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Abstract 
Minato (2016) approached the problem of statistical calibration of energy-engineering-expert-model (E3M) 
estimates of residential electricity end-use consumption amounts with Bayesian multilevel models. The 
Residential Energy Consumption Survey (RECS), conducted by the U. S. Energy Information 
Administration (EIA), provided the data on building characteristics as well as energy end choices and uses. 
With the survey data and weather data, engineering models were formulated to estimate various end-use 
energy consumption amounts. However, the Bayesian multilevel models did not incorporate the 
engineering models’ estimation errors or the administrative billing data’s processing errors. In this paper, 
we directly model the uncertainties in those errors within the Bayesian framework. Survey weighting errors 
are also modeled for population inferences. 
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1. Introduction 

 
When there are no direct, accurate, and affordable measurements of end-use energy consumption amounts, 
we are left to model and estimate the amounts somehow. The U. S. Energy Information Administration 
(EIA) conducts a national complex-design survey (Residential Energy Consumption Survey (RECS)), 
collecting data on housing unit characteristics, energy choices, end-use energy equipment, and household 
energy behavior from sample housing units (U. S. Energy Information Administration, 2016). From energy 
suppliers, requested are monthly consumption amounts and expenditures data of the survey respondents, 
which we annualize to produce total fuel consumption amounts for each survey respondent, e.g., annual 
total electricity consumed. Weather data are also acquired from NOAA (National Oceanic and Atmospheric 
Administration) and linked to the survey respondents via the closest weather stations (National Oceanic 
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and Atmospheric Administration, 2016). With the survey variables in RECS and the administrative weather 
data, energy experts construct engineering-based models and produce end-use fuel consumption estimates 
for each survey respondent, e.g., annual electricity consumed for space heating by the respondent. See 
Minato (2016) for more details. These expert estimates of end-use fuel consumption amounts are calibrated 
against the total fuel consumption amount for each survey respondent. Finally, they are weighted by the 
survey weights to make population inferences. Here, we consider electricity and the following end uses: 
space heating, air conditioning (A/C), water heating, refrigerators, and others for the calendar year of 2009. 
The “others” include: lighting, stoves/ovens/stove-ovens, dishwashers, clothes washers and dryers, kitchen 
appliances, and the other electric end uses that were surveyed in the 2009 RECS. Note, therefore, that there 
may exist unknown or non-surveyed electricity end uses. A list of end uses covered by the 2009 RECS is 
given in Appendix A as well as in Minato (2016). 
 
There are many calibration methods. The simplest is a uniform calibration model, i.e., applying one 
multiplicative factor to all end-use estimates so that they simply sum to the total annual energy consumption 
value for a given home. Minato (2016) tried a Bayesian multilevel regression modeling approach in 
differentially calibrating survey-weighted end-use estimates. With the varying differential multiplicative 
factors 𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽3, 𝛽𝛽4, and 𝛽𝛽5 for space heating (𝑥𝑥1), A/C (𝑥𝑥2), water heating (𝑥𝑥3), refrigerators (𝑥𝑥4), and 
others (𝑥𝑥5), respectively, and the varying multiplicative Census Region adjustment factor 𝛼𝛼, Minato (2016) 
modeled: 
 

𝑦𝑦𝑖𝑖  ~ normal�𝛼𝛼𝑟𝑟[𝑖𝑖](𝛽𝛽1e𝑥𝑥1𝑖𝑖 + 𝛽𝛽2e𝑥𝑥2𝑖𝑖 + 𝛽𝛽3e𝑥𝑥3𝑖𝑖 + 𝛽𝛽4e𝑥𝑥4𝑖𝑖 + 𝛽𝛽5e𝑥𝑥5𝑖𝑖),𝜎𝜎(𝑟𝑟,e)[𝑖𝑖]� > 0, 
 
where the second parameter in the normal distribution notation is the standard deviation, 𝑖𝑖 indexes the 
housing unit respondent, 𝑟𝑟[𝑖𝑖] indicates the Census Region that respondent 𝑖𝑖 belongs to, e is one of the actual 
values that classify the respondents by end-use combination, and (𝑟𝑟, e)[𝑖𝑖] identifies a group of respondents 
that belong to the Census Region 𝑟𝑟 and the end-use combination e. The Census Regions are Northeast 
Census Region (𝑟𝑟 = 1), Midwest Census Region (𝑟𝑟 = 2), South Census Region (𝑟𝑟 = 3), and West Census 
Region (𝑟𝑟 = 4). The priors were give as follows (for 𝑒𝑒 = 13 as an example, which is equivalent to 𝑒𝑒 = 14 in 
the current paper):  
 

𝛼𝛼𝑟𝑟 ~ �
Normal�1,  0.5� > 0, if 𝑟𝑟 = Northeast or Midwest
Normal�1,  1� > 0, if 𝑟𝑟 = South or West               

; 

𝛽𝛽113 ~ Normal�1,  0.5� > 0 for 𝑥𝑥1 (space heating) when 𝑒𝑒 = 13; 
𝛽𝛽213 ~ Normal�1,  0.5� > 0 for 𝑥𝑥2 (A/C) when 𝑒𝑒 = 13; 
𝛽𝛽313 ~ Normal�1,  0.5� > 0 for 𝑥𝑥3 (water heating) when 𝑒𝑒 = 13; 
𝛽𝛽413 ~ Normal�1,  0.5� > 0 for 𝑥𝑥4 (refrigerator) when 𝑒𝑒 = 13; 
𝛽𝛽513 ~ Normal�1,  1� > 0 for 𝑥𝑥5 (others) when 𝑒𝑒 = 13; and 
𝜎𝜎𝑟𝑟,𝑒𝑒 ~ Normal�0, |𝑤𝑤δ𝑟𝑟,𝑒𝑒�������| 6⁄ � > 0 for 𝑟𝑟 and 𝑒𝑒 pairs, 

 
where |𝑤𝑤δ𝑟𝑟,𝑒𝑒�������| is the absolute value of the observed weighted average of 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑥𝑥1𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑥𝑥2𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑥𝑥3𝑖𝑖 −
𝑤𝑤𝑖𝑖𝑥𝑥4𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑥𝑥5𝑖𝑖 when the respondent 𝑖𝑖 belongs to the end-use combination 𝑒𝑒 and the Census Region 𝑟𝑟 and 
has the survey weight of 𝑤𝑤𝑖𝑖. 
 
One of the next steps suggested in Minato (2016) was the “examination of robustness against bad data, i.e., 
inaccurate engineering-based end-use estimates” and Minato (2016) proposed to “consider modeling the 
engineering-based end-use estimate errors and the survey weighting errors more directly as measurement 
errors”. 
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In this paper, we are going to incorporate the energy-engineering-expert model (E3M) estimation errors 
and the administrative billing data processing errors. We directly model uncertainties in those errors within 
the Bayesian framework. Survey weights errors are also modeled for population inferences, and the 
modeling is done separately from the total and end-use consumption amounts modeling. To summarize, we 
have the following ingredients and processing steps that lead to population inferences: 
 

I. Survey variables + Administrative weather data => E3M-ing of end-use electricity consumption 
amounts; 

II. E3M estimates of end-use electricity consumption amounts + Administrative annualized total 
electricity consumption value => Bayesian calibration; and 

III. Calibrated E3M end-use electricity consumption estimates + Housing unit survey weights => 
Population inferences of total and end-use electricity consumption amounts.  

 
2. Ingredients to Population Inferences 

 
For a 2009 RECS sample respondent home 𝑖𝑖 (where 𝑖𝑖 = 1, …, 12,083), let 𝑦𝑦𝑖𝑖 be the raw annual total 
electricity consumption value, 𝑥𝑥1𝑖𝑖 be the raw annual space heating electricity consumption estimate by the 
space heating E3M, 𝑥𝑥2𝑖𝑖 be the raw annual A/C electricity consumption estimate by the A/C E3M, 𝑥𝑥3𝑖𝑖 be 
the raw annual water heating electricity consumption estimate by the water heating E3M, 𝑥𝑥4𝑖𝑖 be the raw 
annual refrigerators electricity consumption estimate by the refrigerator E3M, and 𝑥𝑥5𝑖𝑖 be the raw annual 
others electricity consumption estimate by the others E3M. The 𝑦𝑦𝑖𝑖 turns out to be positive for all 𝑖𝑖 in the 
2009 RECS sample data, which is not surprising for electricity. Meanwhile, the 2009 RECS survey 
responses indicate that not every respondent owns and uses all of the five end uses with electricity, which 
is also non-surprising. For a given respondent, a consumption amount of any non-owned and non-used end 
use is deduced to be zero, where the information about the ownership and usage comes from the 
respondent’s survey responses themselves. In this sense, accuracy of survey responses is critical for the 
existential deduction as well as for the end-use consumption estimation by the expert models. 
 
Ideally, the sum of the annual end-use electricity consumption estimates equals the administrative 
annualized total electricity consumption value for each home 𝑖𝑖: 
 

𝑦𝑦𝑖𝑖 = 𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑖𝑖 + 𝑥𝑥3𝑖𝑖 + 𝑥𝑥4𝑖𝑖 + 𝑥𝑥5𝑖𝑖 for each 𝑖𝑖. 
 
Further, with “correct” survey weights in terms of data-inclusion probabilities, our weighted estimators of 
population consumption amounts would be unbiased in the Horvitz-Thompson sense. 
 
Realistically, however, there are many sources and types of errors in the E3M end-use electricity 
consumption estimates, in the annual total electricity consumption values, and in the survey weights.  
 
First, energy-engineering experts could misspecify end-use models. Misspecification errors or 
approximations may arise due to the limited set of variables available from the survey, as survey 
interviewing may not allow too technical a question. Within the survey variables, response or measurement 
errors could occur, and those errors are propagated into the expert end-use models. Similarly with the 
administrative weather data. Weather measurement instruments may malfunction, and linking of 
measurement locations, i.e., weather stations, to the sample housing units is only approximate. In this paper, 
all these errors of different sources and types are combined as one meta-error in the expert modeling and 
estimation of end-use electricity consumption amounts. 
 
Second, utility companies’ administrative billing data may not be perfect, though it is expected to be quite 
reliable. Metering of electricity consumption amounts may not be exact. There is a chance of administrative 
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(human, mechanical, or eletronic) errors in recording and billing. Wrong billing data for survey respondents 
could be sent to EIA. Further, as an annual total electricity consumption value is required for each survey 
respondent, imputation of consumption amounts for any missing bills in the year and annualization of 
multiple billing amounts are both necessary. Those data processing are often model-based or approximate, 
and the annual total electricity consumption values are subject to these processing errors as well as the 
administrative errors.  
 
Finally, survey weights are prone to sampling frame errors and survey (or unit) non-responses. Because of 
the over- or/and under-coverage of the target population, the design weights calculated from a given 
sampling frame are only approximate. Ineffective survey operations could cause a large number of survey 
non-responses, which would further compromise validity of the weights. Adjustments of survey weights 
against these problems are model-based, and the models are “wrong” or at best approximate. All the 
weighting errors are inherited into the final survey analysis weights. 
 
With all these errors, what we often do or can do is to ignore them or to assume they would just cancel out. 
However, if we have any information about the size or/and direction of errors, random or systematic, we 
might as well try using the information to improve our estimation or inferences. And, accepting that such 
information is uncertain, we try to assess and quantify the degree of uncertainty through some probability 
models, pursuing naturally a Bayesian approach. 
 

3. Model Specifications and Justifications—An Internal “Preregistration” of Analysis 
 
Schematically, we consider the values in Table 1 as our data. There are 12,083 respondents in the 2009 
RECS, all of which say they use electricity for at least one of the end uses: space heating, A/C, water 
heating, refrigerators, and others. We partially pool them by the so-called end-use combination (indexed by 
𝑒𝑒), which is defined by the existence and absence of the five electricity end uses in Table 2. Note that 25 −
1 = 31 combinations are possible but only 14 are observed in the survey data. For the weights error models, 
we partially pool the respondents by Census Region (indexed by 𝑟𝑟), independently from the end-use 
combination pooling. Our model is multilevel but not hierarchical—one level by end-use group for the 
total, space heating, A/C, water heating, refrigerators, and others consumption amounts and another level 
by Census Region for the weights. 
 
The number of respondents in 𝑒𝑒 = 14 (full end-use combination) is 3,331, while that in 𝑒𝑒 = 3 is 1. The 
numbers of respondents in 𝑒𝑒 = 1, …, 6 are small, as they are those respondents who responded they did not 
use (electric) refrigerators, which is possible but rare in America. For illustrations, we describe our models 
for 𝑒𝑒 = 14 in this paper. On the other hands, the numbers of respondents in Census Regions are as follows: 
𝑟𝑟 = Northwest: 2,266; 𝑟𝑟 = Midwest: 2,843; 𝑟𝑟 = South: 4,090; and 𝑟𝑟 = West: 2,884. 
 
By internal preregistration, we mean that we first specify all the models for our data and prior knowledges, 
including our simulation algorithms and strategies, before estimation and inferences, whose framework is 
also prefixed as Bayesian here.
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Table 1: Schematic Data for End-Use Electricity Consumption Amounts Inferences 
 

Housing 
Unit: 
𝑖𝑖 

Census 
Region: 

𝑟𝑟 

Weight: 
𝑤𝑤 

Total 
Electricity 

Consumption: 
𝑦𝑦 

Expert End-Use Estimates End-Use 
Combination: 

𝑒𝑒 Space 
Heating: 
𝑥𝑥1 

A/C: 
𝑥𝑥2 

Water 
Heating: 
𝑥𝑥3 

Refrige- 
rators: 
𝑥𝑥4 

Others: 
𝑥𝑥5 

1 Northeast 𝑤𝑤1 𝑦𝑦1  𝑥𝑥21 𝑥𝑥31 𝑥𝑥41 𝑥𝑥51 12 

2 South 𝑤𝑤2 𝑦𝑦2 𝑥𝑥12 𝑥𝑥22 𝑥𝑥32 𝑥𝑥42 𝑥𝑥52 14 

3 South 𝑤𝑤3 𝑦𝑦3  𝑥𝑥23 𝑥𝑥33 𝑥𝑥43 𝑥𝑥53 12 

4 Midwest 𝑤𝑤4 𝑦𝑦4 𝑥𝑥14   𝑥𝑥44 𝑥𝑥54 7 

5 West 𝑤𝑤5 𝑦𝑦5 𝑥𝑥15   𝑥𝑥45 𝑥𝑥55 7 

6 Northeast 𝑤𝑤6 𝑦𝑦6  𝑥𝑥26 𝑥𝑥36  𝑥𝑥56 3 

… … … … … … … … … … 
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Table 2: Electricity End-Use Consumption Combinations 
 

 

End-Use 
Combination:  

𝑒𝑒 

Space 
Heating: 
𝑥𝑥1 

A/C: 
𝑥𝑥2 

Water 
Heating: 
𝑥𝑥3 

Refrigerators: 
𝑥𝑥4 

Others: 
𝑥𝑥5 

Sample 
Size: 
𝑛𝑛 
 

1 0 0 0 0 1 7 
2 0 0 1 0 1 2 
3 0 1 1 0 1 1 
4 1 0 0 0 1 2 
5 0 1 0 0 1 1 
6 1 1 1 0 1 6 
7 1 0 0 1 1 437 
8 0 0 0 1 1 1,056 
9 1 1 0 1 1 1,983 
10 0 0 1 1 1 244 
11 0 1 0 1 1 3,784 
12 0 1 1 1 1 834 
13 1 0 1 1 1  395 
14 1 1 1 1 1 3,331 
All      12,083 

 
3.1 Uncertainties in the Annual Total Electricity Consumption Amounts 𝒚𝒚𝒊𝒊 and the Annual 
End-Use Electricity Consumption Estimates by the E3M estimates 𝒙𝒙𝒙𝒙𝒊𝒊, 𝒙𝒙𝒙𝒙𝒊𝒊, 𝒙𝒙𝒙𝒙𝒊𝒊, 𝒙𝒙𝒙𝒙𝒊𝒊, and 
𝒙𝒙𝒙𝒙𝒊𝒊 
For each housing unit 𝑖𝑖 in the illustrative end-use combination 𝑒𝑒 = 14 (the latter subscript is omitted), we 
set up standard measurement error models (Stan Development Team, 2017b) for the administrative annual 
total electricity consumption amount 𝑦𝑦𝑖𝑖 and the E3M annual end-use electricity consumption estimates 𝑥𝑥1𝑖𝑖, 
𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖, 𝑥𝑥4𝑖𝑖, and 𝑥𝑥5𝑖𝑖. Let 𝑦𝑦𝑖𝑖′ be the true value of 𝑦𝑦𝑖𝑖 and 𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, and 𝑥𝑥5𝑖𝑖′ be the true values of 
𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖, 𝑥𝑥4𝑖𝑖, and 𝑥𝑥5𝑖𝑖, respectively. The data generating models are:   
 

𝑦𝑦𝑖𝑖  | 𝑦𝑦𝑖𝑖′,  𝜎𝜎𝑦𝑦𝑖𝑖  ~ Normal(𝑦𝑦𝑖𝑖′, 𝜎𝜎𝑦𝑦𝑖𝑖) > 0, with 𝜎𝜎𝑦𝑦𝑖𝑖 = 0.05 × 𝑦𝑦𝑖𝑖′, 
𝑥𝑥1𝑖𝑖 | 𝑥𝑥1𝑖𝑖′,  𝜎𝜎𝑥𝑥1𝑖𝑖  ~ Normal(𝑥𝑥1𝑖𝑖′,𝜎𝜎𝑥𝑥1𝑖𝑖) > 0, with 𝜎𝜎𝑥𝑥1𝑖𝑖 = 0.125 × 𝑥𝑥1𝑖𝑖′, 
𝑥𝑥2𝑖𝑖 | 𝑥𝑥2𝑖𝑖′,  𝜎𝜎𝑥𝑥2𝑖𝑖  ~ Normal(𝑥𝑥2𝑖𝑖′,𝜎𝜎𝑥𝑥2𝑖𝑖) > 0, with 𝜎𝜎𝑥𝑥2𝑖𝑖 = 0.125 × 𝑥𝑥2𝑖𝑖′, 
𝑥𝑥3𝑖𝑖 | 𝑥𝑥3𝑖𝑖′,  𝜎𝜎𝑥𝑥3𝑖𝑖  ~ Normal(𝑥𝑥3𝑖𝑖′,𝜎𝜎𝑥𝑥3𝑖𝑖) > 0, with 𝜎𝜎𝑥𝑥3𝑖𝑖 = 0.125 × 𝑥𝑥3𝑖𝑖′, 
𝑥𝑥4𝑖𝑖 | 𝑥𝑥4𝑖𝑖′,  𝜎𝜎𝑥𝑥4𝑖𝑖  ~ Normal(𝑥𝑥4𝑖𝑖′,𝜎𝜎𝑥𝑥4𝑖𝑖) > 0, with 𝜎𝜎𝑥𝑥4𝑖𝑖 = 0.125 × 𝑥𝑥4𝑖𝑖′, and 
𝑥𝑥5𝑖𝑖 | 𝑥𝑥5𝑖𝑖′,  𝜎𝜎𝑥𝑥5𝑖𝑖  ~ Normal(𝑥𝑥5𝑖𝑖′,𝜎𝜎𝑥𝑥5𝑖𝑖) > 0, with 𝜎𝜎𝑥𝑥5𝑖𝑖 = 0.25 × 𝑥𝑥5𝑖𝑖′. 

 
The annual total electricity consumption amount 𝑦𝑦𝑖𝑖 for a given 𝑖𝑖 depends on or are conditional on two 
parameters and is distributed folded-normally with those parameters specifying the mean and standard 
deviation of the distribution. This gives us the likelihood function. However, we define the standard 
deviation as a function of the mean, using the coefficient of variation (CV), reducing the number of 
unknown parameters to one. We use CV to represent the level of our uncertainty throughout this paper. For 
𝜎𝜎𝑦𝑦𝑖𝑖, we choose CV to be 0.05. This says that most or about 95 percent of the measurement errors are 
assumed to fall within 10 percent of the mean or true value 𝑦𝑦𝑖𝑖′ from the mean, which is also the mode.  
 
Similarly for the E3M annual end-use electricity consumption estimates for a given 𝑖𝑖, using folded normal 
distributions. However, for each 𝑖𝑖, we set CV to be 0.125 for 𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, and 𝑥𝑥4𝑖𝑖′ while CV is set to be 
0.25 for 𝑥𝑥5𝑖𝑖′. In other words, for space heating, A/C, water heating, and refrigerators, the expert estimation 
error is assumed to be identical and approximately in the range of ±25 percent of the true end-use 
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consumption amount from the true end-use consumption amount, while for the others end use, the expert 
error is larger by the factor of two and approximately in the range of ±50 percent of the true end-use 
consumption amount from the true end-use consumption amount. As we mentioned earlier, the others end 
use by a respondent 𝑖𝑖 is composed of multiple and specific electricity end uses, which are contained in the 
housing unit survey questionnaire and whose usages are claimed by the particular respondent. Measurement 
errors in different end-use consumption amounts in the others end-use group are expected to vary. Based 
on all these variability and uncertainty, we assume the overall measurement error in 𝑥𝑥5𝑖𝑖 to be twice as large 
as that in each of 𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖, and 𝑥𝑥4𝑖𝑖. 
 
The prior distribution of the true total electricity consumption amount 𝑦𝑦𝑖𝑖′ of 𝑖𝑖 is assumed to be a folded 
normal distribution with the mean defined by the sum of true end-use electricity consumption amounts 
𝑥𝑥1𝑖𝑖′ + 𝑥𝑥2𝑖𝑖′ + 𝑥𝑥3𝑖𝑖′ + 𝑥𝑥4𝑖𝑖′ + 𝑥𝑥5𝑖𝑖′ and with the standard deviation of 𝜎𝜎𝑖𝑖. We do not specify 𝑦𝑦𝑖𝑖′ to be exactly 
equal to 𝑥𝑥1𝑖𝑖′ + 𝑥𝑥2𝑖𝑖′ + 𝑥𝑥3𝑖𝑖′ + 𝑥𝑥4𝑖𝑖′ + 𝑥𝑥5𝑖𝑖′ or we do not set 𝜎𝜎𝑖𝑖 to be exactly 0, mainly because the others end-
use group, by design, does not include end uses that are not included in the housing unit survey, as discussed 
earlier. That is, we expect there may exist some unknown other end uses of electricity in each 𝑖𝑖. 
 
Also, erroneous omissions or commissions of some end uses are possible due to misreporting by the survey 
respondent. For example, a respondent might mistakenly reports possession or/and usage of some 
miscellaneous electric appliances mentioned in the survey. A response error or misreporting could happen 
not only in the others end-use group but also with any of the main end uses we consider here: space heating, 
A/C, water heating, and refrigerators. However, we note that we implemented stricter response data quality 
assurance processes with respect to those main end uses during and after the survey interviewing. Also, 
identification and correction of possible misreporting of at least space heating and A/C are relatively easy, 
as their consumption amounts are often seasonal and substantial and any corresponding (usually monthly) 
electricity consumption billing data could show unexpected patterns in the series of consumption values. 
 
Thus, the true (unknown) total and end-use electricity consumption amounts themselves, including zero 
values, are determined deductively or conditionally with the ownership and usage responses by the 
respondent. The respondent’s true ownership and non-zero usage of each end use may be modeled with 
some binary outcome probability model. If we condition on this true status, the relation between the true 
total electricity consumption amount and the sum of the true end-use electricity consumption amounts 
becomes exact: 𝑦𝑦𝑖𝑖′ = 𝑥𝑥1𝑖𝑖′ + 𝑥𝑥2𝑖𝑖′ + 𝑥𝑥3𝑖𝑖′ + 𝑥𝑥4𝑖𝑖′ + 𝑥𝑥5𝑖𝑖′ (here allowing zero consumption values) for each 𝑖𝑖. We, 
however, do not pursue this approach at this time. 
 
The hyper prior distribution of (𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, 𝑥𝑥5𝑖𝑖′)⊤, which is also the prior distribution relative to 
(𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖, 𝑥𝑥4𝑖𝑖, 𝑥𝑥5𝑖𝑖)⊤, is assumed to be a folded multivariate normal distribution. Its mean vector is 
written as (𝜇𝜇𝑥𝑥1′, 𝜇𝜇𝑥𝑥2′, 𝜇𝜇𝑥𝑥3′, 𝜇𝜇𝑥𝑥4′, 𝜇𝜇𝑥𝑥5′)⊤ such that 𝜇𝜇𝑥𝑥1′ = 𝜇𝜇𝑥𝑥2′ = 𝜇𝜇𝑥𝑥3′ = 𝜇𝜇𝑥𝑥4′ = 𝜇𝜇𝑥𝑥5′ = 15,800 kWh / 5, where 
15,800 kWh is the empirical weighted-average annual total electricity consumption value in the end-use 
combination 𝑒𝑒 = 14, calculated with the current data 𝑦𝑦𝑖𝑖, and where 15,800 kWh is uniformly or equally 
distributed to the five end-use groups. More specifically, for a given end-use combination 𝑒𝑒, the empirical 
weighted average is the estimated population total of the annual total electricity consumption amounts 
divided by the estimated occupied housing unit population size, rounded to the nearest hundred. We make 
no prior assumptions about the relations among 𝜇𝜇𝑥𝑥1′, 𝜇𝜇𝑥𝑥2′, 𝜇𝜇𝑥𝑥3′, 𝜇𝜇𝑥𝑥4′, and 𝜇𝜇𝑥𝑥5′, which is the reason for the 
uniform or non-informative distribution of 15,800 kWh over the five means. Empirical weighted averages 
for the other end-use combinations before uniform allocation are given in Table 3. 
 

Table 3: Empirical Weighted-Average Annual Total Electricity Consumption Values 
   

End-Use Combination (𝑒𝑒) Number of End Uses Weighted Average (kWh) 
1 1 5,800 
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2 2 2,200 
3 3 1,200 
4 2 3,500 
5 2 1,900 
6 4 9,100 
7 3 6,600 
8 2 5,600 
9 4 11,100 

10 3 83,00 
11 3 9,400 
12 4 11,600 
13 4 12,300 
14 5 15,800 

 
We let Ʃ be the variance-covariance matrix of the folded multivariate normal distribution of 
(𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, 𝑥𝑥5𝑖𝑖′)⊤, and we decompose it as follows: 
  

Ʃ = 𝚫𝚫𝛀𝛀𝚫𝚫 = 𝚫𝚫𝐋𝐋𝐋𝐋⊤𝚫𝚫, 
   
where 𝚫𝚫 is the diagonal matrix of scales and 𝛀𝛀 is the correlation matrix that is further Cholesky-decomposed 
to the lower-triangular matrix 𝐋𝐋. The scale parameters in 𝚫𝚫 are specified as: 

 
𝛿𝛿𝑥𝑥1′ = 1 × 𝜇𝜇𝑥𝑥1′, 
𝛿𝛿𝑥𝑥2′ = 1 × 𝜇𝜇𝑥𝑥2′, 
𝛿𝛿𝑥𝑥3′ = 1 × 𝜇𝜇𝑥𝑥3′, 
𝛿𝛿𝑥𝑥4′ = 1 × 𝜇𝜇𝑥𝑥4′, and 
𝛿𝛿𝑥𝑥5′ = 1 × 𝜇𝜇𝑥𝑥5′. 

 
Here, CV equals 1 for each scale parameter, which makes the folded multivariate normal distribution to be 
rather weakly informative or quite flat over the realistic values of the true end-use electricity consumption 
amounts. That is, marginally for 𝑥𝑥1𝑖𝑖′, most of the probability mass falls between 0 and 𝜇𝜇𝑥𝑥1′ + 2 × 𝛿𝛿𝑥𝑥1′ = 
3 × 𝜇𝜇𝑥𝑥1′ = 3 × (15,800 kWh / 5) = 9,480 kWh. Likewise for 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, and 𝑥𝑥5𝑖𝑖′. (It is certainly possible 
to make the distribution even flatter. However, we have seen some artefactual convergence problems in the 
log posterior distribution with the current data, specifically some bimodality in the distribution.)  
 
The lower-triangular matrix 𝐋𝐋 of the correlation matrix 𝛀𝛀 is assumed to be distributed as the LKJ 
distribution with the shape parameter ν of 2. LKJ stands for Lewandowski, Kurowicka, and Joe, and the 
distribution was originally developed to generate random correlation matrices for a given dimension 
(Lewandowski et al., 2009). The shape parameter ν (> 0) controls the distribution of expected correlations 
among the parameters 𝜇𝜇𝑥𝑥1′, 𝜇𝜇𝑥𝑥2′, 𝜇𝜇𝑥𝑥3′, 𝜇𝜇𝑥𝑥4′, and 𝜇𝜇𝑥𝑥5′. The ν value of 1 would specify the uniform 
distribution over the correlation matrices. The ν value of 2 here weakly gives a little more mass around the 
identity matrix, i.e., the zero-correlation matrix. (The ν values less than one would shape the distribution to 
dip around the identity matrix.) 
 
Finally, back to the standard deviation 𝜎𝜎𝑖𝑖 of the prior distribution of the true total electricity consumption 
amount 𝑦𝑦𝑖𝑖′ of 𝑖𝑖, we assume it is distributed as a folded normal distribution with the mean  𝜅𝜅𝑖𝑖 = 0 and the 
standard deviation 𝜏𝜏𝑖𝑖 = 0.025 × (𝑥𝑥1𝑖𝑖′ + 𝑥𝑥2𝑖𝑖′ + 𝑥𝑥3𝑖𝑖′ + 𝑥𝑥4𝑖𝑖′ + 𝑥𝑥5𝑖𝑖′). By 𝜅𝜅𝑖𝑖 = 0, we assume 𝑦𝑦𝑖𝑖′ is distributed 
around 𝑥𝑥1𝑖𝑖′ + 𝑥𝑥2𝑖𝑖′ + 𝑥𝑥3𝑖𝑖′ + 𝑥𝑥4𝑖𝑖′ + 𝑥𝑥5𝑖𝑖′ without any systematic “bias”. The CV of 0.025 represents our level 
of uncertainty in the discrepancy of 𝑦𝑦′𝑖𝑖 from 𝑥𝑥1𝑖𝑖′ + 𝑥𝑥2𝑖𝑖′ + 𝑥𝑥3𝑖𝑖′ + 𝑥𝑥4𝑖𝑖′ + 𝑥𝑥5𝑖𝑖′—with 𝑦𝑦𝑖𝑖′ mostly within ±5 
percent of 𝑥𝑥1𝑖𝑖′ + 𝑥𝑥2𝑖𝑖′ + 𝑥𝑥3𝑖𝑖′ + 𝑥𝑥4𝑖𝑖′ + 𝑥𝑥5𝑖𝑖′ from 𝑥𝑥1𝑖𝑖′ + 𝑥𝑥2𝑖𝑖′ + 𝑥𝑥3𝑖𝑖′ + 𝑥𝑥4𝑖𝑖′ + 𝑥𝑥5𝑖𝑖′ for each 𝑖𝑖. 
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3.2 Uncertainties in the Survey Weights 𝒘𝒘𝒊𝒊 
For the housing unit 𝑖𝑖 in the Census Region 𝑟𝑟, the survey weight 𝑤𝑤𝑖𝑖 is distributed folded-normally with the 
true weight value 𝑤𝑤𝑖𝑖′ as the mean and the standard deviation of 𝜎𝜎𝑤𝑤𝑖𝑖:  
 

𝑤𝑤𝑖𝑖 | 𝑤𝑤𝑖𝑖′, 𝜎𝜎𝑤𝑤𝑖𝑖  ~ Normal(𝑤𝑤𝑖𝑖′,𝜎𝜎𝑤𝑤𝑖𝑖) > 0. 
 
Again this gives us the likelihood. We specify the prior for the true weight value 𝑤𝑤𝑖𝑖′ by a folded normal 
distribution with the mean 𝜇𝜇𝑤𝑤′�𝑟𝑟[𝑖𝑖]� and the standard deviation 𝜎𝜎𝑤𝑤′�𝑟𝑟[𝑖𝑖]�, implementing the partial pooling 
of the respondents by the Census Region 𝑟𝑟, where 𝑟𝑟[𝑖𝑖] indicates the Census Region to which 𝑖𝑖 belongs:  
 

𝑤𝑤𝑖𝑖′ | 𝜇𝜇𝑤𝑤′�𝑟𝑟[𝑖𝑖]�,𝜎𝜎𝑤𝑤′�𝑟𝑟[𝑖𝑖]� ~ Normal(𝜇𝜇𝑤𝑤′[𝑟𝑟[𝑖𝑖]],𝜎𝜎𝑤𝑤′[𝑟𝑟[𝑖𝑖]]) > 0, 
 
where  

𝜇𝜇𝑤𝑤′[Northeast] = 9,200,  
𝜇𝜇𝑤𝑤′[Midwest] = 9,100,  
𝜇𝜇𝑤𝑤′[South] = 10,300,   
𝜇𝜇𝑤𝑤′[West] = 8,600,  
𝜎𝜎𝑤𝑤′[Northeast] = 0.125 × 𝜇𝜇𝑤𝑤′[Northeast],  
𝜎𝜎𝑤𝑤′[Midwest] = 0.125 × 𝜇𝜇𝑤𝑤′[Midwest],  
𝜎𝜎𝑤𝑤′[South] = 0.125 × 𝜇𝜇𝑤𝑤′′[South], and  
𝜎𝜎𝑤𝑤′[West] = 0.125 × 𝜇𝜇𝑤𝑤′[West]. 

 
The means 𝜇𝜇𝑤𝑤′�𝑟𝑟[𝑖𝑖]� are given by the “average” weights of the Census Regions. For example, the Northeast 
Census Region had about 20.8 million occupied housing units in 2009 according to the American 
Community Survey figures and the 2009 RECS had 2,266 respondents; thus, the average weight is 
calculated by dividing 20.8 million by 2,266 as 9,179, which is rounded to the nearest hundred as 9,200. 
The means are more or less in the same magnitude, though South Census Region gets the slightly larger 
mean of 10,300.  
 
The standard deviations 𝜎𝜎𝑤𝑤′�𝑟𝑟[𝑖𝑖]� of 𝑤𝑤𝑖𝑖′ represents our prior assessment of how the true weights might be 
spread around the means, using CV’s. Given our choice of stratification, the initial target numbers of 
completed interviews or of the respondents were fixed for the strata, based on the target level of expected 
precision or standard error in the sample estimates of key survey variables. There was no oversampling of 
any particular groups of housing units. Thus, the initial design weights are expected to be similar in size. 
Possible variation in the weights come from differential survey response propensities/rates and weight 
adjustments to correct for them. The nonresponse adjustments were model-based and also poststratification-
based. CV of 0.125 is specified equally to each Census Region and to be on the conservative side, i.e., to 
be quite non-informative. 
 
The standard deviation 𝜎𝜎𝑤𝑤𝑖𝑖 of 𝑤𝑤𝑖𝑖 represents our level of uncertainty in each calculated weight 𝑤𝑤𝑖𝑖. We set 
for a given 𝑖𝑖: 
 

𝜎𝜎𝑤𝑤𝑖𝑖= 0.05 × 𝑤𝑤𝑖𝑖′, 
 
with CV of 0.05. In other words, we do not think the weighting error is that large for each 𝑖𝑖—within about 
10 percent of the true weight value 𝑤𝑤𝑖𝑖′ from the true weight value. 
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Note that the models for survey weights, i.e., the likelihoods and priors, are independent from those for the 
total and end-use electricity consumption amounts. In fact, all of our likelihoods are defined with the 
housing-unit-level parameters, though the respondents are partially pooled. Thus, we need conduct posterior 
distribution simulations for each housing unit. We first group our respondents by the end-use combination 
and then within the end-use combination we draw posterior samples for the true weight values 𝑤𝑤𝑖𝑖′ as well 
as for the true total and end-use electricity consumption amounts 𝑦𝑦𝑖𝑖′, 𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, and 𝑥𝑥5𝑖𝑖′ and for the 
lower-triangular correlation matrix 𝐋𝐋. 
 

4. Posterior Distributions of Unknown Values 
 
The goal of Bayesian inference is to get a “good” joint posterior distribution of unknown values of our 
interest. With independence assumptions among the unknowns, we would further like to get a good 
marginal distribution of each key unknown. We hope the current data would increase our information about 
the unknowns in the sense that the posterior distributions become improved “priors” distributions or that 
the posterior distributions are more informative than the prior distributions. 
 
In our current problem, the key unknowns are 𝑦𝑦𝑖𝑖′, 𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, 𝑥𝑥5𝑖𝑖′, and 𝑤𝑤𝑖𝑖′, which are all independent 
from each other and from 𝐋𝐋. The joint posterior distributions are specified by the likelihoods and priors 
provided in the previous section: 
 

p(𝑦𝑦𝑖𝑖′, 𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, 𝑥𝑥5𝑖𝑖′,𝐋𝐋 | 𝑦𝑦𝑖𝑖 , 𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖, 𝑥𝑥4𝑖𝑖, 𝑥𝑥5𝑖𝑖) 
∝ p(𝑦𝑦𝑖𝑖 , 𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, 𝑥𝑥3𝑖𝑖, 𝑥𝑥4𝑖𝑖, 𝑥𝑥5𝑖𝑖 | 𝑦𝑦𝑖𝑖′, 𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, 𝑥𝑥5𝑖𝑖′,𝐋𝐋) × p(𝑦𝑦𝑖𝑖′, 𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, 𝑥𝑥5𝑖𝑖′,𝐋𝐋) 

= likelihood × prior 
and 

p(𝑤𝑤𝑖𝑖′ | 𝑤𝑤𝑖𝑖) ∝ p(𝑤𝑤𝑖𝑖 | 𝑤𝑤𝑖𝑖′) × p(𝑤𝑤𝑖𝑖′) = likelihood × prior. 
 
The first joint posterior distribution can be factored into independent marginal posterior distributions of 𝑦𝑦𝑖𝑖′, 
𝑥𝑥1𝑖𝑖′, 𝑥𝑥2𝑖𝑖′, 𝑥𝑥3𝑖𝑖′, 𝑥𝑥4𝑖𝑖′, 𝑥𝑥5𝑖𝑖′, and 𝐋𝐋. 
 
Now, posterior distributions are not always easy to derive mathematically—in our case, due to the folding 
of the likelihoods and priors, though they are all based on normal distributions. So, we rely on simulations 
from the posterior distributions. However, it does not mean that the simulations are always computationally 
easy or doable. In practice, we would like to get an effective sample efficiently, which concerns the question 
of how to draw and then select sample draws. We utilize the very effective and efficient algorithm called 
No-U-Turn Sampler (NUTS) offered in Stan, running it from R (Stan Development Team, 2017a). 
Basically, NUTS adaptively optimizes the Hamiltonian Monte Carlo method (Hoffman and Gelman, 2014).  
 
For each housing unit 𝑖𝑖 in the given end-use combination 𝑒𝑒, we have generated 2,000 NUTS cases from 
each of three chains with 1,000 warm-up cases discarded (without any thinning), getting 3,000 total cases 
to approximate the posterior distributions. With these samples, the convergence turns out to be very good 
for each of the parameters in terms of the 𝑅𝑅� diagnostic (Gelman et al., 2013), which we compute, using 
ShinyStan—the interactive graphical R package for Markov chain Monte Carlo diagnostics (Stan 
Development Team, 2017d). To summarize each posterior distribution, we compute the posterior sample 
mean, and those posterior means are used to make our population inferences in the next section. The Stan 
codes for Bayesian modeling (for 𝑒𝑒 = 14) and for the population inferences are provided in Appendix B. 
The standard deviation and quantiles of each posterior distribution simulation are also available, but they 
are not discussed here. However, most of the distributions are quite symmetrical, and the standard 
deviations we have inspected are about five percentage of the respective means or much smaller than them. 
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We interpret these to suggest that most of the posterior distributions are substantively tight around the 
means. 
 
The posterior means of the correlation parameters in L (Ʃ = 𝚫𝚫𝛀𝛀𝚫𝚫 = 𝚫𝚫𝐋𝐋𝐋𝐋⊤𝚫𝚫) are also available. With the 
weakly informative LKJ prior, the data have spoken up rather loudly for these unknown parameters. 
However, all of the signs of the correlation coefficients turn out to be in the right directions when the sizes 
of the correlation coefficients are substantively large. 
 

5. Population Inferences of Annual Total and End-Use Electricity Consumption 
Amounts in the U. S. 

 
Using the posterior means of the annual total and end-use electricity consumption amounts for each 
respondent 𝑖𝑖, we first produce sum-over-respondents estimates at the national level, shown in the “Sample 
Total (million kWh) : Bayesian” column of Table 5. The “Sum” row gives a simple sum of the five end-
use values in the table, while the “Total” row holds the annual total electricity consumption values. The 
“(Weight)” row values are in millions as well, but obviously without the kWh unit; thus, the italicization 
and brackets.  
 
The sample estimates with the raw end-use estimates, the raw total estimates, and the raw survey weights 
are also given under the “Sample Total (million kWh) : Raw” column of Table 5. Comparing the Sample 
Bayesian column against the Sample Raw column, only two end uses show rather significant changes: about 
7.3 million kWh decrease in Space Heating and about 12.0 million kWh increase in Others. The Sample 
Bayesian Total is increased but only by about 4.0 million kWh, which is similar to the level of increase in 
the Sample Bayesian Sum (4.9 m. kWh). The latter similarity is clear from the fact that the Sum and the 
Total are in good agreement for the Sample Bayesian estimates (140.9 m. vs. 140.4 m.) as well as for the 
Sample Raw estimates (136.0 m. vs. 136.4 m.). Recall that the Total and the Sum are based on two 
independent data sources—administrative billing data vs. expert modeling and estimation with housing 
units survey data and administrative weather data. Thus, those agreements are quite remarkable. 
 
We also show the Sample Bayesian estimates with some adjustments, which (a) normalize the Bayesian 
Total estimates so that they sum to the sum of the Raw Total values over the respondents and (b), for each 
respondent, uniformly calibrate the Bayesian End-Use estimates so that they sum over the end uses to the 
respondent’s Raw Total value. These Adjusted Bayesian Total and End-Use estimates are more 
conservative than the Bayesian Total and End-Use estimates in the sense that we assume the sum of the 
Raw Total values over the respondents are correct. Even more conservative estimates could be derived if 
we assume the Raw Total value is correct for each respondent and uniformly calibrate the Bayesian End-
Use estimates to the Raw Total value for each respondent. That is, the administrative billing data and the 
annualization of the data are assumed to be exactly correct. 
 
The Sample Bayesian Weight sum (109.1 m.) turns out to be about 4.5 million lower than the Sample Raw 
Weigh sum (113.6 m.). Given the amount of regularization we put in weighting errors (𝜎𝜎𝑤𝑤𝑖𝑖= 0.05 × 𝑤𝑤𝑖𝑖′), 
the difference, though small in the absolute term, is relatively large. The Sample Bayesian Weight estimates 
can also be adjusted or normalized so that they sum to the sum of the Sample Raw Weight values over the 
respondents. 
 
Applying survey weights to individual sample values, we can make population inferences. Here, we look 
at the national level. The “National Total (billion kWh) : Raw” column shows the population estimates of 
total and end-use consumption amounts, calculated with the Sample Raw total, end-use, and weight values. 
We note again that the Sum of the end-use electricity consumption estimates (1,262 b.) is relatively close 
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to the Total electricity consumption estimate (1,286 b.) with the difference of -24 b. The National estimates 
in Table 4 are graphed in Figure 1 as well.  
 
The “National Total (billion kWh) : Bayesian” column gives the population estimates from the Sample 
Bayesian total, end-use, and weight estimates. The decrease in Space Heating (from 328 b. to 258 b.) and 
the increase in Others (from 505 b. to 601 b.) are substantial as in the sample counterparts. With the 
Bayesian estimates, the Sum of the end-use electricity consumption estimates (1,270 b.) is even closer to 
the Total electricity consumption estimate (1,267 b.) with the difference of just about 3 b. Comparing to the 
difference of the differences in Sample Raw and Sample Bayesian, -0.4 m. (= 136.0 m. – 136.4 m.) and 0.5 
m. (= 140.9 m. – 140.4 m.), respectively, the difference (-24 b. – 3 b.) is rather large. More specifically, the 
Bayesian weights seem to keep the National difference (3 b.) under control in terms of the size and sign of 
the difference, given the Sample difference (0.5 m.), while the Raw weights somewhat blow up the 
difference between Sum and Total from the Sample difference (-0.4 m.) to the Population difference (-24 
b.). In other words, the Bayesian weights seem to contribute in producing such National End-Use estimates 
and National Total estimate that are more consistent with each other.  
 
The other things we notice, comparing the National Raw and Bayesian estimates of Sum and Total, are that 
(a) the National Bayesian Sum estimate (1,270 b.) stays larger than the National Raw Sum estimate (1,262 
b.), keeping the same directional relation under the sample, although the sum of the Bayesian Weight 
estimates (109.1 m.) becomes smaller than the sum of the Raw Weight values (113.6 m.) and (b) the 
National Bayesian Total estimate (1,267 b.) becomes smaller than the National Raw Total estimate (1,286 
b.), although the Sample Bayesian Total estimate (140.4 m.) is larger than the Sample Raw Total value 
(136.4 m.), with the smaller-in-sum Bayesian Weight estimates. 
 
The “National Total (billion kWh) : Bayesian + Adjustments” column is calculated with the Adjusted 
Bayesian Total and End-Use consumption estimates and the Adjusted Bayesian Weight estimates. The 
National Sum estimate (1,281 b.) equals the National Total estimate by definition of the adjustments, and 
it is larger than the National Bayesian Sum estimate (1,270 b.) or the National Bayesian Total estimate 
(1,267 b.) but falls between the National Raw Sum estimate (1,262 b.) and the National Raw Total estimate 
(1,286 b.). We also note that, with the adjusted Bayesian estimates, the National Space Heating estimate 
goes further up, while the National Others estimate goes further down.  
 
Any statistical analysis should include some assessment of uncertainty or variability in the quantities of 
interest investigated. Here, we provide only intuitive assessment. Since all the Sample Bayesian estimates 
in Table 4 are based on the linear combinations of posterior means of the total, end-use, and weight values 
of the individual respondents, their uncertainty is expected to be roughly at the same level as that of the 
individual respondents, which was about five percentage in terms of CV. The National Bayesian estimates 
in Table 4 might be less certain due to the multiplication of the Sample Bayesian Total and End-Use 
estimates and the Sample Bayesian Weight estimates. But, if we note that CV(𝑋𝑋𝑋𝑋) 
=�CV2(𝑋𝑋)CV2(𝑋𝑋) + CV2(𝑋𝑋) + CV2(𝑋𝑋) , when 𝑋𝑋 and 𝑋𝑋 are independent, then with CV(𝑋𝑋) = CV(𝑋𝑋) = 0.05 
we can calculate CV(𝑋𝑋𝑋𝑋) to be about 0.07. The standard deviation relative to the mean (0.07) is still quite 
small in our substantive interpretation.   
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Table 4: Sample and Population Estimates of Annual Total and End-Use Electricity Consumption Amounts 

End Use 
Sample Total (million kWh) National Total (billion kWh) 

Raw Bayesian Bayesian + 
Adjustments Raw Bayesian Bayesian + 

Adjustments 

Space Heating 35.3 28.0 25.9 328 253 244 

A/C 21.3 21.2 20.8 196 190 194 

Water Heating 14.7 14.5 13.8 141 134 136 

Refrigerators 9.9 10.3 10.0 92 92 94 

Others 54.8 66.8 65.8 505 601 617 

Sum 136.0 140.9 136.4 1,262 1,270 1,281 

Total 136.4 140.4 136.4 1,286 1,267 1,281 

(Weight) (113.6) (109.1) (113.6) - - - 

       

 

Figure 1: National Estimates of Total and End-Use Electricity Consumption Amounts (in billion kWh)
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6. Future Work 
 
Although we have used non-informative or weakly informative priors, mainly to regulate the posterior 
distributions, the effects of different priors are not thoroughly investigated. Also, as mentioned earlier, the 
modeling of the uncertainty in the end-use consumption amounts could be improved against the E3M end-
use estimates, if we explicitly model the uncertainty in the existence or absence of each end use for each 
respondent or the uncertainty in the response accuracy of each end use by each respondent. Finally, apart 
from model checking and improvement, it is important for us continually to evaluate and advance survey 
measurements, administrative data quality, data processing methods, sampling designs, and weighting 
procedures so that substantive questions of our interest may be better addressed statistically and 
scientifically. 
 

Appendix A. List of End Uses Covered in the 2009 RECS 
 

-  Lighting  
-  Space heating  
-  Space cooling (A/C) 
-  Water Heating 
- Major appliances (Refrigerators; Freezers; Stoves, ovens, and stove-ovens; Dishwashers; Clothes 

washers; Clothes dryers) 
-  Kitchen appliances (Microwaves; Coffee makers; Toasters)  
- Miscellaneous electric loads (Dehumidifiers; Humidifiers; Ceiling fans; Computers and monitors; 

Printers, Fax’s, and copiers; Home network equipment; Televisions; Set top boxes; DVD’s, VCR’s, 
and combo DVD/VCR units; Video game consoles; Rechargeable tools and electronics) 

-  Others (Pool and spa heaters; Well pumps; Automobile block/battery heaters) 
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Appendix B. Stan Codes for Bayesian Modeling (for 𝑒𝑒 = 14) and for Population Inferences 
 

data { 
  int<lower = 1> N;                      // Number of respondents/observations 
  int<lower = 1> n_eu;                   // Number of end uses 
  int<lower = 1> n_reg;                  // Number of Census Regions 
  int<lower = 1, upper = n_reg> reg[N];  // Census Region identifier 
  int<lower = 1> su_id[N];               // SU_ID 
  vector<lower = 0>[N] x1;               // Space heating electricity consumption estimates by the experts 
  vector<lower = 0>[N] x2;               // A/C electricity consumption estimates by the experts 
  vector<lower = 0>[N] x3;               // Water heating electricity consumption estimates by the experts 
  vector<lower = 0>[N] x4;               // Refrigerators electricity consumption estimates by the experts 
  vector<lower = 0>[N] x5;               // Others end-use electricity consumption estimates by the experts 
  vector<lower = 0>[N] y;                // Annual total electricity consumption amounts from the administrative billing data 
  vector<lower = 0>[N] w;                // Survey weights 
} 
 
transformed data { 
  real<lower = 0> y_sum;            // Sum of the annual total electricity consumption amounts over respondents 
  real<lower = 0> w_sum;            // Sum of the survey weights over respondents 
 
  vector<lower = 0>[n_eu] mu_tx;    // The mean vector of the priors for the true end-use consumption amounts 
  vector<lower = 0>[n_eu] L_sigma;  // The scale or SD vector of the true end-use consumption amounts 
   
  vector<lower = 0>[n_reg]  mu_tw;  // The mean of the prior for the true survey weight by Region  
  vector<lower = 0>[n_reg] sig_tw;  // The SD of the prior for the true survey weight by Region 
 
  mu_tx[1] = 0.2 * 15800;           // (1 / n_eu) of the average annual total electricity consumption value in e = 14,  
  mu_tx[2] = 0.2 * 15800;           // (1 / n_eu) based on the published estimate, rounded to the hundredth 
  mu_tx[3] = 0.2 * 15800;           // (1 / n_eu)  
  mu_tx[4] = 0.2 * 15800;           // (1 / n_eu)  
  mu_tx[5] = 0.2 * 15800;           // (1 / n_eu)    
  
  L_sigma[1] = 1 * mu_tx[1];        // tx1: CV = 1   
  L_sigma[2] = 1 * mu_tx[2];        // tx2: CV = 1 
  L_sigma[3] = 1 * mu_tx[3];        // tx3: CV = 1 
  L_sigma[4] = 1 * mu_tx[4];        // tx4: CV = 1 
  L_sigma[5] = 1 * mu_tx[5];        // tx5: CV = 1   
 
  mu_tw[1] = 9200;                  // Northeast = N1 / n1 = 20.8 m / 2266 = 9179, rounded to the hundredth 
  mu_tw[2] = 9100;                  // Midwest   = 25.9 m / 2843 = 9110     
  mu_tw[3] = 10300;                 // South     = 42.1 m / 4090 = 10293  
  mu_tw[4] = 8600;                  // West      = 24.8 m / 2884 = 8599    
 
  sig_tw[1] = 0.125 * mu_tw[1];     // CV = 0.125     
  sig_tw[2] = 0.125 * mu_tw[2];     // CV = 0.125    
  sig_tw[3] = 0.125 * mu_tw[3];     // CV = 0.125    
  sig_tw[4] = 0.125 * mu_tw[4];     // CV = 0.125      
   
  y_sum = 0; 
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  w_sum = 0; 
   
  for (i in 1:N) { 
    y_sum = y_sum + y[i];   
    w_sum = w_sum + w[i]; 
  } 
}  
parameters { 
  vector<lower = 0>[N] ty;             // Latent/unknown true values of annual total electricity consumption amount 
  matrix<lower = 0>[N, n_eu] tx;       // Latent/unknown true values of annual end-use electricity consumption amounts 
  cholesky_factor_corr[n_eu] L_Omega;  // The lower triangular matrix of the correlation matrix of tx’s 
  vector<lower = 0>[N] tw;             // Latent/unknown true values of survey weights   
} 
 
transformed parameters { 
  vector<lower = 0>[N] sig_model;     // The SD of ty 
  vector<lower = 0>[N]       sig_y;   // The SD of the prior for the observed y 
  matrix<lower = 0>[N, n_eu] sig_x;   // The SD's of the priors for the observed x1, x2, x3, x4, and x5 
  vector<lower = 0>[N]       sig_w;   // The SD of the prior for the observed w   
  sig_model   = 0.025 * (col(tx, 1) + col(tx, 2) + col(tx, 3) + col(tx, 4) + col(tx, 5));   
                                      // The omission/commission error rate of 2.5% of the sum of the "true" end uses: CV = 0.025  
            
  sig_y       = 0.05  * ty;           // The measurement error level in y:        CV = 0.05 
  sig_x[ , 1] = 0.125 * col(tx, 1);   // The expert estimation error level in x1: CV = 0.125  
  sig_x[ , 2] = 0.125 * col(tx, 2);   // The expert estimation error level in x2: CV = 0.125 
  sig_x[ , 3] = 0.125 * col(tx, 3);   // The expert estimation error level in x3: CV = 0.125 
  sig_x[ , 4] = 0.125 * col(tx, 4);   // The expert estimation error level in x4: CV = 0.125 
  sig_x[ , 5] = 0.25  * col(tx, 5);   // The expert estimation error level in x5: CV = 0.25 
  sig_w       = 0.05  * tw;           // The weighting error level:               CV = 0.05 
} 
 
model { 
  L_Omega ~ lkj_corr_cholesky(2);  // Cholesky decomposition (lower triangular matrix) of the correlation matrix 
                                   // = L_Omega * L_Omega' ~ lkj_corr(2)       
  for (i in 1:N) {  // The means of the true end-use consumption amounts are assumed to be correlated. 
    tx[i, ] ~ multi_normal_cholesky(mu_tx, diag_pre_multiply(L_sigma, L_Omega));   
  } 
  
  x1 ~ normal(col(tx, 1), col(sig_x, 1));  //sig_x[ , 1] are transformed parameters or functions of tx[ , 1] 
  x2 ~ normal(col(tx, 2), col(sig_x, 2));  //sig_x[ , 2] are transformed parameters or functions of tx[ , 2] 
  x3 ~ normal(col(tx, 3), col(sig_x, 3));  //sig_x[ , 3] are transformed parameters or functions of tx[ , 3] 
  x4 ~ normal(col(tx, 4), col(sig_x, 4));  //sig_x[ , 4] are transformed parameters or functions of tx[ , 4] 
  x5 ~ normal(col(tx, 5), col(sig_x, 5));  //sig_x[ , 5] are transformed parameters or functions of tx[ , 5] 
 
  ty ~ normal(col(tx, 1) + col(tx, 2) + col(tx, 3) + col(tx, 4) + col(tx, 5), sig_model); 
 
  y ~ normal(ty, sig_y);  // Observed values which depend on the latent true values 
                          // sig_y are transformed parameters or functions of ty 
   
  for (i in 1:N) { 
    tw[i] ~ normal(mu_tw[reg[i]], sig_tw[reg[i]]); 
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  } 
 
  w ~ normal(tw, sig_w);  // sig_w are transformed parameters or functions of tw 
} 
  
generated quantities { 
  vector<lower = 0>[N] x1_est_raw;  // Sample estimates of x 
  vector<lower = 0>[N] x2_est_raw; 
  vector<lower = 0>[N] x3_est_raw; 
  vector<lower = 0>[N] x4_est_raw; 
  vector<lower = 0>[N] x5_est_raw; 
  vector<lower = 0>[N] x_est_raw;   // Sum of sample estimates of x's 
 
  vector<lower = 0>[N] y_est_raw; 
  vector<lower = 0>[N] w_est_raw;    
  real<lower = 0> y_est_raw_sum;    // Sum of the raw estimates of y 
  real<lower = 0> w_est_raw_sum;    // Sum of the raw estimates of w 
  vector<lower = 0>[N] y_est_adj;   // Adjusted or normalized y_est_raw, which sum to the sum of (observed) y 
  vector<lower = 0>[N] w_est_adj;   // Adjusted or normalized w_est_raw, which sum to the sum of (observed) w 
 
  vector<lower = 0>[N] x1_est_cal;  // Uniformly calibrated sample estimates of x so that x1_est_cal + ... = y_est_raw_adj 
  vector<lower = 0>[N] x2_est_cal; 
  vector<lower = 0>[N] x3_est_cal; 
  vector<lower = 0>[N] x4_est_cal; 
  vector<lower = 0>[N] x5_est_cal; 
   
  vector<lower = 0>[N] x1_pop_raw;  // Weighted population estimates with raw estimates of x and w 
  vector<lower = 0>[N] x2_pop_raw; 
  vector<lower = 0>[N] x3_pop_raw; 
  vector<lower = 0>[N] x4_pop_raw; 
  vector<lower = 0>[N] x5_pop_raw; 
  vector<lower = 0>[N] y_pop_raw;   // Weighted population estimates with raw estimates of y and w 
 
  vector<lower = 0>[N] x1_pop_cal;  // Calibrated weighted population estimates with calibrate estimates of x 
  vector<lower = 0>[N] x2_pop_cal;  // and adjusted estimates of w 
  vector<lower = 0>[N] x3_pop_cal; 
  vector<lower = 0>[N] x4_pop_cal; 
  vector<lower = 0>[N] x5_pop_cal; 
  vector<lower = 0>[N] y_pop_adj;   // Adjusted weighted population estimates with adjusted estimates of y and adjusted estimates of w   
   
  corr_matrix[n_eu] Omega_x;        // The correlation matrix of the means of the true x's 
  cov_matrix[n_eu]  Sigma_x;        // The covariance matrix of the means of the true x's 
 
  x1_est_raw = col(tx, 1); 
  x2_est_raw = col(tx, 2); 
  x3_est_raw = col(tx, 3); 
  x4_est_raw = col(tx, 4); 
  x5_est_raw = col(tx, 5); 
  x_est_raw  = x1_est_raw + x2_est_raw + x3_est_raw + x4_est_raw + x5_est_raw; 
  y_est_raw  = ty;   
  w_est_raw  = tw; 
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  y_est_raw_sum = 0; 
  w_est_raw_sum = 0; 
  for (i in 1:N) { 
    y_est_raw_sum = y_est_raw_sum + y_est_raw[i]; 
    w_est_raw_sum = w_est_raw_sum + w_est_raw[i];   
    } 
   
  y_est_adj = y_est_raw * (y_sum / y_est_raw_sum);  // Adjust y_est_raw so that they sum to the sum of (observed) y (vector * scalar) 
  w_est_adj = w_est_raw * (w_sum / w_est_raw_sum);  // Adjust w_est_raw so that they sum to the sum of (observed) w 
   
  x1_est_cal = x1_est_raw .* (y_est_adj ./ x_est_raw);  // Uniform calibration of end uses so that the sum of the calibrated end-use 
  x2_est_cal = x2_est_raw .* (y_est_adj ./ x_est_raw);  // estimates = the adjusted y estimate 
  x3_est_cal = x3_est_raw .* (y_est_adj ./ x_est_raw);  // Elementwise multiplication (similar efficiency to loop) 
  x4_est_cal = x4_est_raw .* (y_est_adj ./ x_est_raw); 
  x5_est_cal = x5_est_raw .* (y_est_adj ./ x_est_raw); 
 
  x1_pop_cal = w_est_adj .* x1_est_cal;  // The calibrated population estimates of x, i.e., with the uniformly calibrated 
  x2_pop_cal = w_est_adj .* x2_est_cal;  // sample estimates of x and the adjusted weight estimates 
  x3_pop_cal = w_est_adj .* x3_est_cal;   
  x4_pop_cal = w_est_adj .* x4_est_cal; 
  x5_pop_cal = w_est_adj .* x5_est_cal; 
  y_pop_adj  = w_est_adj .* y_est_adj;   
   
  x1_pop_raw = w_est_raw .* x1_est_raw;  // The raw population estimates of end uses, i.e., with the raw sample estimates of end uses 
  x2_pop_raw = w_est_raw .* x2_est_raw;  // and the raw weight estimates 
  x3_pop_raw = w_est_raw .* x3_est_raw; 
  x4_pop_raw = w_est_raw .* x4_est_raw; 
  x5_pop_raw = w_est_raw .* x5_est_raw; 
  y_pop_raw  = w_est_raw .* y_est_raw;   // The raw population estimates of y, i.e., with the raw sample estimates of y and the raw 
                                         // weight estimates 
                               
  Omega_x = multiply_lower_tri_self_transpose(L_Omega); 
  Sigma_x = quad_form_diag(Omega_x, L_sigma);  
} 
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