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Abstract
The paper presents an alternative method - based on the least squares criterion - to reconciliate

time series observed at different frequencies. The main advantage of this method - besides its
simplicity to reconciliate one or more high frequency (e.g. monthly) series with a low frequency
(e.g. quarterly) series - is that it enables the extrapolation of the reconciled monthly time series
beyond the last available quarter, avoiding the usual practice of forecasting an additional quarter to
achieve a soft reconciliation with the last months of the monthly series. It is worth noting however
that the “reconciled” monthly values obtained with this procedure will not add up (or average)
exactly to the corresponding values of the quarterly time series. The paper also compares the new
procedure with other methods widely spread in official statistical bureaus using real data from the
National Accounts of Argentina.

Key Words: Time series reconciliation, economic time series, official statistics, least squares
criterion.

1. Introduction

Worldwide, the national statistics offices publish economic indicators of different frequency
(usually monthly, quarterly and annual) to describe the evolution of certain macroeconomic
aggregates.1 In Argentina, for example, the National Accounts Office (INDEC) publishes
the Monthly Economic Activity Estimator (EMAE), quarterly estimates of the Gross Do-
mestic Product (GDP), an annual estimate of the GDP and a later review [5] of this last
estimate. However, it is known that monthly, quarterly and annual estimates of the same
macroeconomic aggregate hardly ever agree because each series comes from a different
set of information sources. To force the match among series of different frequencies, var-
ious econometric methods - known as reconciliation methods - have been proposed (see
[3] for a thorough review of these methods) which essentially distribute the discrepan-
cies between the high-frequency series and the low-frequency series along a new synthetic
high-frequency series that fits perfectly the given low-frequency series, under the assump-
tion that the low-frequency series is the one that best represents the “true” evolution of
the macroeconomic aggregate being studied. Such criterion is based on the reasonable as-
sumption that low-frequency indicators are more accurate because they incorporate more
information than their high-frequency counterparts. The declared goal of time series recon-
ciliation is to avoid confusing the public with different figures for the same macroeconomic
aggregate, even at the expense of transfering any measurement defect of the low-frequency
series to the reconciled high-frequency series.

A review of the most popular reconciliation methods used in national accounting [12]
reveals that most of them consider that there are one or more (observed) high-frequency
series that may be explained by a single true but unknown low-frequency series, plus ran-
dom noise. Such relationship may be written as a linear model subject to a set of linear
∗Universidad de Buenos Aires. Facultad de Agronomı́a. Departamento de Métodos Cuantitativos y Sis-

temas de Información. Av. San Martin 4453 - C1417DSE. Buenos Aires, Argentina
1In this paper “frequency” refers only to the reporting period of the referred series.
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constraints. For example, Denton’s method [4], considers the model

Dz = Dυ + ε subject to (q P)υ = y, ε ∼ N(0, σ2In)

where D is a differenciating matrix of -1 and 1, z is a single (observed) high-frequency
series, υ is the true ( but unknown) high-frequency series - to be estimated - and q P is a
zero-ones matrix that adds up the values of υ in order to match the low-frequency series
y. Denton’s model presents several undesirable features also shared by Chow-Lin’s [1] and
Fernández’s [6, 7] models. First, these models assume that the low-frequency series y is
observed without error, while z is observed with random noise. This assumption is crucial
because it implies that any revision of the low-frequency series operates as a new model-
specification, which in turn requires the computation of a new reconciled high-frequency
series even if the observed high-frequency series did not change. Second, these methods
are only useful for fitting high-frequency series to low-frequency series when the quantity
of periods of the high-frequency series matches exactly that of the low-frequency series. In
other words, these methods prevent the reporting of reconciled values in real-time. Third,
these models reverse the true causal relationship between high and low-frequency series
according to which the low-frequency series should result from the aggregation (adding or
averaging) of high-frequency series instead of the disaggregation of low-frequency series.
As presented, these models assume that the knowledge of the low-frequency series is prior
to the observation of the high-frequency series. Fourth, by establishing an exact (linear)
relationship between the true high-frequency and the low-frequency series, it assumes that
the latter is the simple aggregation of the (unobserved) high-frequency series, although in
practice it is sometimes verified that the observed high-frequency series has a completely
different origin than the low-frequency series. Fifth, these methods are useful if and only
if there is at least one high-frequency series is observable. However, if not a single high-
frequency series is observable but only some high-frequency “stylized facts” are known, the
model specification becomes doubtful and other methods (known as benchmarking meth-
ods) ought to be used instead.

2. Objectives

The aim of this paper is fourfold. First, we wish to develop a method for time series recon-
ciliation computable in real time, that is, each time a new monthly datum becomes avail-
able, particularly after the end of the last available quarter. Second, we want the reconciled
series not to show appreciable changes backward each time a new quarter is added. Third,
we require the method to be simple, computable with standard statistical software. Four,
we want to preserve the reconciled high-frequency series as a separate series, not necessar-
ily perfectly fitting the quarterly series, in order to make clear to the public that the low-
frequency series is not a straightforward aggregate of the high-frequency series. Regarding
this last point recall that most statistical offices only publish the reconciled high-frequency
series, so that the user can not keep track of the original (although revised) figures of the
original high-frequency series.

3. The Proposed Method

Consider a low-frequency time series y (e.g. an annual series) of m periods and a set of
k − 1 related high-frequency series (e.g. quarterly series) arranged in a n × k matrix Z
whose first column is 1n.2 Both y and Z represent the same underlying data generating

2Z may also include series of “stylized facts” or stationarity patterns known from the economic theory.
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process, so two models may be addressed to relate them,

Hy = Zβ1 + ε1, ε1 ∼ N
(
0, σ2Ω1

)
(1)

and

y = PZβ2 + ε2, ε2 ∼ N
(
0, σ2Ω2

)
, (2)

where H = Im ⊗ 1q, P = Im ⊗ 1′q/q, and q = n/m.3 As usual, β1 and β2 are k × 1 un-
known vectors and ε2 = Pε1 and ε1 are unobserved random errors, presumably identically
distributed although not independent. Under this specification, σ2Ω2 = σ2PΩ1P′, while
Ω1 is an unknown matrix. We shall assume, however, that Ω1 is a symmetric and positive
definite matrix, and is therefore invertible.

In the first model, H is a matrix that “expands” the low-frequency series y up to the
length of the high frequency series simply by repeating q times each element of y. In the
second model, P is a matrix that “shrinks” the high-frequency series in Z by averaging the
elements that correspond to the same low-frequency period. Matrix H is related to P by
the identities H′ = q P and, of course, by PH = Im. Although the first model may appear
a bit rough compared to the second it cannot be ignored as a possible representation of
the (linear) relationship between Z and y. To these models we may add two equations to
account for prior estimates of β1 and β2 in order to to facilitate the estimation of these
parameters in case the time series to be reconciled have very few observations.

b̃1 = β1 + ν1 and b̃2 = β2 + ν2, (3)

where ν1 ∼ N(0, σ2νΨ1), ν2 ∼ N(0, σ2νΨ2) and cov(ν1,ν2) = 0. Besides, we impose a
linear stochastic constraint on the estimatores b1 and b2 to guarantee that the estimates of
β1 and β2 will be as close as possible.

b2 − b1 = (β2 − β1) + (ν2 − ν1) . (4)

The complete set of equations may be understood in a seemingly unrelated regressions
(SUR) framework with prior information. The reader should not understand that b̃1 and b̃2

are prior estimates in a temporal sense, although past estimates of β1 and β2 can be used
as priors.

3.1 The Least-Squares Solution

To proceed with the parameter estimation we write the error sums of squares function
L(β1,β2)

L =
1

σ2
ε′1Ω

−1
1 ε1 +

1

σ2
ε′2Ω

−1
2 ε2 +

1

σ2ν
ν ′1Ψ

−1
1 ν1 +

1

σ2ν
ν ′2Ψ

−1
2 ν2+

+
1

σ2ν
(ν2 − ν1)

′W−1(ν2 − ν1),

where W is the covariance matrix of the random vector b2 − b1. It is not necessary to give
further details about W (besides being invertible) since the reader will soon realize that the

3We’ll assume that Z has exactly the same number of observations in both models, although this is not
strictly necesary
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term containing W−1 vanishes after deriving the first-order conditions. Then, the first order
conditions for this minimization problem min{L} are, respectively,

∂L

∂b1
= −2 1

σ2
Z′Ω−11 Hy + 2

1

σ2
Z′Ω−11 Zb1 + 2

1

σ2ν
Ψ−11

(
b1 − b̃1

)
= 0

∂L

∂b2
= −2 1

σ2
Z′P′Ω−12 y + 2

1

σ2
Z′P′Ω−12 PZb2 + 2

1

σ2ν
Ψ−12

(
b2 − b̃2

)
= 0,

which yield the linear system[
Ψ−11 + αZ′Ω−11 Z 0k

0k Ψ−12 + αZ′P′Ω−12 PZ

] [
b1

b2

]
=

[
αZ′Ω−11 Hy +Ψ−11 b̃1

αZ′P′Ω−12 y +Ψ−12 b̃2

]
.

whereα = σ2ν/σ
2. From the expression above it’s easy to see that b1 is a linear combination

of the well known generalized least squares estimator (GLS) of β1 and the prior estimator
b̃1. Operating conveniently, the solution for b1 is

b1|Z, b̃1 =
(
Ψ−11 + αZ′Ω−11 Z

)−1 Z′Ω−11 Z
(
Z′Ω−11 Z

)−1 (
αZ′Ω−11 Hy +Ψ−11 b̃1

)
=

[
Ik +

1

α

(
Z′Ω−11 Z

)−1
Ψ−11

]−1
b1

GLS +
(
Ik + αΨ1Z′Ω−11 Z

)−1 b̃1. (5)

In the same fashion, but recalling that σ2Ω2 = σ2PΩ1P′,

b2|Z, b̃2 =

{
Ik +

1

α

[
Z′P′

(
PΩ1P′

)−1 PZ
]−1

Ψ−12

}−1
b2

GLS+

+
[
Ik + αΨ2Z′P′

(
PΩ1P′

)−1 PZ
]−1

b̃2. (6)

The reader may check that ∂2L/∂β∂β′ is a positive definite matrix provided Ω1 and Ψ1

are also positive definite, so that the optimality conditions are fulfilled. Expressions (5) and
(6) show that b may be interpreted as a weighted average of bGLS and b̃. Moreover, adding
up the two weighting matrices yields the identity matrix Ik, in the same way scalar weights
add up to unity in an index, as can be seen below(

Ik +
1

α
A−1

)−1
+ (Ik + αA)−1 = (Ik + αA) (Ik + αA)−1 = Ik,

where A is either Ψ1Z′Ω−11 Z or Ψ2Z′P′Ω−12 PZ. For completeness, we next give the
expression of the variance of b1. The reader may deduce var(b2) by analogy.

var
(
b1|Z, b̃1

)
= σ2

[
Ik +

1

α

(
Z′Ω−11 Z

)−1
Ψ−11

]−1 (
Z′Ω−11 Z

)−1 [Ik +
1

α
Ψ−11

(
Z′Ω−11 Z

)−1]−1
= σ2

{[
Ψ1 +

1

α

(
Z′Ω−11 Z

)−1] (
Ψ−11 Z′Ω−11 ZΨ−11

)−1 [
Ψ1 +

1

α

(
Z′Ω−11 Z

)−1]}−1
.

(7)

Before moving to the next section it is relevant to make a brief digression to show how Ψ1

is related to Ψ2. First, note that if b̃1 is the GLS estimator of β1 computed from an earlier
time series, then

1

σ2ν
Ψ−11 =

1

σ̃2
(
Z′0U′

)
(UZ0) =

1

σ̃2
T′T.
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This is so because Ω1 is a symmetrix positive-definite matrix as well as Ω−11 . Then, Ω−11

may be decomposed into the product of an upper triangular marix by its traspose, that
is Ω−11 = U′U, which is the well-known Cholesky decomposition.4 Second, note that
expanding conveniently the inverse of σ̃2Ψ2 we can write

1

σ2ν
Ψ−12 =

1

σ̃2
(
Z′0U′

) [
UΩ1P′

(
PΩ1P′

)−1 PΩ1U′
]
(UZ0)

=
1

σ̃2
T′
{(

U−1
)′ P′ [PU−1

(
U−1

)′ P′]−1 PU−1
}

T.

Or, in a more compact way,

1

σ2ν
Ψ−12 =

1

σ̃2
T′
[
V
(
V′V

)−V′
]

T,

where V′ = PU−1 and the ordinary inverse of V′V was replaced by a generalized inverse
exploiting the fact that the linear projector between brackets is invariant to the chosen gen-
eralized inverse.

3.2 Methodological Background for estimating α, Ω1 and b̃1

At this point, the reader is completely aware that our primary interest is to compute b1 for
which we need first to estimate α, Ω1 and get a prior estimate of β1. For this reason, the
estimation of b1 must necessarily be performed in several stages, one to find Ω1, another
to get b̃1, a third one to estimate α, and a final step to estimate b1. However, to justify the
procedure that we will follow at each stage we must first introduce some methodological
background useful to work out the protocol.

Regarding the first step, recall that Ω1 and Ω2 are symmetric positive definite matrices
with Toeplitz-type structure, so the first column of each matrix contains all its distinct
elements, n elements in case of Ω1 andm in case of Ω2.5 Nevertheless, as the first element
of each matrix is equal to 1, we got m − 1 unknown elements of Ω2 to be estimated and
n− 1 elements in case of Ω1. So, even if Ω2 were perfectly known it would be impossible
to estimate the unknown n− 1 elements of Ω1. To circumvent this limitation, we propose
to replace the unknown elements of Ω1 by the vector that minimizes the overall sum of
elements of the first column of Ω1 subject to a set of linear constraints to guarantee that the
relationship Ω2 = PΩ1P′ will hold. For example, if ε2 followed an autorregressive process
of order 1, with 0 < ρ < 1, the first column of Ω1 could be replaced by the solution to the
linear programming problem

min
x

{
1′nx
}

subject to x1 = 1, A2x = c∗, A3x ≥ 0n, and A4x ≥ 0n−1,

where the solution x is the solution that replaces the first column of Ω1; A2 is a set of linear
constraints that relates the first column of Ω1 to the first column of Ω2; c is the first column
of Ω2 multiplied by q2 and c∗ is the same as c except that the element c∗1 = c1/2; A3 = In;
and A4 is a differencing matrix of 1 and −1, introduced to guarantee that xi − xi+1 >
0. Under the given specification all the elements of c∗ are positive. At this point, the
covariance structure Ω1 that arises from x is completely non-parametric. In the appendix

4U is a non-singular square matrix because all its diagonal elements are real positive numbers if and only if
Ω1 is a positive-definite matrix.

5In fact, both matrices may be decomposed as the product of a triangular matrix by its transpose (the well
known Cholesky decomposition), i.e. Ω = LL′, where L is a lower triangular matrix, and the first column of
L is exactly equal to the first column of Ω.
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we show the system of linear constraints written more explicitly. If ε2 followed and AR(1)
process with −1 < ρ < 0 the elements of c∗ would be alternately positive and negative,
the even elements positive and the odd negative. In such case, if ε1 also follows and AR(1)
process with ρ < 0, A−3 would be a n × n diagonal matrix with entries (−1)|i−j| and
A−4 = (RA3R′)A4 where R = [In−1, 0(n−1)×1]. The problem to be solved may be written

min
x

{(
A−3 1n

)′ x} subject to x1 = 1, A2x = c∗, A−3 x ≥ 0n, and A−4 x ≥ 0n−1.

The solutions to the linear programing problems addressed above are just solutions, not
estimators of the elements of Ω1, regardless the rationale of the assumptions that support
them. Nevertheless, the solutions are unique although the reader should keep in mind that
the covariance matrix arising from x might not be invertible. We will return to this point
later.

Another issue related to the estimation of b1 is the availability of a prior estimate b̃1.
To understand how to make available such an estimate, note that the limit when n tends to
infinity for the given solutions b1 and b2 is

lim
n→∞

[
b1

b2

]
= lim

n→∞

[ (
Ψ−11 /n+ αZ′Ω−11 Z/n

)−1 0k/n
0k/n

(
Ψ−12 /n+ αZ′P′Ω−12 PZ/n

)−1
]
×

× lim
n→∞

[
αZ′Ω−11 Hy/n+Ψ−11 b̃1/n

αZ′P′Ω−12 y/n+Ψ−12 b̃2/n

]
= lim

n→∞

[
b1

GLS

b2
GLS

]
,

where we see that b1 and b2 approach the standard GLS estimator as the terms containing
Ψ−1 and b̃ vanish. Then, if long enough series of a previous “base year” were available,
prior estimates of β1 and β2 could be obtained simply by computing the standard GLS
estimates of β1 and β2 for those series, as long as Ω1 and Ω2 were also available. In prac-
tice, when working with index numbers, this may be achieved with series spaced enough
to guarantee that the errors of the prior and current series are truly uncorrelated.

Another issue related to the computation of b1 is the estimation of α. To achieve this
goal, two estimation strategies have been proposed (see [8, 7.4, p. 227]). One would be
to start with an initial estimate of α, and iteratively compute b1, the vector of residuals
e1 = Hy− Zb1, a new estimate of σ2 and α, a new b1 and so on until stability is reached.
The second strategy would be just a two step estimation of α departing from the GLS
estimate of σ2 and σ2ν which is typically assumed to be known. A more recent alternative is
that suggested by Liu et al. [10] to optimally estimate the product wα, where w is a tuning
factor introduced by Schaffrin and Toutenbourg [16] to account for the degree of belief on
the prior estimate of the parameters. We shall not deepen into this issue as it is out of the
scope of the paper.

3.3 The Time Series Reconciliation Protocol

The background given above allows us to propose a multistep procedure for estimating
b1. The first step is to find Ω2. We believe that a reasonable structure for Ω2 would
be an autocorrelated one, due to the fact that this kind of structure is a common feature
in economic time series. To that end, we average the values of Z for each time period
of y and estimate the parameters ρ of Ω2(ρ) following Cochrane-Orcutt’s [2] iterative
procedure. We could also estimate ρ by other methods (e.g. Durbin-Watson’s method
described in most econometric texts) but Cochrane-Orcutt’s method has the advantage of
returning b2

GLS as a by-product. Following the same procedure, we can also compute b̃2

as long as a previous sample {Z0, y0}, were available.
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Once we got b̃2 and Ω2(ρ̂) we can either estimate Ψ2 and then α following the re-
cursive procedure proposed by Theil and Goldberger [14] in the context of the so called
“mixed” estimation, or move directly to the computation of Ω̂1 which in turn allows the
estimation of σ2 and σ2νΨ1. Ω̂1 is the solution to the linear programing problem proposed
above, and once it is available we are able to compute b̃1 in the same fashion as b̃2 and
σ2νΨ1. Finally, we compute b1 and the interpolated time series Z+b1 where the asterisk
indicates that the high-frequency series extend up to the last available value. Below is the
protocol just described (in a more straightforward version) and in the appendix the reader
may find a computer code written in Euler Math Toolbox’s matrix language to carry it out.

(1) Fit a linear regression of PZ on y following the Cochrane-Orcutt procedure and as-
semble the correlation matrix Ω̂2(ρ) using the estimated correlation coefficients in
ρ̂.

(2) Solve the linear programming problem min{1′nx} subject to Ax ≥ d, where A and
d refer to the set of constraints defined in the previous section. Normalize x so that
x1 = 1. Then compute the correlation coefficients ρh implicit in Ω̃1(x). For instance,
if Ω1 is presumed to be an AR(1) structure and n is big enough, ˆ̂ρ may be computed
by equating 1′nx to the upper bound 1′x ≤ 1/(1− ˆ̂ρ).

(3) Compute b̂1
GLS replacing Ω1 by its proxy Ω̂1 assembled from ˆ̂ρ computed in the

previous step. Also compute the “mean square error” (MSE) s21 = e′1e1/(n − k).
To invert Ω̂1 either resort to the close form of the inverse (only possible for simple
covariance structures) or decompose Ω̂1 in the SVD form and invert each singular
value skipping those close to zero.

(4) Compute b̃1 and the MSE in the same way as in the previous step but from an earlier
sample. Compute also α̂ ≈ s20/s21 and Ψ̂1 ≈ α̂−1(Z′0Ω̂

−1
1 Z0)

−1 where the subscript
0 means that Z is the matrix of prior high-frequency series.

(5) Finally, compute b̂1 using expression (5), and the sought reconciled series Ĥy =
Z+b̂1, where Z+ stands for the low-frequency series up to the last available figure.

3.4 Extending the Procedure to Time-Varying Parameters

The reconciliation method described above satisfies our initial objectives, in particular re-
garding simplicity, real-time reconciliation and robustness to backward revisions. However,
its simplicity also implies some assumptions that might appear too rigid, or even unreal-
istic, when dealing with real time series. One of them is the assumption that the parame-
ters of the model that relates high-frequency to low-frequency series remain constant over
time. Particularly for long time series the practitioner might find this assumption difficult
to justify. To overcome this weakness we extend our five-step-procedure to the field of
flexible estimation as developed by Kalaba and Tesfatsion [9] in the context of models with
time-varying parameters. We shall not delve into the theory of flexible estimation (called
Flexible Least-Squares) but rather bring it up to improve the aforementioned procedure.
The reader can find a thorough explanation of the theory behind FLS in Kalaba and Tes-
fatsion’s 1989 paper and in the bibliography cited therein, and a more concise explanation
but extended to constrained estimation in appendix B. For our purposes, we shall simply
extend Kalaba and Tesfatsion’s original estimator by adding a term to the incompatibility
cost function in order to incorporate a matrix B̃1 of prior estimates, defined as

vec(B̃1) = vec(B1) + vec(ν1), vec(ν1) ∼ N
(
0, In ⊗Ψ−11

)
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where In ⊗Ψ−11 is an n × k covariance structure. Although this is a general form which
admits a prior estimate for each period, a more realistic situation would involve only one
prior estimate from the past series, and only for β1. Anyway, rewriting the first order
conditions for the extended incompatibility cost function (see appendix) we get

∂C(B1, µ, n)

∂vec(B̂1)
= 2

1

σ2
Z̃′Ω−11 Z̃ vec(B̂1) + 2

µ

σ2
D′D vec(B̂1)− 2

1

σ2
Z̃′Ω−11 H̃y

+ 2
1

σ2ν

(
In ⊗Ψ−11

) [
vec(B̂1)− vec(B̃1)

]
= 0.

Then, proceeding in the same fashion as in (5) we get

vec(B̂1) =

[
In×k +

1

α

(
Z̃′Ω−11 Z̃ + µD′D

)−1 (
In ⊗Ψ−11

)]−1
vec(B̂1)

GLS+

+
[
In×k + α

(
In ⊗Ψ−11

)−1 (Z̃′Ω−11 Z̃ + µD′D
)]−1

vec(B̃1). (8)

where the weighting matrices add up to In×k. An alternative expression for vec(B̂1), which
under certain circumstances may be more desirable from a computational standpoint, is

vec(B̂1) =
[
α
(

Z̃′Ω−11 Z̃ + µD′D
)
+
(
In ⊗Ψ−11

)]−1
× (9)

×
[
α Z̃′Ω−11 Hy +

(
In ⊗Ψ−11

)
vec(B̃1)

]
.

So far, nothing was said about the tuning parameter µ. Kalaba and Tesfatsion did not
attempt to estimate it in their original paper but rather keep it as a tuning parameter chosen
by the practitioner. A naive criterion would be to set µ = 1, that is, to give the same
weight to the squared sum of errors and to the squared distances of consecutive vectors of
estimated parameters. We will follow this criterion hereafter, but we will return to the point
at the end of the paper.

4. Example: Reconciling Argentine’s EMAE with the quarterly GDP

As an example, we reconcile next INDEC’s Monthly Economic Activity Estimator’s (EMAE,
for its acronym in spanish) growth rates with the quarterly Gross Domestic Product (GDP)
growth rate.6 The EMAE (see Methodological Report) is a provisional index of the GDP
published 50 to 60 days after the end of the reference month. It is a Laspeyres index that
“tries to replicate the methods for calculating the quarterly and/or annual GDP, to the extent
allowed by the availability of sources of information for a shorter time period.” The index
is constructed by aggregation of sectorial indeces that correspond to tabulation categories
of the ISIC-3 classification. Because these indexes are provisional, the EMAE has to be re-
vised to incorporate information missing in the first edition or corrections informed by the
primary sources. EMAE’s revision policy allows only two corrections of the first published
value. However, at the end of the quarter, the series is reconciled with the quarterly GDP,
which in turn is revised several times over the two years after the first publication. There-
fore, the first published monthly growth rates remain available on INDEC’s official website
only for one or two months, after which they are replaced by corrected or reconciled figures.

6We use growth rates instead of the index value because INDEC only published growth rates between
January 2017 and September 2015.
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The figure below shows EMAE’s first reported interannual growth rates, the quarterly
GDP interannual growth rates reconciled with EMAE’s last revised series (following Den-
ton’s method) and overlapped with them two series reconciled using the estimators (5) and
(8). The period covered by both series (EMAE and GDP) is nearly five years, starting in
January 2010 and ending in September 2015. We omit figures after September 2015 be-
cause they are still under review. The same time series but between January 2007 and De-
cember 2009 were used to compute the prior estimates b̃1 and B̃1. The formula (8) assumes
implicitly that each column vector of B1 is estimated from a different prior. Nevertheless,
a more realistic possibility would be to use the last estimate of β1 from the previous period
as the prior estimate of every column vector of B1, since it contains all the information
available from the old series. Therefore, we decided to compute the reconciled series with
the following slightly modified version of (8).

Ĥy = Z̃
[

In×k +
1

α

(
Z̃′Ω−11 Z̃ + µD′D

)−1 (
In ⊗Ψ−11

)]−1
vec(B̂1)

GLS+

+ Z
[
In×k + α

(
In ⊗Ψ−11

)−1 (Z̃′Ω−11 Z̃ + µD′D
)]−1

b̃1.

Simple inspection of the graph shows that the FLS series fits better the quarterly series
than the GLS series, although both alternatives perform pretty well. The graph also shows
that our procedure returns a softer monthly series and avoids spurious values at the end
of the series that are a typical outcome of traditional reconciliation methods. Recall that
the common practice to overcome this problem is to forecast the low-frequency series one
period ahead and then reconcile the whole series as if all the figures were obtained by the
same data generating process. This practice, however, also requires forecasts of monthly
future values to match the period covered by the quarterly series. Then, the accuracy of
the reconciliation procedure, at least at the end of the series, relies heavily on the method
chosen to forcast future periods. This issue might obscure the whole reconciliation method.

5. Concluding Remarks

We present an alternative method to reconciliate time series observed at different frequen-
cies. The main advantage of our method is that it enables the extrapolation of the reconciled
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monthly time series beyond the last available figure of the low frequency series, avoiding
the usual practice of forecasting one period ahead to achieve a soft reconciliation with the
last months of the monthly series. It is worth noting however that the reconciled high
frequency values obtained with this method will not add up (or average) exactly to the cor-
responding values of the quarterly time series.

Some future research guidelines arise both from the theoretical development of the
proposed method and its practical implementation in a typical National Accounts situation.
First, it is crucial to develop an optimal weighting factor µ between error sums of squares
and the sums of squared distances of the estimated parameters in the flexible reconciliation
procedure. Second, it would be desible to combine models (1) and (2) in order to obtain
a superior estimator than that developed in the paper. Third, it would be useful to extend
the flexible estimator to the minimization of the squared distances between estimated pa-
rameters kept fixed over arbitrary time periods, in accordance with the revision policy of
each statistical bureau. Another issue that has not yet been explored is the introduction of
stylized facts in the reconciliation process, which is perfectly valid in the context of the
method described above.
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A. System of Linear Constraints of the Linear Programing Problem used to
compute Ω1

We show next the set of linear constraints proposed to compute Ω1. Note that the first row
of the left hand side matrix sets x1 = 1, the next m + n rows correspond to the equality
constraint A2x = c∗ and the inequality constraint A3x ≥ 0 , and the last n − 1 rows
correspond to the system A4x ≥ 0. The first row of the subset A3x ≥ 0, however, is
superfluous because the constraint is implicit in the equality x1 = 1, although we retain the
inequality for didactical reasons. 7



q/2 q − 1 . . . 1 0 0 . . . 0 0 . . . 0 0
0 1 . . . q − 1 q q − 1 . . . 1 0 . . . 0 0
0 0 . . . 0 0 1 . . . q − 1 q . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 0 . . . 0 0 . . . 2 1
1 0 . . . 0 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 0 . . . 0 0 . . . 0 1
1 −1 . . . 0 0 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 0 . . . 0 0 . . . 1 −1





x1
x2
x3
x4
...

xm+1

xm+2
...

xi−1
xi
xi+1

...
xn



=
=
=
=
...
=
≥
...
≥
≥
≥
...
≥



c1/2
c2
c3
...
cm
0
...
0
0
0
...
0



B. Flexible Least Squares Estimation

Under the FLS criterion the parameters of the model vary along observations. This means
that, given a set of regressors and observations {X, y}, the underlying model may be writen
as

y = X̃ vec(B) + ε, ε ∼ N
(
0, σ2In

)
7The second element of the right hand side vector is equal to q2/2 as the first element of Ω2 (and all its

diagonal elements) is expected to be equal to 1.
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where y is the usual n× 1 vector of observations, X̃ is a n× (n× k) block diagonal matrix
arranged as shown below, vec(B) stands for the (n×k)×1 vectorized matrix of parameters
(see below) and ε is the usual error term of normal i.i.d random variables. Then,

X̃ =



x1 0 . . . . . . 0

0 . . . . . .
...

...
. . . xi

. . .
...

...
. . . . . . 0

0 . . . . . . 0 xn


and vec (B) =


β1
...
βi
...
βn

 .

The function to be minimized, which Kalab and Tesfatsion (1989) called “incompatibility
cost function”, is

C(β, µ, n) =
n∑
i=1

(yi − xiβi)
2 + µ

n−1∑
i=1

(
βi+1 − βi

)′ (
βi+1 − βi

)
.

However, a much easier and straight forward way of writing C(β, µ, n) in matrix notation
would be

C(B, µ, n) =
[
y− X̃ vec (B)

]′ [y− X̃ vec (B)
]
+ µ vec (B)′D′D vec (B)

= y′y− 2 y′X̃ vec (B) + vec (B)′
(

X̃′X̃ + µD′D
)

vec (B) . (10)

D is a (n− 1)k × (nk) differentiation matrix, so that D′D is equal

D′D =



−I 0 . . . . . . 0

I −I . . .
...

0 I −I . . .
...

...
. . . . . . . . . 0

...
. . . I −I

0 . . . . . . 0 I


×



−I I 0 . . . . . . 0

0 −I I . . .
...

...
. . . . . . . . . . . .

...
...

. . . −I I 0
0 . . . . . . 0 −I I


where I is a k × k identity matrix.

D′D =



I −I 0 . . . . . . 0

−I 2 I −I . . .
...

0 −I 2 I −I . . .
...

...
. . . . . . . . . . . . 0

...
. . . −I 2 I −I

0 . . . . . . 0 −I I


Deriving the incompatibility cost function and equating to 0 we get the so-called “normal”
equations and the least squares solution for vec(B) which will be unique if and only if(

X̃′X̃ + µD′D
)

is a full rank matrix.

vec(B̂)OLS =
(

X̃′X̃ + µD′D
)−1

X̃′y. (11)
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B.1 Constrained Flexible Least Squares

Under certain circumstances it may be desirable to keep the parameters’ estimates constant
over an arbitrary period of time. Such circumstances may arise when the revision policy
prevents any change in the model specification within a certain time span (tipicaly an year)
or when some robustness on the parameters’ estimation is desired. To achieve this goal the
incompatibility cost function may be constrained by a set of linear equations of the type
Rvec(B) = r. For instance, if the estimated parameters are required to remain constant
over two consecutive periods, the matrices of constraints would be

R =


I −I 0 0 . . . 0 0
0 0 I −I . . . 0 0
...

. . .
...

...
0 . . . . . . . . . . . . I −I

 and r =


0
0
...
0

 .
where R is a (n − 1)k × nk and r is an (n − 1)k × 1 zero column vector. Then, the
constrained incompatibility cost function is

C∗ =
[
y− X̃ vec (B)

]′ [y− X̃ vec (B)
]
+ µ vec (B)′D′D vec (B) + 2λ′ [R vec (B)− r]

which in turn leads to the system of normal equations[ (
X̃′X̃ + µD′D

)
R′

R 0

] [
vec(B̂)

λ

]
=

[
X̃′y
λ

]
,

or to the more explicit parameter-estimator

vec(B̂)RLS|µ = vec(B̂)OLS −
(

X̃′X̃ + µD′D
)−1 [

R
(

X̃′X̃ + µD′D
)−1

R′
]−1
×

×
[
R vec(B̂)OLS − r

]
. (12)
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