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Abstract
Survival outcomes are frequently randomly censored with unknown censoring distributions. Due

to complexities caused by censoring, useful effect sizes for nonparametric comparison of censored
survival outcomes have not been systematically investigated despite existence of several well known
nonparametric tests such as the log-rank and Wilcoxon tests. Effect size generally emphasizes
the magnitude of the difference between the studied survival endpoints rather than confounding
this with sample size as in the case of p-value. This paper investigates weakness and advantages
of existing and newly proposed effect sizes for the nonparametric comparison of time to event
outcomes.
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1. Introduction

When comparing two treatments in terms of survival outcomes, it is of great interest to
describe the results in terms of magnitude of difference in efficacies not just whether they
are equally efficacious. It is well known that effect size is an important way of quantifying
the magnitude of difference between two groups that has many advantages over the use of
p-value alone or merely reporting a statistical significance (yes or no) alone (Cohen 1990;
Sullivan and Feinn 2012). Survival outcomes are frequently randomly censored with un-
known censoring distributions. Due to complexities caused by censoring, useful effect sizes
for nonparametric comparison of censored survival outcomes have not been systematically
investigated despite existence of several well known nonparametric tests such as the lo-
grank and Wilcoxon tests. Effect size emphasizes the magnitude of the difference between
the survival endpoints. While a small p-value is important as an indication of statistical
significance or indication that the observed difference is not likely due to chance alone.
However, p-value is confounded with sample size, thus statistical significance alone does
not imply the difference is of clinical significance or practical significance no matter how
small the p-values is. Thus, instead of reporting p-value alone, p-value should go together
with effect size whenever possible. However, for censored survival outcomes, neither sta-
tistical textbooks nor computer packages routinely specify an effect size for the censored
survival endpoints, e.g., when the Wilcoxon test is conducted.

Appropriate selection of effect size depends on the specific needs in practical applica-
tions. In particular, specifying an effect size is of great importance in deciding sample size
and evaluating statistical power in clinical trial and study design. Technically speaking,
effect size selection in a hypothesis-driven study has to account for the specific test to be
used in the planned data analysis. Moreover, after data has been collected upon finishing a
clinical trial or study, effect size is useful in summarizing and reporting the observed differ-
ence or improvement in efficacy in addition to the p-value. Significance from the p-value
and confidence intervals in terms of effect size are naturally complement each other. Un-
fortunately, existing statistical textbooks and commonly used softwares do not offer clear
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guidelines on how to select effect size for the common non-parametric tests on comparing
survival probabilities. Discussion and guidelines on effect size selection are of practical im-
portance for both the design and the analysis of clinical study/trial with censored survival
endpoints. However, there is a lack of literature on systematic discussion of this important
issue. This paper investigates weakness and advantages of existing effect sizes relative to
newly proposed effect sizes for comparing time-to-event outcomes.

2. Methods

2.1 Set up. In survival studies, one of the meaningful criteria for a new medical treatment is
whether it can significantly enlong the survival time of a patient compared with the existing
treatment which maybe called standard care in general. The survival time can be any time-
to-event such as overall survival or cancer progression-free survival. The nonparametric
hypothesis might be formulated asH0 : P (X ≥ Y ) = 1/2 whereX and Y are the survival
times of randomly selected patients from with the new treatment and the standard care,
respectively. The alternative hypothesis is Ha : P (X ≥ Y ) 6= 1/2) and desired alternative
hypothesis is P (X ≥ Y ) is 1 or much larger than 1/2. Wilcoxon test (or Gehan’s test) or
log-rank test might be used to test this non-parametric hypothesis. For brevity, in the rest of
this paper we will subsequently consider the nonparametric test of H0 : P (X ≥ Y ) = 1/2
and assume X and Y have continuous CDFs F and G, respectively, and P (X = Y ) = 0.

2.2 Effect size. While it is of importance and interest to conduct formal nonparametric
hypothesis tests on survival endpoints and obtain the corresponding p-values. As is well
known, we also want to report some suitable effect size to quantify the strength or the mag-
nitude of the difference between two comparison groups. Effect size is useful in the study
design well as data analysis of clinical trials and other biomedical studies. Effect size es-
timation is as important as reporting a p-value. For example, even when p-values are not
significantly small as in some early phase clinical trials, effect size estimates are funda-
mental in planning validation studies or other future studies (e.g. in power estimation). Un-
fortunately, existing statistical textbooks and commonly used softwares do not offer clear
guidelines on how to select effect size for the common non-parametric tests on comparing
survival endpoints. In particular, log-rank test is commonly suggested and widely used to
compare two independent survival curves, and hazard ratio (HR) is a widely used measure
of effect size following a significant p-value of the log rank test. An important limitation
for using hazard ratio (HR) or log(HR) as an effect size is that, in practice, the HR often
changes with time (or time-dependent). HR or log(OR) is not generally a valid measure of
effect size and is valid only when HR is independent of time, e.g. under Cox’s proportional
hazard models. Even under the proportional hazard assumption, the use of hazard ratio as
an effect size can still be problematic in some practical applications [Heman 2010]. In fact,
despite the recommendations in many texts and its wide use in practice, the log-rank test
is not a consistent non-parametric test. In fact, frequently, for two different survival curves
with P (X ≥ Y ) 6= 1/2, when F and G cross each other, the log-rank test may have no
power at all no matter how large the sample size is. Similarly, there is no systematic guide-
line on suitable effect size for Wilcoxon test although specifying an effect size is of great
importance in deciding sample size and statistical power in trial design where Wilcoxon test
is planned test. Technically speaking, effect size selection in a hypothesis-driven study has
to account for the operating characteristics of the planned test as part of the planned data
analysis. Also, when we report a small p-value or statistical significance, e.g. based on the
Wilcoxon test, we want to report an effect size and corresponding confidence interval and
would like to have certain degree of consistency or concordance between the p-value and
confidence interval. There still exist some knowledge gaps and lack of literature concerning
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these fundamental questions in nonparametric comparison of survival endpoints.
In practice, following Wilcoxon test (or Gehan’s test) the difference in median survival

time is often used as a measure of effect size following a significant p-value. Median
survival time is conceptually easy to understand. However, as is well known, in many cases
when P (X ≥ Y ) 6= 1/2, the Wilcoxon test has high power to detect the difference between
groups, but the median survival time can be identical. Thus, the difference between median
survival time is considerer as an useful effect size only in very limited situations.

Similar to median survival time, differences between mean survival time or restricted
mean survival time (RMST) are also useful effect sizes but with non-negligible discordance
with the Wilcoxon test. The mean survival time is conceptually easy to understand. First,
as is well known, mean is an average. Second, the mean of a survival time X with CDF F
is also the area under the corresponding survival curves, that is

µX =

∫ ∞
0

[1− F (t)]dt.

However, many survival curves do not have a well defined finite mean , i.e., µX =∞. The
restricted mean survival time (RMST) is another effect size of interest [Chen and Tsiatis
2001, Andersen,et al. 2004, Tian et al 2013, Uno et al 2014]. For two numbers a and b, we
denote a ∧ b = min(a, b). On the time interval [0, τ ], the RMST of a survival time X is
defined as

RMST(τ) = E(X ∧ τ).

Even when µX = ∞, RMST(τ) is always finite for any τ < ∞. The difference in
mean or RMST reflects the difference in areas under survival curves. Such differences are
meaningful when the two survival curves do not cross at any finite positive time. However,
when two survival curves cross each other, the difference between mean survival time or
RSMT are not necessarily informative as measures of effect size for the Wilcoxon test. For
many situations where P (X ≥ Y ) 6= 1/2 and thus the Wilcoxon test has high power when
sample size is large, the difference in mean or in RMST reflects the difference in areas
under survival curves of F and G may be close to 0, and a confidence interval may contain
zero when the Wilcoxon test has a very small p-value. Thus there often exist discordance
between the p-value and confidence intervals for the difference in median survival time and
difference in mean survival time or RSMT.

Note that Gehan’s test statistic or the Mann-Whitney-Wilcoxon test statistic is gener-
ally a consistent estimate of P (X > Y ). Thus one may use C = P (X > Y ) as a measure
of effect size. Indeed, Efron (1967) has considered the effect measure C = P (X > Y ) and
provided a consistent estimator based on the KM estimators of F and G [Koziol and Jia
2009]. However, P (X > Y ) is not identifiable with heavy censoring in tail (thus, it cannot
not always be consistently estimated). Also, P (X > Y ) is not capable of providing effect
size measures at different time points or time-intervals.

2.3 New effect sizes. For two numbers a and b, we denote a ∧ b = min(a, b). We
propose a class of effect size measures of the form:

C(a, τ) = Ca,τ = P (a ≤ Y ∧ τ ≤ X ∧ τ), (1)

where a and τ are pre-selected non-negative constants. Naturally, τ can be the end of study
or any pre-selected landmark time of particular interest (e.g., τ = 3, 5 or 10 years). In
particular, when the interval [a, τ) = [0,∞), it is clear that C(a, τ) = P (X ≥ Y ) is
identical to Efron’s C-index. Ca,τ = 0 or1means one treatment almost surely yields longer
survival than the other treatment within the time interval [a, τ ]. Ca,τ = 1/2 means the two
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treatment yields equivalent chance of survival. In general, we might be interested in some
time intervals [a, τ) 6= [0,∞), e.g. when the survival curves have one known crossing
point at a. In this case, it might be more informative to consider C(a, τ) = Ca,τ = P (a ≤
Y ∧ τ ≤ X ∧ τ), rather than consider the overall C = P (X > Y ) in Efron (1967),
Newcombe (2006a, b), Koziol and Jia (2009). For brevity, ]in this paper, we focus on
discussion of the case a = 0. That is, we focus on the caseCτ = C0,τ = P (Y ∧τ ≤ X∧τ).

The Cτ and RMST are quite different, although they might complement each other.
First of all, Cτ ∈ [0, 1] while RMST can be unbounded as τ → ∞. Cτ has a well defined
limit as τ →∞ which has been described by Efron (1967). The RMST might diverge as τ
increases because not all survival times have well defined finite mean values. Secondly, the
Cτ is the mean or limit of the Wilcoxon tests statistic, thus is a natural effect size measure.
There is no natural collection between the behavior of Wilcoxon tests statistic and that of
RMST. Another difference between Cτ and other effect sizes including RMST is in the
following. Suppose X corresponding to a new treatment that improves the survival Y of
an existing treatment by adoption of improved care e.g. better personalized patient man-
agement that would definitely improve clinical outcome [Reisberg et al 2017], although not
sure by how much it will help. That is, both treatments have the same clinical intervention
(i.e. same drug and/or same therapy) but the X group has additionally enhanced personal-
ized care and patient management. Then we would expect X is at least as good as Y , that
is, P (X ≥ Y ) ≈ 1 thus Wilcoxon test has high power, and large effect size in Cτ or Kτ .
However, for majority of the patients, the improvement in survival might be tiny and thus
the difference in median survival time or RMST might be negligible.

When we are interested in comparing two treatments for patients at “high risk of dying’
before some time τ , the following measure of effect size is of practical interest

Kτ = P (X ≥ Y |X ≤ τ, Y ≤ τ). (2)

It is clear that Cτ is related to Kτ . It is easy to verify that

Cτ = P (Y ≤ X|X ≤ τ, Y ≤ τ)F (τ)G(τ) + P (X > τ).

Thus,
Cτ = KτF (τ)G(τ) + [1− F (τ)]. (3)

For nonparametric maximum likelihood estimation, we can estimate F (τ) and G(τ) using
the Kaplan-Meier estimate. If we can constently estimateKτ , then by equation (3), we also
can obtain consistent estimate of Cτ , and vice versus. Indeed from equation (3), we have

Kτ = [Cτ + F (τ)− 1]/[F (τ)G(τ)].

The new effect sizes Cτ or Kτ proposed here are in the forms of concordance proba-
bilities that are known to be useful as measures of discriminative power in distingushing
two groups [Harrell et al 1982; Gönen and Heller 2005, Koziol and Jia 2009, Uno et al
2011, Zhang and Shao 2017, Han et al 2017]. In other words, as overall predictive accu-
racy, based on Cτ = 1 or 0, one can predict that one treatment almost surely yields longer
survival than the other treatment.

2.4 Inference on effect sizes. We consider the problem of comparing two survival
outcomesX and Y as in the setting of a randomized clinical trial. SayX is the survival time
for the experimental treatment arm and Y denotes the survival time of the control arm. Let
X∗1 , · · · , X∗n and Y ∗1 , · · · , Y ∗m denote the true independent survival time with cumulative
distribution functions F (s) and G(s), respectively. Let U1, · · · , Un and V1, · · · , Vm be
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censoring time for the two arms, respectively. Suppose Xi = min(X∗i , Ui), i = 1, · · · , n
and Yj = min(Y ∗j , Vj), j = 1, · · · ,m are the observed survival time in the two arms. We
use δi = I(X∗i < Ui), i = 1, · · · , n and ψj = I(Y ∗j < Vj), j = 1, · · · ,m to denote
censoring indicators. Without much loss of generality, we assume tied observations are
unlikely to happen (P (X∗i = X∗j ) = 0), otherwise tied observations can be adjusted.

In common practice, when given censored data (X,Y, δ, ψ), it is customary to plot
the two Kaplan-Meier survival curves for visdual comparison followed by nonparametric
hypothesis tests for H0 : F = G and the corresponding p-values [Collett 2014, 3rd Edith].
The most widely used non-parametric tests for the comparison of two survival outcomes or
two survival curves are the log-rank test and the Wilcoxon test [Collett 2014]. Both tests
are straghtforward to conduct using commonly available statistical packages including SAS
and R which routinely provide p-values of these tests. Then, the question of interset if how
can we estimate the effect sizes Cτ or Kτ? How to conduct inference about Cτ or Kτ?

We are given censored data (X,Y, δ, ψ) to estimate Kτ = P (X∗ > Y ∗|X∗ ≤ τ, Y ∗ ≤
τ) andCτ = KτF (τ)G(τ)+1−F (τ). Note that P (Y ∗ < X∗ ≤ τ) =

∫ τ
0 [G(s)−1]dF (s),

P (X∗ ≤ τ) = 1− F (τ), P (Y ∗ ≤ τ) = 1−G(τ).

Kτ = P (X∗ > Y ∗|X∗ ≤ τ, Y ∗ ≤ τ) = P (Y ∗ < X∗ ≤ τ)
P (X∗ ≤ τ)P (Y ∗ ≤ τ)

.

Given censored data (X,Y, δ, ψ), the nonparametric Kaplan-Meier method provides con-
sistent estimator F̂ and Ĝ, thus also consistent estimator of Kτ :

K̂τ =

∫ τ
0 [Ĝ(s)− 1]dF̂ (s)

(1− F̂ (τ))(1− Ĝ(τ))
(4)

and
Ĉτ = K̂τ F̂ (τ)Ĝ(τ) + 1− F̂ (τ). (5)

The consistency and asymptotic normality of Ĉτ follow directly from the consistency and
asymptotic normality of KM estimates. Moreover, based on the explicit formulas for KM
estimates, we obtain explicit formulas for K̂τ and Ĉτ . Moreover, these explicit formulas en-
able efficient numerical computation of these estimates. The asymptotic normality and the
easy computation allow us to obtain variance estimates and standard errors using bootstrap.
We have developed an R package to compute K̂τ and Ĉτ for any given τ . In a special case
of interest, when τ =∞, our estimates in equation (4) and (5) and the R algorithm can com-
pute Efron’s estimate for P (Y < X). In particular, based on our bootstrapped confidence
interval, we can also conduct bootstrap test for H0 : P (X

∗ > Y ∗|X∗ ≤ τ, Y ∗ ≤ τ) = 0.5,
or H0 : Kτ = 0.5 as demonstrated in the next section.

3. Simulation Studies

For numerical illustration, we only report numerical study of Kτ because the results of Cτ
are similar. We generated survival time from exponential distributions for the two groups
with parameters (hazard rates) φ and ρφ respectively. That is

X∗ ∼ exp(ρφ), Y ∗ ∼ exp(φ).

The censoring time was generated independently from a uniform distribution from 0 to 2,
i.e. U ∼ U [0, 2], V ∼ U [0, 2]. The true value of our proposed effect size Kτ = P (X∗ >
Y ∗|X∗ ≤ τ, Y ∗ ≤ τ) can be calculated via

Kτ =
1/(1 + ρ)− exp(−ρφτ) + ρ exp(−φ(1 + ρ)τ)/(1 + ρ)

(1− exp(−φρτ))(1− exp(−φτ))
.
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Xi = min(X∗i , Ui), i = 1, · · · , n and Yj = min(Y ∗j , Vj), j = 1, · · · ,m are observed
survival times. δi = I(X∗i < Ui), i = 1, · · · , n and ψj = I(Y ∗j < Vj), j = 1, · · · ,m
are censoring indicators. After sample the censored data (X,Y, δ, ψ), we then estimate
Kτ = P (X∗ > Y ∗|X∗ ≤ τ, Y ∗ ≤ τ). To evaluate the performance of our estimator under
different scenarios, we set φ = 2, ρ = 1, 2 and τ = 0.5, 1, 2. For comparison, we set
sample size for the two groups n = m = 100, 200 and the number of bootstrap replications
to estimate variance equals 500. Findings based on 500 simulations in each instance are
given in Table 1 and Table 2.

From Table 1, under different scenarios, our proposed estimators for the effect size
measure Kτ are very close to the true value. The type I error or coverage probability for
95% confidence interval is getting closer to the nominal level as sample size increases.
Table 2 demonstrates that when the true probability is away from 0.5, our proposed test has
adequate power to detect the difference between two groups significantly.

Table 1: Type I error or coverage probability for 95% bootstrap confidence interval

Sample Size (ρ, φ, τ) True Mean SD 95% CP
m=n=100 (1,2,0.5) 0.5 0.496 0.055 0.958
m=n=200 (1,2,0.5) 0.5 0.497 0.039 0.944
m=n=100 (2,2,0.5) 0.423 0.421 0.050 0.956
m=n=200 (2,2,0.5) 0.423 0.422 0.028 0.946
m=n=100 (2,2,1) 0.373 0.369 0.044 0.946
m=n=200 (2,2,1) 0.373 0.374 0.031 0.948
m=n=100 (2,2,2) 0.339 0.337 0.042 0.942
m=n=200 (2,2,2) 0.339 0.338 0.029 0.952

Table 2: Power of bootstrap tests H0 : P (X
∗ > Y ∗|X∗ ≤ τ, Y ∗ ≤ τ) = 0.5

Sample Size (ρ, φ, τ) Mean Power (%)
m=n=100 (2,2,0.5) 0.421 40.2
m=n=200 (2,2,0.5) 0.422 65.0
m=n=100 (2,2,1) 0.369 84.8
m=n=200 (2,2,1) 0.374 99.4

4. Discussion

When comparing two treatments in terms of survival outcomes, it is of great interest to de-
scribe the results in terms of measures of magnitude difference in efficacies not just whether
they are equally efficacious. It is well known that effect size is an important way of quan-
tifying the magnitude of difference between two groups that has many advantages over the
use of p-value alone or merely reporting of a statistical significance alone (Cohen 1990;
Sullivan and Feinn 2012). Survival outcomes are frequently randomly censored with un-
known censoring distributions. Due to complexities caused by censoring, useful effect sizes
for nonparametric comparison of censored survival outcomes have not been systematically
investigated despite existence of several well known nonparametric tests such as the lo-
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grank and Wilcoxon tests. Effect size emphasizes the magnitude of the difference between
the survival endpoints rather than confounding this with sample size as in the case of a re-
ported p-value. However, for censored survival outcomes, neither statistical textbooks nor
computer packages routinely specify an effect size for the censored survival endpoints, e.g.,
when the Wilcoxon test is conducted. Discussion on effect size selection is of practical im-
portance for study/trial designs in comparison of censored survival endpoints. Also, when
the clinical trial or study is successfully conducted, effect size is useful in summarizing
and reporting study findings. This paper investigates weakness and advantages of existing
effect sizes for comparing studies with time to event outcomes and discuss new measures
of effect size for Wilcoxon test. We developed bootstrap based confidence intervals for the
effect sizes and bootstrap based hypothesis testing for the given effect sizes. Numerical
study indicates that the bootstrap confidence intervals have desired coverage probability
and the bootstrap hypothesis tests have desired type I errors. We also have developed an R
package to implement the proposed effect sizes with confidence intervals.
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