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Abstract
The possible association between PM2.5 and lung cancer mortality can be partitioned
into components, within similar observational units,  and across different observational
units. Within unit’s covariates are very similar and across unit’s covariates can be, and
usually are, very different. Hence, there is a need to understand the possible effect of
PM2.5 on mortality taking into account within and between observational units. To know
the important covariates, our idea is to use Local Control Analysis (LCA) to estimate
these two components  and determine how much of the variation in  estimates  can be
attributed. For the purpose of analysis, we calculated Local Treatment Difference (LTD)
for LTD approach and slope and intercept for Local Control Regression (LCR) approach,
to determine if the treatment (PM2.5) effects vary significantly across clusters. For that
evaluation, we used Recursive Partitioning (RP). The benefit  of this study is twofold.
First, we use a reliable strategy (LCA) for observational data. Second and importantly,
there is subgroup heterogeneity in the effect of PM2.5 on lung cancer mortality and this
heterogeneity is largely explained by factors other than air quality.
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1. Introduction

Epidemiological  studies  conducted  on  particles  PM2.5  indicate  that  PM2.5  has
substantially greater toxicity than larger particles [1-3]. A few study make the case that if
potential  bias is  carefully taken into account then there is  no association between air
quality  and  deaths  [4-8].  Although  results  have  been  mixed,  overall,  an  association
between PM2.5 (particles  having aerodynamic  diameter  ≤2.5  μm) exposure  and lung
cancer mortality have been reported by recent studies [7, 9, 10]. PM2.5 is associated with
greater increases in daily mortality than larger particles, and are of greater public health
concern [1, 3], suggesting that size is not the only indicator of PM-related health effects. 

The  empirical  estimation  of  cumulative  environmental  exposures,  from  different
environmental sources, is difficult. As a result, epidemiologic research has traditionally
focused on single environmental exposures [11, 12]. However, it is impossible to get total
picture  of  the  environmental  effects  on  health  by  measuring  a  single  environmental
exposure.  Rather,  various environmental  exposures (including social  exposures)  occur
simultaneously, to engender poor health upshots, including cancer. The Environmental
Quality Index (EQI) was developed to capture multidimensional ambient environmental
exposures. The publically available EQI [13] is a county-level measure of cumulative
ambient environmental exposures for the United States for the period 2000- 2005 [11,
14].
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We  examined  county-level  lung  cancer  incidence  rates  for  the  period  2010-2014  in
association  with  the  EQI,  which  represents  the  period  2000-2005.  To  assess  which
environmental domains drive the associations with cancer incidence, we also considered
three domain-specific indices namely land EQI, sociodemographic EQI and built EQI.
The magnitude of this association varies with geographic location [15].

We also investigated associations between lung cancer incidence and the PM2.5.  The
possible association between PM2.5 and lung cancer mortality can be partitioned into
components, within similar observational units and across different observational units.
Within unit’s covariates are very similar and across unit’s covariates can be, and usually
are, very different. Hence, there is a need to understand the possible effect of PM2.5 on
mortality taking into account within and between observational units.  In this study, our
idea is to use a relatively new statistical strategy known as Local Control Analysis (LCA)
to estimate these two components and determined how much of the variation in estimates
can be attributed to know the important covariates. The basic idea of LCA is to cluster
experimental units, in our case counties, into subgroups that have similar socio-economic
characteristics  but  are  not  necessarily  spatially  contiguous.  We  then  make  statistical
comparisons primarily within these clusters of counties that are relatively homogeneous
in terms of important confounding factors. 

To  determine  if  the  treatment  (PM2.5)  effect  varies  significantly  across  clusters,  we
calculated Local Treatment Difference (LTD) for LTD approach and slope and intercept
for Local Control Regression (LCR) approach. Recursive Partitioning (RP) is used for
that  purpose.  The benefits  of  this  study are twofold.  First,  we use a reliable strategy
(LCA) for observational data. Second and importantly, there is subgroup heterogeneity in
the effect of PM2.5 on lung cancer mortality and this heterogeneity is largely explained
by factors other than air quality.

2. Methodology

2.1 Data and Variables
Data comes from two different sources. Population-based lung cancer incidence rates for
the period 2010-2014 (most updated data) were abstracted from National Cancer Institute
state cancer profiles [16]. This national county-level database of cancer data is collected
by  state  public  health  surveillance  systems.  The  domain  specific  county  level
environmental quality index (EQI) data for the period 2000-2005 were abstracted from
United States Environmental Protection Agency (USEPA) profile. Complete descriptions
of the datasets used in the EQI are provided in Lobdell’s paper [17]. Data were merged
based on the Federal Information Processing Standards (FIPS) code.Out of 3144 counties
in United States this study has available information for 2602 counties: Data was not
available for four states namely Kansas, Michigan, Minnesota and Nevada due to state
legislation  because  of  state  legislation  and  regulations  which  prohibit  the  release  of
county-level data to outside entities, county whose lung cancer mortality information is
missing were omitted from the data set, the Union county, Florida is an outlier in terms of
mortality information which was deleted from the data set, in the process of local control
analysis this study experiences two non-informative clusters (non-informative cluster is
one for which either treatment or control group information is missing) (cluster 28 and
29). For the purpose of analysis, non-informative clusters information was deleted from
the data set.
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Three types of variables was used in this study: (i) lung cancer mortality as an outcome
variable (ii) binary treatment indicator is the PM2.5 high (greater than 10.59 mg/m 3) vs.
low (less than 10.59 mg/m3) (iii) three potential X confounder for clustering namely land
EQI, sociodemographic EQI and built EQI. For each index, higher values correspond to
poorer environmental quality [18].

2.2 Local Control Analysis
Local Control Analysis first clusters the data set and then a simple analysis within each
cluster.  The  statistics  (LTD,  Slope and Intercept)  coming from each cluster  are  then
analyzed further.  Once  the  descriptive  statistics  are  computed,  we  determine if  these
treatment effects vary significantly across clusters. For that evaluation, we use recursive
partitioning (RP). There is a SAS JMP Add-In, Local Control, for automating steps in the
analysis process [19].

Local  control,  LC, analysis strategy [20,  21,  22],  for  large,  observational  data sets is
easily explained as it is a series of simple steps that together provide a coherent analysis
strategy.

Step1: LC starts by dividing data points without regard for their either status as treated or
control, into many subgroups. The point is to assure that objects within a cluster are as
alike  as  possible  for  their  observed baseline  x-characteristics.  They used  hierarchical
clustering.

Step2: Next, a simple difference between the two treatments is computed within each
cluster: 

E[ (Y|t=1) - (Y|t=0) |X],

so that they have a single degree of freedom comparison, given X. That is known as “fair
treatment comparison” and a local treatment difference, LTD or LC effect size estimates.
These LC effect-sizes are (continuous) measures of within-cluster association between
local observed y-outcomes and t-exposures.

Step3: Next, they display the LTDs in a histogram. 

Step4: Once  the  descriptive statistics  are  computed,  we  determine if  these  treatment
effects vary significantly across clusters using RP.

Therefore, the LCA starts by designating just one of the available X-confounders as the
treatment t-exposure, which is the "main cause" of observed variation in the Y-outcome
variable.  LC  then  repeats  through  its  three  nonparametric  preprocessing  phases
(Aggregate, Confirm and Explore) to “design” new variables LTDs, Slopes or Intercept.
Finally, we use Reveal phase to determine whether LTSs, Slope or Intercept appear to be
either truly heterogeneous or most random. In this study, we used two approaches of LC
method: 

A.  Local Treatment Difference (LTD) approach: Local Treatment Difference, LTD (∂),
defined as, LTD (∂) = E[(Y|t=1) – (Y|t=0)/ X within ∂], where ∂ denotes a cluster of
subjects who are relatively well-matched in X confounder space.

B. Local Control Regression (Slope and Intercept) approach: We performed simple linear
regression  for  50  clusters,  got  slope  and  intercept  for  each  cluster,  found  48  non-
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informative clusters. Here slope and intercept takes the place of LTD. Finally, repeated
the 4-phase process of LTD approach for slope and intercept.

2.3 Clustering Technique
Hierarchical clustering technique is used to cluster the county level lung cancer data.
Hierarchical  cluster  analysis begins by separating each object  into a cluster  by itself.
Wards method is used as a linkage criterion. In this study, we produced 50 subgroups or
clusters using wards method. Within each subgroup, counties are relatively well matched
based on the 3 potential X confounders. JMP software is used to cluster the data.

3. Results

The EQI was linked to county-level annual age-adjusted cancer incidence rates from the
Surveillance,  Epidemiology,  and  End  Results  (SEER)  Program state  cancer  profiles.
Figure 1 shows a positive association between PM2.5 and lung cancer mortality.

Figure 1: Association between PM2.5 and lung cancer mortality
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Figure 2: State colored by PM2.5 (left figure) and lung cancer mortality (right figure)

Figure 2 shows that data is missing for 4 states namely Kansas, Michigan, Minnesota and
Nevada. Due to high PM2.5 in the different North East and South East central states, lung
cancer  is  also very high.  PM2.5 is  high in  Alabama,  Georgia,  Tennessee,  Kentucky,
Virginia,  West  Virginia,  Illinois,  Indiana,  South  Carolina,  North  Carolina  and
Pennsylvania. Lung cancer is almost high in the same states plus Arkansas, Missouri,
Iowa and Maine. Most of the manufacturing industries are in Alabama, Arkansas, Illinois,
Indiana,  Iowa,  Kansas,  Kentucky,  Louisiana,  Michigan,  Mississippi,  North  Carolina,
Ohio, Pennsylvania, South Carolina and Texas. As a result, the rate of PM2.5 rate is high
in these states, which leads to the high lung cancer mortality. Only exception is Maine.
Maine’s lung cancer mortality rate is 30% higher than the national average. Smoking and
tobacco use was identified as the major risk factor for lung cancer.

3.1 Distribution and recursive partitioning tree for LTD using JMP

Figure 3: Local Treatment Difference (LTD) distribution 

3080



These histograms display distributions of treatment effect sizes. The histogram displays
the LTD estimates for 48 informative subgroups of lung cancer patients relatively well
matched in x spaces. Figure 3 shows that LTD is positive which indicates that the lung
cancer mortality increases with the increase of PM2.5.

Figure 4: A “tree model” for prediction of observed local treatment differences

Since land domain separates off 525 counties with much lower LTD (low rate of lung
cancer incidence) where the environmental quality is high (less negative EQI), it is no
wonder that residents with land EQI is a very good predictor of across cluster variation in
LTDs. Similarly, socio-demographic EQI is used in three highly significant splits (high
logworth  value  (logworth  is  negative  log  of  the  p-value  for  the  split)),  with  LTDs
expected to be higher where the land EQI is high. On the other hand, built EQI is used in
two highly significant splits, with high LTD. For both splits, the land EQI is high. So, all
three x confounders are important predictors. Note that the SD does not decrease much
indicating heterogeneity. The high logworth value and standard deviation indicates that
LTD values differ significantly across clusters. 
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3.2 Distribution and recursive partitioning tree for intercept using JMP

Figure 5: Distribution of intercept for non-informative clusters

Point  to  histogram of  intercepts  indicates  that  there  are  major  differences  across  the
counties related to covariates. The overall differences are positive and are not random. 

Figure 6: A “tree model” for prediction of intercept
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Again, the lung cancer mortality is low in case of high land EQI (high environmental
quality), sociodemographic EQI and built EQI. Mean LTD is comparatively low in case
of high environmental quality means that 3 confounders are good predictors. The land
and sociodemographic domain dominates the intercept tree. In overall, the logworth value
is very high means the splits  are  highly significant.  Therefore,  we can conclude that
heterogeneity exists across the counties related to covariates. 

3.3 Distribution and recursive partitioning tree for slope using JMP

Figure 7: Distribution of slopes for non-informative clusters

The slope  histogram display distributions of treatment effect sizes. Slope did the same
thing that LTD done where the only difference is that these two methods are used for two
different  approaches (LTD approach and Local  Linear Regression approach) of Local
Control. The histogram displays the slope estimates for 48 informative subgroups of lung
cancer patients relatively well matched in x spaces. Figure 7 shows that slope is positive
which indicates that the lung cancer mortality increases with the increase of PM2.5.
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Figure 8: A “tree model” for prediction of slope

Figure 8 shows that the sociodemographic EQI is most important as it appears in 1 st split
and  often  in  the  tree.  The  overall  logworth  value  is  high  indicates  the  higher
heterogeneity. The large heterogeneity says that there is no constant/ consistent effect of
PM2.5. 

4. Conclusion

LC  strategy  gives  importance  on  local  effect-size  estimates  and  their  empirical
distribution,  rather than upon the statistical  significance of some of their  values [23].
Local Control approach is so straightforward simple that one can easily grasp the idea by
understanding of  clustering,  simple  differences,  single  predictor  linear  regression and
histograms. Histograms are drawn robustly estimate LTD, intercept and slope and display
their distribution across clusters.
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In case of LTD approach, we consider a binary treatment variable. Based on that binary
variable we compute the mean of lung cancer incidence rate for each non-informative
cluster. This study considers PM2.5 as binary treatment variable. On the other hand, the
LCR approach does not need any binary treatment variable. Instead of that LCR consider
the PM2.5 as continuous independent variable to perform the simple linear regression for
each 50 clusters, which gives the slope, and intercept for each cluster. LCR developed by
Young and Obenchain [23] is very similar to what Janes et al [6] and Greven et al [7]
have done; they look within and across locations, and Young and Obenchain work within
and across clusters of locations. In this study, intercepts represent baseline effects while
slopes can be taken to be the adjusted effects of lung cancer incidence versus PM2.5
exposures within clusters.

In this study,  the bivariate graph shows the positive association between lung cancer
incidence and PM2.5. In addition, the histogram shows that the overall distribution of
LTD  and  slope  is  positive.  This  positive  distribution  depicts  that  the  lung  cancer
mortality increases with the increase of PM2.5. Point to histogram of intercepts indicates
that there are major differences across the counties related to covariates. The decision tree
for LTD shows that the land domain is the most important as it appears in first split and
appears often in the tree. Sociodemographic and land is the most important domain in
case of slope and intercept decision tree respectively. For each tree, the logworth value is
high. However, with logworths this large, the splits are still highly significant. The large
heterogeneity says that there is no constant/  consistent effect of PM2.5. One possible
explanation for this high heterogeneity is that there may well be important unmeasured
covariates.
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