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Abstract 

A process is periodically sampled, however there might be errors in assessing whether 
an item meets specifications. This, in turn, has an effect on correctly classifying 
whether the process is in or out of control. Markov chain techniques prove useful in the 
analysis of various aspects. 
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1. Introduction 

 
In Taguchi, Elsayed, and Hsiang(1989) and Taguchi, Chowdhury, and Wu (2004) on-line 
process control by attributes involves inspecting every hth item produced. When the process 
is in control, it is assumed to have some high fraction of conforming items, close to 100 %. 
That is, an item conforms to specifications with probability p1 very close to 1 when the 
process is in control. When the process goes out of control, there is a shift to p2 (< p1) for 
the fraction conforming, i.e., the probability that the selected item is really conforming. 
When an inspected item is considered nonconforming, the process is stopped for 
adjustment.  
 
Several authors have studied this scenario with various assumptions. Nayebpour and 
Woodall (1993) assume the time until the shift from p1 to p2 follows a geometric 
distribution. That is, the items produced are modeled as independent and identically 
distributed trials with a constant probability π for each item to be the first item produced 
with the process out of control. Since only every hth item is inspected, the first item 
produced with the process out of control may not be inspected and thus there may be some 
initial number of items produced before the possibility of the detection of this shift even 
exists. 
 
Borges, Ho, and Turnes (2001) note that the inspection process itself may be subject to 
possible diagnostic errors, meaning that in a single classification a conforming item might 
be mistakenly classified as nonconforming. We let pCN denote the probability of this type 
of misclassification. In addition, a nonconforming item might mistakenly be judged as 
conforming and we let pNC be the probability of this misclassification. We will also define 
probability pCC (pNN) of the correct classification that a conforming (nonconforming) item 
is classified as conforming (nonconforming). This suggests making repeated classifications 
of each inspected item before making the final decision as to whether to judge the item as 
conforming or nonconforming. If the item has been judged in this final decision to be 
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nonconforming, the process is judged out of control and is stopped for adjustment. 
Otherwise, the process is considered in control and is not stopped for adjustment. Because 
of the possibility of misclassification errors during the repeated classifications, it is possible 
that an item can be judged to be nonconforming and thus that the process is judged out of 
control, when it actually is not. Still it is stopped for adjustment. However, in that case, no 
cause can be found and the process then is restarted and we assume has not somehow been 
put out of control by the stopping and searching for a cause. On the other hand, it is also 
possible that the process goes out of control, but is not detected. In that case, it remains out 
of control until this is detected at a later time, when it will be adjusted and be put back in 
control.  
 
In Trindade, Ho, and Quinino (2007), the rule for the final decision of whether the inspected 
item is conforming, and thus whether the process is in control, is based on a pre-specified 
number of repeated classifications and using majority rule. Quinino, Colin, and Ho (2009) 
consider a rule in which the item is judged to be conforming and the process to be in control 
if and only if there are k classifications as conforming before f classifications as 
nonconforming, where k and f are some pre-specified positive integers. We will use the 
acronym TCTN since the decision is based on the total number of classifications as 
conforming and nonconforming. Smith and Griffith (2009) and Griffith and Smith (2011) 
have further studied this rule and another rule called CCTN. 
 
In this paper, we continue the study of the alternative rule CCTN in which the final 
determination that an item is conforming, and thus the process is in control, if and only if 
k consecutive classifications as conforming occur before a total of f classifications as 
nonconforming.  
 

2. Probabilistic Analysis 

 
Proposition 1:  If the item being inspected is conforming (nonconforming), the probability 
that it is judged to be conforming is    

𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) = 𝐶𝐶𝑇𝑁(𝑝𝐶𝐶)

= 1 − (1 − 𝑝𝐶𝐶
𝑘 )

𝑓 
 

𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑛𝑜𝑛𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) = 𝐶𝐶𝑇𝑁(𝑝𝑁𝐶)

= 1 − (1 − 𝑝𝑁𝐶
𝑘 )

𝑓

 
PROOF:   

Consider the following Markov chain {Xn} with state space  
 

,f)} {( s < f}   k, r  {(r,s): 000   
 

where Xn=(r,s) means that after the nth test there are r consecutive successes and a total of 
s failures. Let pCC  ( pNC) be the probability that a conforming (nonconforming) item is 
classified as conforming. In the analysis below, we let p will be equal to pCC or pNC 

depending on the true nature of the item. The transition probabilities are of the form 
 

P(Xn = (r + 1,s)| X(n-1) = (r,s)) = p and P(Xn = (0,s + 1)| X(n-1) = (r,s)) = q. 
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The process begins in state (0,0), and absorbed in state (k,0) with probability pk, i.e. 
 

P(absorbed in state (k,0))=pk 

 
or moves to the next column with probability 1-pk . Thus, to be absorbed in state (k,1), the 
chain must first move out of column 1 (not be absorbed in state (k,0)) and must go from 
the top to the bottom of the column 2. The probability of doing this is pk(1-pk). Hence, 
 

P(absorbed in state (k,1))=pk(1- pk). 

 

In general for i<f, reaching state (k,i) requires failure to reach absorbing state in the first i 
columns and to reach state (k,i) of the (i+1)st column. This occurs with probability 
𝑝𝑘(1 − 𝑝𝑘)𝑖, thus 
 

P(absorbed in state (k,i))= pk(1- pk)i for i < f. 

 

On the other hand, the chain is absorbed into state (0,f) with probability (1-pk)f, hence  
 

P(absorbed in state (0,f))= (1-pk)f. 

 

From these observations we can conclude that the probability of judging it nonconforming 
is (1-pk)f and the probability of judging conforming is 1-(1-pk)f . 
 

Proposition 2:  If the process is in control, the probability that it is judged to be in control 
is 

 
𝑃𝐼𝐼 = 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)                     

= 𝑝1𝐶𝐶𝑇𝑁(𝑝𝐶𝐶) +  (1 − 𝑝1)𝐶𝐶𝑇𝑁(𝑝𝑁𝐶) 
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Proof:  If it is in control, then the inspected item is conforming with probability p1 and 
nonconforming with probability 1-p1. In light of proposition 1 and using the law of 
total probability the result follows. 
 

Proposition 3:  If the process is out of control, the probability that is judged to be in control 
is 

𝑃𝑂𝐼 = 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙| 𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
= 𝑝2𝐶𝐶𝑇𝑁(𝑝𝐶𝐶) + (1 − 𝑝2)𝐶𝐶𝑇𝑁(𝑝𝑁𝐶) 

 
Proof:  If out of control, then inspected item conforms with probability p2 and fails to 
conform with probability 1 – p2.  In light of proposition 1 and using the law of total 
probability the result follows. 
 

Proposition 4:  When the process is out of control, the average run length is 1

1−𝑃𝑂𝐼
. 

Proof:  This is geometric distribution with parameter 1 − 𝑃𝑂𝐼. 
 

Proposition 5: When the process is in control, the average run length is 1

1−𝑃𝐼𝐼
. 

Proof:  This is geometric distribution with parameter 1 − 𝑃𝐼𝐼. 
 
 

3. Short Term Analysis Using Markov Chains 

 

In this section we will use Markov Chains to study the probability of judging the process 
to be out of control when it is in control as well as judging it to be out of control when it is 
out of control. We will also look at the distribution of the time until the process is declared 
out of control using first passage probabilities. To this end, we create a Markov Chain 
whose state space contains four ordered-pairs whose elements are one or zeros. A one 
stands for in control and a zero stands for out of control. The first coordinate is the actually 
state of the process and second coordinate is the judgement. For example, (1,1) means that 
at a decision point the process in in control and judged to be in control. Whereas, (0,1) 
means that the process is actually out of control but judged to be in control. Let 𝜃 =  1 −
(1 − 𝜋)ℎ. So, 1 − 𝜃 =  (1 − 𝜋)ℎ is the probability that the process has remained in control 
while those h items have been produced. The one-step probability matrix for the transitions 
of this Markov Chain are given in the following transition matrix. 
 

(𝟏, 𝟏) (𝟎, 𝟏) (𝟏, 𝟎) (𝟎, 𝟎)
(𝟏, 𝟏) (1 − 𝜃)𝑃𝐼𝐼 𝜃𝑃𝑂𝐼 (1 − 𝜃)𝑃𝐼𝑂 𝜃𝑃𝑂𝑂

(𝟎, 𝟏) 0 𝑃𝑂𝐼 0 1 − 𝑃𝑂𝐼

(𝟏, 𝟎) 0 0 1 0
(𝟎, 𝟎) 0 0 0 1

 

 
Using standard Markov Chain theory one can use first-passage probabilities to find the 
probability distribution of the time until the process is declared out of control. One can also 
use first-step analysis to find the probability of absorption into (1,0) and into (0,1). Note: 
𝑃𝐼𝑂 = 1 - 𝑃𝐼𝐼 and 𝑃𝑂𝑂 = 1 - 𝑃𝑂𝐼. 
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3. Long Term Analysis Using Markov Chains 

 
We can modify the analysis of the proceeding section in order to study the long term 
behavior of this decision process. Whenever we reach state (1,0) or state (0,0) the process 
is judged out of control. When the cause is found and corrected or when it is determined 
that the process is in control and there is no cause the process is put back online and the 
transitions are like the transition from state (1,1). Thus in analyzing the long term behavior 
of the decision process the rows in the new matrix that correspond to transitions out of (1,0) 
and (0,0) are like the transitions out of state (1,1). Therefore, the one-step transition 
probability matrix useful for long term analysis is given below.  
 

(𝟏, 𝟏) (𝟎, 𝟏) (𝟏, 𝟎) (𝟎, 𝟎)
(𝟏, 𝟏) (1 − 𝜃)𝑃𝐼𝐼 𝜃𝑃𝑂𝐼 (1 − 𝜃)𝑃𝐼𝑂 𝜃𝑃𝑂𝑂

(𝟎, 𝟏) 0 𝑃𝑂𝐼 0 1 − 𝑃𝑂𝐼

(𝟏, 𝟎) (1 − 𝜃)𝑃𝐼𝐼 𝜃𝑃𝑂𝐼 (1 − 𝜃)𝑃𝐼𝑂 𝜃𝑃𝑂𝑂

(𝟎, 𝟎) (1 − 𝜃)𝑃𝐼𝐼 𝜃𝑃𝑂𝐼 (1 − 𝜃)𝑃𝐼𝑂 𝜃𝑃𝑂𝑂

 

 
This matrix corresponds to an irreducible, aperiodic, positive recurrent Markov Chain and 
the limiting probabilities exist and are independent of the starting state. These probabilities 
can be interpreted as the long term proportion of time spent in each state and can be found 
by solving a system of linear equations.  
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