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Abstract
The American Community Survey (ACS) multiyear estimates provide detailed economic and demographic informa-

tion at a census tract level. The assumption of spatial stationarity for many variables is dubious, which motivates our

formulation of local stationarity that can take into account changes in the covariance structure across census tracts.

In addition, we adopt a nonparametric modeling approach that remains agnostic about specific distributional features.

We present fairly general constructions in both the frequency and spatial domains, deriving an estimator for the local

covariance. The properties of the local covariance estimator are explored through simulation. For our application, we

utilize our estimator on the ACS data of median household income in the state of Iowa.
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1. Introduction

The American Community Survey (ACS) is a widely-studied survey conducted by the U. S. Census Bureau

[2, 19]. Current products from the survey are 5-year Multi-year Estimates (MYEs) for all census block

groups in the United States and 1-year MYEs for regions with population 65,000 or higher. However, data

users may require additional data, such as MYEs for custom geographies, which amounts to a change-of-

support problem. In classical geostatistics, this is commonly done with block kriging [4]. Before kriging can

be performed, it is necessary to develop an estimator either for the random field’s variogram or for its covar-

iogram. Typically, weak stationarity is assumed. However, human populations are spread heterogenously;

we would not expect for the properties of urban and rural regions to be similar in structure, for instance.

Therefore, we develop a fresh approach to modeling ACS data that can account for spatial heterogeneity.

The use of heterogenous covariance functions in the spatial setting has been explored extensively in the

literature. Sampson and Guttorp [15, 10] propose a spatial deformation approach. Here, the authors use

multidimensional scaling (MDS) to transform a nonstationary process into one that is both stationary and
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isotropic. These ideas are utilized in a Bayesian framework by Schmidt and O’Hagan [16]. Fuentes [8, 9]

suggests dividing one’s spatial domain into smaller sub-grids, fitting a different stationary process for each,

and then writing the overall process as a spatially-weighted sum of these processes. Basis function models

have been considered by various authors; decompositions methods include empirical orthogonal functions

(EOFs) [17], Fourier series [18], wavelets [12, 7], and wavelet packets [3]. See [14] for a good review on

this topic.

We adopt an approach that is nonparametric in spirit, being based upon the fundamental spectral repre-

sentation of stationary processes, but adapted to account for a form of spatial non-stationarity referred to as

local stationarity. First, recall that a zero-mean stationary time seriesXt, t ∈ Z, has a spectral representation

[1]

Xt =

∫ π

−π
exp(ιωt)A(ω)dξ(ω),

where ξ(ω) is an orthogonal increment process and A(ω) is a transfer function. Although Priestley [13]

developed a local structure by allowing the transfer function to vary in time, no meaningful asymptotic

theory is available for this formulation. To correct for this, Dahlhaus [5] considered a triangular array of

stochastic processes, Xt,T (t = 1, . . . , T ), that possesses a representation of the form

Xt,T =

∫ π

−π
exp(ιωt)At,T (ω)dξ(ω) (1)

for which meaningful asymptotics can be derived.

Our work advances a nonparametric locally stationary methodology for spatial data, motivated by (1)

and the above applications to the ACS. This paper is organized as follows. In Section 2, we develop the

framework for local stationarity. Section 3 sets up a large class of locally stationary processes, both in

the frequency and spatial domains. Our nonparametric covariance estimator is defined in Section 4. In

Section 5, we explore the properties of the estimator through simulations. Our application to the American

Community Survey is found in Section 6. We conclude in Section 7.

2. Framework

In this work, we study estimation of the covariance structure of a locally stationary spatial process on the

continuum based on finitely many observations. Specifically, suppose that {Y (s) : s ∈ Rd} for d ≥ 1 is a

spatial process observed at locations {s1, . . . , sn} in a spatial region R ⊂ Rd. We do not assume that the

Y (·)-process is stationary. The type of nonstationarity we consider requires the process to have approximate

stationarity in its local spatial interactions.

As in the time series case (cf. [6]), the formulation of the local stationarity is done using a triangular

array framework where the transition from the local approximate stationarity in the covariance structure is

given by a smooth function. However, there are two main differences. First, unlike the time series case where

the process is observed on a regular lattice, the spatial process we are interested in is on the continuum and,
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therefore, the covariance function is also a function defined on the continuum. Second, the data-locations

s1, . . . , sn need not be on a regular lattice.

The triangular array formulation involves process, region, and data locations depending on the sample

size n: Y (·) = Yn(·), R = Rn, and si = sin, i = 1, . . . , n . The asymptotics of our statistical estimators

are driven by n. We have the following working assumptions:

1. We shall suppose that the sampling regions R ≡ Rn are given by

Rn = λnR0

for some prototype set R0 ∈ (−1, 1)d, where R0 does not depend on n and the scalar λn → ∞ as

n→∞. Suppose that R0 an open set.

2. We shall suppose that the data locations are generated by the realizations of a sequence of iid random

vectors X1,X2, . . . through the relation:

si ≡ sin = λnXi, 1 ≤ i ≤ n, n ≥ 1.

This gives a stochastic spatial design.

3. EYn(s) = 0 for all s ∈ Rd. Further, the covariance structure of Yn(·) is given by

Cov
(
Yn(s), Yn(s + h)

)
= C(λ−1n s;h) +O(λ−1n ) (2)

for some function C : [−1, 1]d × Rd → R, where C(u;h) is smooth in u and

|C(u;h)| ≤ g(u)(1 + ‖h‖)−[d+b] (3)

for some g : [−1, 1]d → (0,∞) and b ∈ (0,∞).

The first assumption describes Rn as an expanding template, a standard device in asymptotic statistical

theory [5]. The second assumption similarly expands the data locations. The last assumption is adapted

from the time series case, c.f. Eq. (73) in [6]. Note that the first argument of C corresponds to the rescaled

location of Yn(s) in R0, and the second argument gives the lag gap between Yn(s) and Yn(s + h). The

bound on C is needed for later asymptotic results, and precludes some forms of long memory, i.e., a slowly

decaying autocorrelation function.

3. A class of locally stationary processes

Given our framework’s three assumptions, we provide a class of stochastic processes that satisfy these

criteria. Let Lx(·) denote the lag-operator defined by

Lx
(
Z(s)

)
= Z(s− x), x, s ∈ Rd.
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Note that for an integrable function φ : Rd → R and a second order stationary process (SOS) Z(s), we can

define the operator Φ(L) ≡
∫
φ(x)Lxdx through the identity:∫

Z(s− x)φ(x)dx =

∫
Lx(Z(s))φ(x)dx ≡ Φ(L)

(
Z(s)

)
.

It is easy to see that the operator Φ(L) applied to a SOS process Z(·) produces a SOS process. The con-

struction of a locally stationary process can be effected through a time varying version of Φ(L) where the

“lag-weight” or the “kernel” function φ(·) depends locally on the spatial index. Specifically, let

Φt(L) =

∫
φt(x)Lxdx

and consider the location-varying lagged process Y (t) = Φt(L)Z(t).

3.1 A Frequency Domain Formulation

Here we shall consider functions φt(·) such that Φ�t(ω) ≡
∫
φt(x) exp(−ιω′x)dx ∈ L2(Rd) and log Φ�t(ω)

is well defined. Here and in the following, we set ι =
√
−1. Note that log Φ�t(ω) is a complex valued

function of ω. Write

log Φ�t(ω) = gt(ω) + ιat(ω), ω ∈ Rd, (4)

with gt(ω) being an even function of ω and at(ω) being an odd function of ω. Note that gt(ω) =

2−1 log |Φ�t(ω)|2. Since Φ�(ω) ∈ L2(Rd), its Inverse Fourier Transform (IFT) is well defined and it follows

from the above that

φt(x) =
1

(2π)d

∫
Φ�(ω) exp(ιω′x)dω

=
1

(2π)d

∫
exp

(
gt(ω) + ιat(ω) + ιω′x

)
dω.

Next, consider the location-varying lagged process

Y (t) = Φt(L)Z(t)

=

∫
Z(t− x)φt(x)dx

=

∫ ∫
exp(ι(t− x)ω)dZ�(ω)φt(x)dx

=

∫ ∫
exp(−ιω′x)φt(x)dx exp(ιω′t)dZ�(ω)

=

∫
Φ�t(ω) exp(ιω′t)dZ�(ω)

=

∫
exp

(
gt(ω) + ιat(ω) + ιω′x

)
dZ�(ω),

where {Z�(ω) : ω ∈ Rd} is the orthogonal increment process associated with the spectral representation

of the SOS {Z(s) : s ∈ Rd}. Write F (·) for the spectral distribution function of {Z(s) : s ∈ Rd}. Then, it
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follows (using results in [1])

Cov(Y (t + h), Y (t)) (5)

=

∫
exp(ιh′ω) · Φt+h(exp(ιω))Φt(exp(ιω))dF (ω)

=

∫
exp(ιh′ω) · exp

(
gt+h(ω) + ιat+h(ω) + gt(ω)− ιat(ω)

)
dF (ω)

=

∫
exp(ιh′ω) · exp([gt+h(ω) + gt(ω)]) · exp(ι[at+h(ω)− at(ω)])dF (ω)

=

∫
exp([gt+h(ω) + gt(ω)]) · cos(h′ω + at+h(ω)− at(ω))dF (ω). (6)

Now, we posit some structural conditions on the functions at(·) and gt(·) to specify the local stationarity

component of the filtered process Y (t) ≡ Y
(λ)
t , where recall that λ = λn determines the size of the sam-

pling region Rn.

(C.1): There exist functions a0(·; ·), a1(·; ·) and g1(·; ·) such that

at(ω) ≡ a(λ)t (ω) = λa0(λ
−1t;ω) + a1(λ

−1t;ω) +O(λ−1) (7)

gt(ω) ≡ g(λ)t (ω) = g1(λ
−1t;ω) +O(λ−1) (8)

where a0(u;ω) is differentiable w.r.t. u with gradient ∇ua0(u;ω),

|a1(u1;ω)− a1(u2;ω)| ≤ ‖u1 − u2‖A(ω) (9)

for some integrable functions A(·) and g1(u;ω) is continuous in u uniformly over ω ∈ Rd . Further, the

order symbols are uniform in t and ω.

For ||h|| small, gt+h ≈ gt and at+h ≈ at + λ−1h′∇uat so that

Cov(Y (t + h), Y (t)) ≈
∫

exp(ιh′ω) · exp
(
2gt(ω) + ιλ−1h′∇uat

)
dF (ω)

Under (C.1), and assuming λ is large enough that only the higher order terms contribute, it follows that

Cov(Y (t + h), Y (t))

≈
∫

exp
(

2g1(u;ω) + ι[h′∇ua0(u;ω) + h′ω]
)
dF (ω)

≡ C(u;h).

Assuming that g1(u;ω) is an even function and ∇ua0(u;ω) is an odd function of ω, for each u, one gets

C(u;h) =

∫
exp

(
2g1(u;ω)

)
cos
(
h′∇ua0(u;ω) + h′ω

)
dF (ω). (10)

There are conditions under which this C(u;h) satisfies the third assumption of our framework.
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3.2 A Spatial Domain Formulation

Recall that the locally stationary process Y (t) is generated from a SOS process {Z(t)} by applying the

location-varying lag-operator Φt(L) =
∫
φt(x)Lxdx, leading to

Y (t) = Φt(L)Z(t) ≡
∫
φt(x)Z(t− x)dx

=

∫
φt(t− x)Z(x)dx.

Note that

Cov(Y (t + h), Y (t)) = E

[(∫
φt+h(t + h− x)Z(x)dx

)(∫
φt(t− x)Z(x)dx

)]
=

∫ ∫
φt+h(t + h− x)φt(t− y)E[Z(x)Z(y)]dxdy

=

∫ ∫
φt+h(t + h− x)φt(t− y)C0(x− y)dxdy,

where C0(·) is the autocovariance function of the stationary process Z(·). We shall use the following con-

ditions to describe the local stationary structure of the filtered process Y (t) ≡ Y (λ)
t :

(C.2): There exists a function φ0(·; ·) : (−1, 1)d × Rd → R such that

φt(x) ≡ φ(λ)t (x) = φ0(λ
−1t;x)

and φ0(u;x) is continuous in u for each x and |φ0(u;x)| ≤ A(x) for some integrable function A(·).

Then, it is easy to check that for ‖h‖ = o(λ),

Cov(Y (t + h), Y (t)) =

∫ ∫
φ0(λ

−1[t + h]; t + h− x)φ0(λ
−1t; t− y)C0(x− y)dxdy

=

∫ ∫
φ0(λ

−1[t + h];x)φ0(λ
−1t;y)C0(h− [x− y])dxdy

≈
∫ ∫

φ0(u;x)φ0(u;y)C0(h− [x− y])dxdy ≡ C(u;h).

Hence, the covariance C(u;h) clearly satisfies the condition (3) with suitable conditions on C0, and the

third working assumption of our framework can be thereby validated.

4. Estimation

Our goal here is to estimate the function C(u;h) for u ∈ R0. In the spatial domain, one possible class of

estimators is:

Ĉn(u,h) =

∑
si,sj

Kb(λ
−1si − u)Hc(h− (sj − si))Y (si)Y (sj)∑

si,sj
Kb(λ−1si − u)Hc(h− (sj − si))

, (11)
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where Kb(·) = b−dK(·/b) and Hc(·) = c−dH(·/c) for some nonnegative kernel functions (pdfs) on Rd

vanishing outside a compact set, and where b ≡ bn ∈ (0,∞), c ≡ cn ∈ (0,∞) are bandwidth parameters

satisfying

(b+ c) + [λ(b+ c)]−1 = o(1) as n→∞ (12)

and

nbd →∞, nc
d

λd
→∞ as n→∞. (13)

The form of (11) is similar to the kernel estimator in [11]. The main difference is that ours uses two kernel

functions to obtain the local covariance at position u and lag h. This ensures that we strongly weight pairs

of points (si, sj) such that λ−1si is close to u and h is close to sj − si. See also Eq. (9) in [6].

Let E·|X denotes the conditional expectation given X = σ〈X1,X2, . . .〉. Note that by the assumption 2,

E·|X Ĉn(u,h) =

∑
si,sj

Kb(λ
−1si − u)Hc(h− (sj − si))E·|X [Y (si)Y (sj)]∑

si,sj
Kb(λ−1si − u)Hc(h− (sj − si))

≈
∑

si,sj
Kb(λ

−1si − u)Hc(h− (sj − si))C(λ−1si; sj − si)∑
si,sj

Kb(λ−1si − u)Hc(h− (sj − si))

≈
∑

si,sj
Kb(λ

−1si − u)Hc(h− (sj − si))C(u;h)∑
si,sj

Kb(λ−1si − u)Hc(h− (sj − si))

= C(u;h),

which indicates that the estimator is asymptotically unbiased.

5. Simulations

Here, we will use a direct approach where we start with the functions gt(·) and at(·) satisfying the conditions

of Section 3.1, and apply it to a Gaussian WN process Z(·). For instance, let gt(ω) =
∑N

j=0 gj,t‖ω‖j with

gN,t < 0, and choose at(ω) to be an odd-polynomial function in ω with coefficients depending on t.

We consider the case where g = g1 = 1
2 ||ω||

2 and a0(u;ω) = 1
2u
′B(ω)u, a1 ≡ 0, where B(ω) =

diag(ω1,ω2). Note that ∇ua = B(ω)u. Using (6), we can compute exactly

Cov(Y (t + h), Y (t))

=

∫
exp(−||ω||2) exp

{
ιω′
[
h +

h ∗ t
λ

+
h ∗ h

2λ

]}
dω (14)

= π exp

(
−1

4

∣∣∣∣∣∣∣∣h + h ∗ u +
h ∗ h

2λ

∣∣∣∣∣∣∣∣2
)

where ∗ is the Hadamard product.
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We can also compute with (10) that

C(u;h)

=

∫
exp(−||ω||2) cos

{
h′ [B(ω)u + ω]

}
dω

=

∫
exp(−||ω||2) exp

{
ιω′ [h + h ∗ u]

}
dω

= π exp

(
−1

4
||h + h ∗ u||2

)
.

To ensure a resonable point density for estimation purposes, we set n = 1000 and λ = n1/3 = 10.

Let R0 = (−1, 1)2 and Xi be i.i.d. uniform on Rn. For simplicity, let K(x) = H(x) = (2/π)(1 −
||x||2)11||x||<1. To choose the bandwidths, we fix u and h and vary the parameters, empirically choosing

the ones that give the lowest MSE over 5000 simulations. In this way, we determine that b = c = 0.4 are

effective values.

We perform simulations to obtain bias and variance properties of the estimator. One realization of our

random field is shown in Figure 1. We fix the value of u, and compute the approximate bias and variance

over 1000 simulations, as h varies. The results for u = (0, 0) and u = (0, 0.5) are found in Tables 1 and 2,

respectively.

6. Application to American Community Survey (ACS) Data

We apply our methods to the 5-year estimates for median household income in Iowa from 2011-2015 at the

level of census tract. Our main goal here is to model; interpolation (kriging) will be considered in future

work. We begin by assigning each areal measurement to the centroid of the corresponding region. After

plotting the log median incomes, we observe that there are many outliers, due to the presence of small

tracts, such as colleges, whose characteristics differ significantly from the neighboring values. As a result,

we smooth the data by replacing each value with the median of the eight nearest neighbors; see Figure 2.

We obtain the residuals e(·) by subtracting the smoothed values from the original values.

To illustrate the necessity of the locally stationary approach, we consider the isotropic empirical semi-

variogram (c.f. (3.7) in [20]) defined by

γ̂(||h||) =
1

2 ·#(N(||h||))
∑

N(||h||)

(e(si)− e(sj))2

where

N(||h||) =
{

(si, sj) :
∣∣∣||si − sj || − ||h||

∣∣∣ < c
}
.

We divide Iowa into four quadrants, computing the semivariogram utilizing only those values within each

quadrant. The results for u = (0, 0) are found in Figure 3. If the field is stationary, we would expect the

semivariogram to be similar for all quadrants, as it is an estimator for

1

2
Var[e(s)− e(t)] = γ(||s− t||).
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The semivariograms computed in quadrants I and III are quite different from the ones computed in quadrants

II and IV, demonstrating the need for developing a model in which the covariance can vary by position.

We next utilize our nonparametric estimator on the ACS data. Here, n = 825. We fix u and vary h to

produce a surface plot of the local covariance at the origin. Results for u = (0, 0) and u = (0, 1) are found

in Figure 4. These surfaces are similar in shape, which is consistent with the locally stationary framework.

We note the anisotropy in both surface plots, with the covariance falling more rapidly in the direction of

the h1-axis. Since h1 is a rescaled and shifted longitude value, while h2 corresponds to a latitude, this

implies a relatively high north-south correlation. In addition, the estimation becomes unstable for large

||h||. Furthermore, the covariances values in Fig. 4a are slightly higher than in Fig. 4b, about 0.4% larger

at their respective maxima.

7. Conclusions and Future Directions

We defined a large class of locally stationary processes. We have given a frequency domain formulation of

these processes. We derived a nonparametric estimator for the local covariance, investigating its bias and

variance properties for a particular choice of covariance function. We next demonstrated that a position-

varying covariance structure is needed in the case of median income data from the ACS. The estimated local

covariance is anisotropic, falling more slowly in the north-south direction than in the east-west direction.

Our future tasks include deriving asymptotic properties of the bias and variance of the local covariance

estimator, determining optimal values of bandwidth parameters through cross-validation, and developing

methodology for performing predictions on custom geographies. In principle the basic kriging formulas,

which are based on minimal MSE prediction among the class of linear predictors, can be applied with our

estimated covariances inserted, but the invertibility of the covariance matrix estimate needs to be established.

A final consideration is the extension of our framework to areal data.
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Figure 1: A realization of the random field with covariance structure given by (14).

Table 1: Biases (Variances) for u = (0, 0).

h h2 = 0 0.5 1 1.5 2

h1 = 0 −0.39(0.55) −0.33(0.53) −0.15(0.48) 0.08(0.42) 0.34(0.37)

0.5 −0.34(0.52) −0.30(0.50) −0.16(0.45) 0.07(0.40) 0.31(0.35)

1 −0.19(0.46) −0.19(0.44) −0.10(0.40) 0.10(0.35) 0.28(0.32)

1.5 0.00(0.39) 0.00(0.37) 0.06(0.34) 0.16(0.31) 0.26(0.29)

2 0.25(0.34) 0.24(0.33) 0.23(0.30) 0.25(0.28) 0.26(0.27)

Table 2: Biases (Variances) for u = (0, 0.5).

h h2 = 0 0.5 1 1.5 2

h1 = 0 −0.43(0.49) −0.19(0.46) 0.30(0.39) 0.58(0.33) 0.60(0.29)

0.5 −0.38(0.46) −0.16(0.43) 0.26(0.37) 0.55(0.32) 0.56(0.29)

1 −0.23(0.39) −0.09(0.37) 0.22(0.32) 0.47(0.29) 0.48(0.28)

1.5 −0.03(0.32) 0.06(0.31) 0.27(0.28) 0.41(0.26) 0.38(0.26)

2 0.24(0.28) 0.27(0.26) 0.34(0.25) 0.36(0.24) 0.30(0.24)
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Figure 2: Log median income by census tract for raw data (left) and smoothed data (right).

Figure 3: Empirical semivariograms calculated using values within a particular quadrant of the state of

Iowa.
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(a) u = (0, 0) (b) u = (0, 1)

Figure 4: Estimated covariance (×104) for u = (0, 0) and u = (0, 1) as h varies.
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