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Abstract

The possible association between PM2.5 and lung cancer mortality can be partitioned
into components, within similar observational units, and across different observational
units. Within unit’s covariates are very similar and across unit’s covariates can be, and
usually are, very different. Hence, there is a need to understand the possible effect of
PM2.5 on mortality taking into account within and between observational units. To know
the important covariates, our idea is to use Local Control Analysis (LCA) to estimate
these two components and determine how much of the variation in estimates can be
attributed. For the purpose of analysis, we calculated Local Treatment Difference (LTD)
for LTD approach and slope and intercept for Local Control Regression (LCR) approach,
to determine if the treatment (PM2.5) effects vary significantly across clusters. For that
evaluation, we used Recursive Partitioning (RP). The benefit of this study is twofold.
First, we use a reliable strategy (LCA) for observational data. Second and importantly,
there is subgroup heterogeneity in the effect of PM2.5 on lung cancer mortality and this
heterogeneity is largely explained by factors other than air quality.
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1. Introduction

Epidemiological studies conducted on particles PM2.5 indicate that PM2.5 has
substantially greater toxicity than larger particles [1-3]. A few study make the case that if
potential bias is carefully taken into account then there is no association between air
quality and deaths [4-8]. Although results have been mixed, overall, an association
between PM2.5 (particles having aerodynamic diameter <2.5 um) exposure and lung
cancer mortality have been reported by recent studies [7, 9, 10]. PM2.5 is associated with
greater increases in daily mortality than larger particles, and are of greater public health
concern [1, 3], suggesting that size is not the only indicator of PM-related health effects.

The empirical estimation of cumulative environmental exposures, from different
environmental sources, is difficult. As a result, epidemiologic research has traditionally
focused on single environmental exposures [11, 12]. However, it is impossible to get total
picture of the environmental effects on health by measuring a single environmental
exposure. Rather, various environmental exposures (including social exposures) occur
simultaneously, to engender poor health upshots, including cancer. The Environmental
Quality Index (EQI) was developed to capture multidimensional ambient environmental
exposures. The publically available EQI [13] is a county-level measure of cumulative
ambient environmental exposures for the United States for the period 2000- 2005 [11,
14].
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We examined county-level lung cancer incidence rates for the period 2010-2014 in
association with the EQI, which represents the period 2000-2005. To assess which
environmental domains drive the associations with cancer incidence, we also considered
three domain-specific indices namely land EQI, sociodemographic EQI and built EQIL.
The magnitude of this association varies with geographic location [15].

We also investigated associations between lung cancer incidence and the PM2.5. The
possible association between PM2.5 and lung cancer mortality can be partitioned into
components, within similar observational units and across different observational units.
Within unit’s covariates are very similar and across unit’s covariates can be, and usually
are, very different. Hence, there is a need to understand the possible effect of PM2.5 on
mortality taking into account within and between observational units. In this study, our
idea is to use a relatively new statistical strategy known as Local Control Analysis (LCA)
to estimate these two components and determined how much of the variation in estimates
can be attributed to know the important covariates. The basic idea of LCA is to cluster
experimental units, in our case counties, into subgroups that have similar socio-economic
characteristics but are not necessarily spatially contiguous. We then make statistical
comparisons primarily within these clusters of counties that are relatively homogeneous
in terms of important confounding factors.

To determine if the treatment (PM2.5) effect varies significantly across clusters, we
calculated Local Treatment Difference (LTD) for LTD approach and slope and intercept
for Local Control Regression (LCR) approach. Recursive Partitioning (RP) is used for
that purpose. The benefits of this study are twofold. First, we use a reliable strategy
(LCA) for observational data. Second and importantly, there is subgroup heterogeneity in
the effect of PM2.5 on lung cancer mortality and this heterogeneity is largely explained
by factors other than air quality.

2. Methodology

2.1 Data and Variables

Data comes from two different sources. Population-based lung cancer incidence rates for
the period 2010-2014 (most updated data) were abstracted from National Cancer Institute
state cancer profiles [16]. This national county-level database of cancer data is collected
by state public health surveillance systems. The domain specific county level
environmental quality index (EQI) data for the period 2000-2005 were abstracted from
United States Environmental Protection Agency (USEPA) profile. Complete descriptions
of the datasets used in the EQI are provided in Lobdell’s paper [17]. Data were merged
based on the Federal Information Processing Standards (FIPS) code.Out of 3144 counties
in United States this study has available information for 2602 counties: Data was not
available for four states namely Kansas, Michigan, Minnesota and Nevada due to state
legislation because of state legislation and regulations which prohibit the release of
county-level data to outside entities, county whose lung cancer mortality information is
missing were omitted from the data set, the Union county, Florida is an outlier in terms of
mortality information which was deleted from the data set, in the process of local control
analysis this study experiences two non-informative clusters (non-informative cluster is
one for which either treatment or control group information is missing) (cluster 28 and
29). For the purpose of analysis, non-informative clusters information was deleted from
the data set.
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Three types of variables was used in this study: (i) lung cancer mortality as an outcome
variable (ii) binary treatment indicator is the PM2.5 high (greater than 10.59 mg/m?) vs.
low (less than 10.59 mg/m?) (iii) three potential X confounder for clustering namely land
EQI, sociodemographic EQI and built EQI. For each index, higher values correspond to
poorer environmental quality [18].

2.2 Local Control Analysis

Local Control Analysis first clusters the data set and then a simple analysis within each
cluster. The statistics (LTD, Slope and Intercept) coming from each cluster are then
analyzed further. Once the descriptive statistics are computed, we determine if these
treatment effects vary significantly across clusters. For that evaluation, we use recursive
partitioning (RP). There is a SAS JMP Add-In, Local Control, for automating steps in the
analysis process [19].

Local control, LC, analysis strategy [20, 21, 22], for large, observational data sets is
easily explained as it is a series of simple steps that together provide a coherent analysis
strategy.

Step1: LC starts by dividing data points without regard for their either status as treated or
control, into many subgroups. The point is to assure that objects within a cluster are as
alike as possible for their observed baseline x-characteristics. They used hierarchical
clustering.

Step2: Next, a simple difference between the two treatments is computed within each
cluster:
E[ (Y[t=1) - (Y[t=0) [X],

so that they have a single degree of freedom comparison, given X. That is known as “fair
treatment comparison” and a local treatment difference, LTD or LC effect size estimates.
These LC effect-sizes are (continuous) measures of within-cluster association between
local observed y-outcomes and t-exposures.

Step3: Next, they display the LTDs in a histogram.

Step4: Once the descriptive statistics are computed, we determine if these treatment
effects vary significantly across clusters using RP.

Therefore, the LCA starts by designating just one of the available X-confounders as the
treatment t-exposure, which is the "main cause" of observed variation in the Y-outcome
variable. LC then repeats through its three nonparametric preprocessing phases
(Aggregate, Confirm and Explore) to “design” new variables LTDs, Slopes or Intercept.
Finally, we use Reveal phase to determine whether LTSs, Slope or Intercept appear to be
either truly heterogeneous or most random. In this study, we used two approaches of LC
method:

A. Local Treatment Difference (LTD) approach: Local Treatment Difference, LTD (0),
defined as, LTD (0) = E[(Y[t=1) — (Y|t=0)/ X within 0], where 0 denotes a cluster of

subjects who are relatively well-matched in X confounder space.

B. Local Control Regression (Slope and Intercept) approach: We performed simple linear
regression for 50 clusters, got slope and intercept for each cluster, found 48 non-
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informative clusters. Here slope and intercept takes the place of LTD. Finally, repeated
the 4-phase process of LTD approach for slope and intercept.

2.3 Clustering Technique

Hierarchical clustering technique is used to cluster the county level lung cancer data.
Hierarchical cluster analysis begins by separating each object into a cluster by itself.
Wards method is used as a linkage criterion. In this study, we produced 50 subgroups or
clusters using wards method. Within each subgroup, counties are relatively well matched
based on the 3 potential X confounders. JMP software is used to cluster the data.

3. Results

The EQI was linked to county-level annual age-adjusted cancer incidence rates from the
Surveillance, Epidemiology, and End Results (SEER) Program state cancer profiles.
Figure 1 shows a positive association between PM2.5 and lung cancer mortality.
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Figure 1: Association between PM2.5 and lung cancer mortality
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Figure 2: State colored by PM2.5 (left figure) and lung cancer mortality (right figure)

Figure 2 shows that data is missing for 4 states namely Kansas, Michigan, Minnesota and
Nevada. Due to high PM2.5 in the different North East and South East central states, lung
cancer is also very high. PM2.5 is high in Alabama, Georgia, Tennessee, Kentucky,
Virginia, West Virginia, Illinois, Indiana, South Carolina, North Carolina and
Pennsylvania. Lung cancer is almost high in the same states plus Arkansas, Missouri,
Iowa and Maine. Most of the manufacturing industries are in Alabama, Arkansas, Illinois,
Indiana, Iowa, Kansas, Kentucky, Louisiana, Michigan, Mississippi, North Carolina,
Ohio, Pennsylvania, South Carolina and Texas. As a result, the rate of PM2.5 rate is high
in these states, which leads to the high lung cancer mortality. Only exception is Maine.
Maine’s lung cancer mortality rate is 30% higher than the national average. Smoking and
tobacco use was identified as the major risk factor for lung cancer.

3.1 Distribution and recursive partitioning tree for LTD using JMP

Distributions
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Figure 3: Local Treatment Difference (LTD) distribution

3080



JSM 2017 - Health Policy Statistics Section

These histograms display distributions of treatment effect sizes. The histogram displays
the LTD estimates for 48 informative subgroups of lung cancer patients relatively well
matched in x spaces. Figure 3 shows that LTD is positive which indicates that the lung
cancer mortality increases with the increase of PM2.5.

Partition for LTD
Split || Prune Number
RSquare  RMSE N ofSplits Al
0409 80813481 2602 1 182763
All Rows
Count 1602 LogWorth Difference
Mean 12290988 95407665 887004
Std Dev 10511366
\ |
Land EQl<-0.5720844 Land EQl>=-0.5720844

Count
Mean 52104762 8712579
Std Dev 95320628

525 LogWorth Difference

34195

!—‘—\

Sociod EQL>=-1840598
Count 510 LogWorth Difference

Mean 423343 74706066 23600
St Dev 74335138

Sociod EQJ<-1.840598
Count 15
Mean 38426

Std Dev 13226259

—

Built EQl<-2.148766
Count 18
Mean  -1853389
StdDev 11535631

Built EQl>=-2.148766
Count 492
Mean 50665041
Std Dev 57425957

Count
Mean
St Dev 99806822

2077 LogWorth Difference
14080717 99038425

114662

|
[

Sociod EQI>=-0.9032053
Count 1818 LogWorth Difference
Mean 12650837 70216588  6R0%8

St Dav 87631957

Sociod EQI<-0.9032053
Count 19
Mean 24117066
Std Dev 12049544

Built QT =-0.1648442
Count 1312 LogWorth Difference

Mean 10156654 47304677 456180
StdDev 58868568

Built_EQl<-0.1648442
Count 506
Mean 17562451
Std Dev 12363028

land_EQlcU.l]TSSlB! I.and_EQl):(LCITSSISE
Count b1, Count 070 LogWorth Difference
Mean 73839181 Mean 11945804 5672708 526151
Std Dev 45070595 StdDev 58573051

Sociod EQ1>=0.7949088)  Sociod_EQl<0.7949088
Count 305 Count 665
Mean 8336885 Mean 13600195
Std Dev 18882826 Std Dev 61261708

Figure 4: A “tree model” for prediction of observed local treatment differences

Since land domain separates off 525 counties with much lower LTD (low rate of lung
cancer incidence) where the environmental quality is high (less negative EQI), it is no
wonder that residents with land EQI is a very good predictor of across cluster variation in
LTDs. Similarly, socio-demographic EQI is used in three highly significant splits (high
logworth value (logworth is negative log of the p-value for the split)), with LTDs
expected to be higher where the land EQI is high. On the other hand, built EQI is used in
two highly significant splits, with high LTD. For both splits, the land EQI is high. So, all
three x confounders are important predictors. Note that the SD does not decrease much
indicating heterogeneity. The high logworth value and standard deviation indicates that
LTD values differ significantly across clusters.
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3.2 Distribution and recursive partitioning tree for intercept using JMP
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Figure 5: Distribution of intercept for non-informative clusters

Point to histogram of intercepts indicates that there are major differences across the
counties related to covariates. The overall differences are positive and are not random.
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Figure 6: A “tree model” for prediction of intercept
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Again, the lung cancer mortality is low in case of high land EQI (high environmental
quality), sociodemographic EQI and built EQI. Mean LTD is comparatively low in case
of high environmental quality means that 3 confounders are good predictors. The land
and sociodemographic domain dominates the intercept tree. In overall, the logworth value
is very high means the splits are highly significant. Therefore, we can conclude that
heterogeneity exists across the counties related to covariates.

3.3 Distribution and recursive partitioning tree for slope using JMP
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Figure 7: Distribution of slopes for non-informative clusters

The slope histogram display distributions of treatment effect sizes. Slope did the same
thing that LTD done where the only difference is that these two methods are used for two
different approaches (LTD approach and Local Linear Regression approach) of Local
Control. The histogram displays the slope estimates for 48 informative subgroups of lung
cancer patients relatively well matched in x spaces. Figure 7 shows that slope is positive
which indicates that the lung cancer mortality increases with the increase of PM2.5.
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Figure 8: A “tree model” for prediction of slope

Figure 8 shows that the sociodemographic EQI is most important as it appears in 1% split
and often in the tree. The overall logworth value is high indicates the higher
heterogeneity. The large heterogeneity says that there is no constant/ consistent effect of

PM2.5.

4. Conclusion

LC strategy gives importance on local effect-size estimates and their empirical
distribution, rather than upon the statistical significance of some of their values [23].
Local Control approach is so straightforward simple that one can easily grasp the idea by
understanding of clustering, simple differences, single predictor linear regression and
histograms. Histograms are drawn robustly estimate LTD, intercept and slope and display
their distribution across clusters.
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In case of LTD approach, we consider a binary treatment variable. Based on that binary
variable we compute the mean of lung cancer incidence rate for each non-informative
cluster. This study considers PM2.5 as binary treatment variable. On the other hand, the
LCR approach does not need any binary treatment variable. Instead of that LCR consider
the PM2.5 as continuous independent variable to perform the simple linear regression for
each 50 clusters, which gives the slope, and intercept for each cluster. LCR developed by
Young and Obenchain [23] is very similar to what Janes et al [6] and Greven et al [7]
have done; they look within and across locations, and Young and Obenchain work within
and across clusters of locations. In this study, intercepts represent baseline effects while
slopes can be taken to be the adjusted effects of lung cancer incidence versus PM2.5
exposures within clusters.

In this study, the bivariate graph shows the positive association between lung cancer
incidence and PM2.5. In addition, the histogram shows that the overall distribution of
LTD and slope is positive. This positive distribution depicts that the lung cancer
mortality increases with the increase of PM2.5. Point to histogram of intercepts indicates
that there are major differences across the counties related to covariates. The decision tree
for LTD shows that the land domain is the most important as it appears in first split and
appears often in the tree. Sociodemographic and land is the most important domain in
case of slope and intercept decision tree respectively. For each tree, the logworth value is
high. However, with logworths this large, the splits are still highly significant. The large
heterogeneity says that there is no constant/ consistent effect of PM2.5. One possible
explanation for this high heterogeneity is that there may well be important unmeasured
covariates.
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