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4. Concluding Remarks

We described Bayesian adaptive designs for cancer phase I clinical trials using two
drugs with continuous dose levels taking into account lower grade toxicities. We
compared these results to Tighiouart et al. [33]. In each case, vague priors were
used for quantifying the toxicity profile of each agent a priori. We studied design
operating characteristics of the methodology under four practical scenarios. The
binary and ordinal designs are similar in efficiency and safety even though more
information is being used in the ordinal design. Further investigation under different
scenarios is still needed.
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