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Abstract 

Although it is well known that multicollinearity can impede one’s ability to evaluate model 
predictors (Montgomery, Peck, & Vining, 2001; Pedhazur, 1982), it has been suggested 
that the presence of multicollinearity may not affect the accuracy of a prediction of the 
response variable, given a set of observations taken on the predictor variables (Kutner, 
Nachtsheim & Neter, 2004; Weiss, 2012). In a previous study, the authors explored a 
model’s ability to make predictions under different scenarios by varying the number of 
predictors, the strength of the association between the predictor variables and the response 
variable, the sample size, and the level of multicollinearity (Mundfrom, Smith & Kay, 
2016). Simulations in the study indicated that confidence intervals are wider in the presence 
of multicollinearity. Furthermore, differences in confidence interval width appeared to 
depend on degree of taintedness in multivariate normal data, sample size, and number of 
predictors in the model. The purpose of the present study was to determine which scenarios 
result in more appreciable effects and to examine alternative ways of measuring the impact 
of multicollinearity on predictions. 
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1. Introduction 

 
Virtually every statistics textbook that includes chapters on multiple regression at least 
touches on the concept of multicollinearity and the problems that it can cause in arriving 
at an acceptable model. The focus of these discussions is almost unilaterally restricted to 
the determination of which independent variables are needed/appropriate in an optimal 
model and which are unnecessary because of their inter-connectedness to other 
independent variables in the model (Adeboye, Fagoyinbo, & Olatayo, 2014). Although it 
is well known that multicollinearity can impede one’s ability to evaluate model predictors 
(Montgomery, Peck, & Vining, 2001; Pedhazur, 1982), it has been suggested that the 
presence of multicollinearity may not affect the accuracy of a prediction of the response 
variable, given a set of observations taken on the predictor variables (Kutner, Nachtsheim, 
& Neter, 2004; Weiss, 2012). In a previous study, the authors explored a model’s ability to 
make predictions under different scenarios by varying the number of predictors, the 
strength of the association between the predictor variables and the response variable, the 
sample size, the level of multicollinearity, and departures from normality (i.e., taintedness) 
(Mundfrom, Smith, & Kay, 2016). Simulations in the study indicated that confidence 
intervals are wider in the presence of multicollinearity. Furthermore, differences in 
confidence interval width appeared to depend on degree of taintedness in multivariate 
normal data, sample size, and number of predictors in the model. The present study extends 
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the authors’ previous work to include data from multivariate t and multivariate uniform 
distributions to further examine the effect of multicollinearity with non-normal data. 
 

2. Methods 

 
As in the authors’ previous work (Mundfrom, Smith, & Kay, 2016), two different 
regression models were investigated in this study. The first model was a two-variable 
model in which a single variable, X2, which was collinear with the existing variable, X1, in 
a simple linear regression model, was added to the model to create a model in which both 
variables were relatively highly correlated with the response variable, Y, and also 
moderately to highly correlated with each other. These two models are, respectively, Y = 
0 + 1X1 +  and Y = 0 + 1X1 + 2X2 + . 
 
The second model was a three-variable model in which a single variable, X3, which was 
collinear with both of the existing variables, X1 and X2, was added to the model to create a 
model in which all three variables were relatively highly correlated with the response 
variable, Y; X1 was moderately correlated with both X2 and X3; and the correlation between 
X2 and X3 was varied from being relatively uncorrelated with each other to being very 
highly correlated with each other. These two models are, respectively, Y = 0 + 1X1 + 2X2 
+  and Y = 0 + 1X1 + 2X2 + 3X3 + . 
 
Simulations were conducted with different combinations of the following: number of 
quantitative predictor variables (2, 3), correlation between each predictor variable and 
response variable (0.7, 0.75, 0.8, 0.85, 0.9), and correlation between two predictor variables 
(0.7, 0.75, 0.8, 0.85, 0.9, and 0.95). The cases in which the values of the correlation between 
X1 and X2 for the two-variable model were set at 0.3 and 0.5 were used as baseline 
conditions, in which the two independent variables were not collinear in an effort to better 
understand the effect of introducing an additional independent variable into a model which 
was collinear with the previous independent variable. Similarly, the cases in which the 
values of the correlation between X1 and X3 for the three-variable model were set at 0.3 and 
0.5 were used as baseline conditions. Sample sizes were set at 20, 50, and 100 in all the 
scenarios investigated for both the two-variable models and the three-variable models. 
 
Although it is probably not typically the case that a collinear variable is treated as being 
added to a model that already contains one or two independent variables; in order to control 
the conditions of this study, that method is what was employed. In conjunction with that, 
in order to see the effect of the additional collinear variable, the correlation between the 
independent variable(s) and Y had to be greater than or equal to the correlation between the 
collinear variable and Y in order for the correlation coefficient between the two predicted 
values of Y to be comparable. It may seem that these conditions are limiting in terms of the 
generalizability of the findings, but it is merely a result of creating specific scenarios for 
comparison purposes. 
 

3. Data 

 
Initially, data were generated from a multivariate normal distribution with 𝜇𝑌 = 𝜇𝑋1 =

𝜇𝑋2 = 𝜇𝑋3 = 0, 𝜎𝑌2 = 25, 𝜎𝑋1
2 = 9, 𝜎𝑋2

2 = 4, 𝜎𝑋3
2 =16, and covariances determined by the 

given correlations. Then, data were generated from a multivariate t distribution for two 
variables for 3 and 5 degrees of freedom, and for three variables for 3 and 5 degrees of 
freedom, thereby creating distributions with somewhat heavier tails. Further, data were 
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generated from a multivariate uniform distribution (marginals were standard uniform) for 
two variables and three variables; hence, the distribution had even thicker tails than the 
multivariate t distributions. 
 
For all the combinations of conditions described above in each of the three sample sizes 
previously mentioned and for each of the three distributions, 2000 replications were 
simulated using R (Mundfrom, Schaffer, Shaw, Preecha, Ussawarujikulchai, Supawan, & 
Kim, (2011). 
 

4. Results 

 
For the two-variable model and for each of the combinations of conditions, we used R to 
generate a matrix of results containing the original values of Y, X1, and X2, the predicted 
values of Y1 and Y2, the predicted values from the SLR model and the two-variable MLR 
model respectively, the correlation between the predicted values for the two models, the 
endpoints of a confidence interval based on Y1, the endpoints of a confidence interval based 
on Y2, and the ratio of the mean difference in the confidence interval widths to SD(y). The 
results in the following tables are selected representative results for a variety of treatment 
conditions. 
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Table 1. Two-Variable Model Results 
 

𝒚̂𝟏 =  𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏,      𝒚̂𝟐 =  𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 +  𝜷̂𝟐𝒙𝟐 
𝝆𝒀,  𝑿𝟏 = 0.8, 𝝆𝒀,  𝑿𝟐 = 0.75 

Average of 2000 Simulations 

  
Multivariate 

Normal Data 

Multivariate t 
Data 
df = 5 

Multivariate t 
Data 
df = 3 

Multivariate 

Uniform Data 

𝝆𝑿𝟏,  𝑿𝟐 n 𝒓𝒚̂𝟏, 𝒚̂𝟐 

𝐌𝐞𝐚𝐧 

[𝐂𝐈𝐖(𝒚̂𝟏) 
− 

𝐂𝐈𝐖(𝒚̂𝟐)] 

/SD(y) 𝒓𝒚̂𝟏, 𝒚̂𝟐 

𝐌𝐞𝐚𝐧 

[𝐂𝐈𝐖(𝒚̂𝟏) 
− 

𝐂𝐈𝐖(𝒚̂𝟐)] 

/SD(y) 𝒓𝒚̂𝟏, 𝒚̂𝟐 

𝐌𝐞𝐚𝐧 

[𝐂𝐈𝐖(𝒚̂𝟏) 
− 

𝐂𝐈𝐖(𝒚̂𝟐)] 

/SD(y) 𝒓𝒚̂𝟏, 𝒚̂𝟐 

𝐌𝐞𝐚𝐧 

[𝐂𝐈𝐖(𝒚̂𝟏) 
− 

𝐂𝐈𝐖(𝒚̂𝟐)] 

/SD(y) 
0.7 20 0.934 −0.081 0.924 −0.063 0.914 −0.045 0.948 −0.105 

0.7 50 0.944 −0.046 0.938 −0.036 0.930 −0.026 0.949 −0.052 

0.7 100 0.946 −0.031 0.943 −0.025 0.938 −0.019 0.949 −0.034 
0.75 20 0.945 −0.105 0.936 −0.087 0.929 −0.071 0.959 −0.128 

0.75 50 0.957 −0.062 0.951 −0.053 0.941 −0.040 0.962 −0.068 
0.75 100 0.959 −0.043 0.957 −0.036 0.949 −0.029 0.962 −0.045 

0.8 20 0.957 −0.130 0.950 −0.116 0.938 −0.096 0.969 −0.150 
0.8 50 0.970 −0.078 0.965 −0.067 0.954 −0.054 0.974 −0.083 

0.8 100 0.972 −0.054 0.969 −0.047 0.961 −0.038 0.975 −0.056 

0.85 20 0.970 −0.156 0.958 −0.132 0.943 −0.108 0.977 −0.167 
0.85 50 0.981 −0.090 0.975 −0.079 0.964 −0.066 0.985 −0.096 

0.85 100 0.984 −0.062 0.981 −0.056 0.972 −0.045 0.986 −0.065 

0.9 20 0.977 −0.172 0.966 −0.151 0.956 −0.129 0.981 −0.178 

0.9 50 0.990 −0.100 0.985 −0.089 0.973 −0.075 0.992 −0.104 

0.9 100 0.993 −0.070 0.990 −0.063 0.982 −0.053 0.995 −0.071 
0.95 20 0.982 −0.178 0.968 −0.154 0.953 −0.132 0.978 −0.179 

0.95 50 0.993 −0.104 0.988 −0.092 0.975 −0.078 0.991 −0.106 
0.95 100 0.996 −0.072 0.993 −0.065 0.983 −0.054 0.996 −0.074 

 
 

The same statistics were calculated for the three-variable model, where in these cases, the 
predicted values of Y1 and Y2, are the predicted values from the MLR model with two 
independent variables and the MLR model with three independent variables, respectively. 
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Table 2. Three-Variable Model Results 

 

𝒚̂𝟏 =  𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 +  𝜷̂𝟐𝒙𝟐,    𝒚̂𝟐 =  𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 +  𝜷̂𝟐𝒙𝟐 + 𝜷̂𝟑𝒙𝟑 
𝝆𝒀,  𝑿𝟏 = 0.8, 𝝆𝒀,  𝑿𝟐 = 0.75, 𝝆𝒀,  𝑿𝟑 = 0.7, 𝝆𝑿𝟏,  𝑿𝟐 = 0.5, 𝝆𝑿𝟏,  𝑿𝟑 = 0.5 

Average of 2000 Simulations 

  
Multivariate 

Normal Data 

Multivariate t 
Data 
df = 5 

Multivariate t 
Data 
df = 3 

Multivariate 

Uniform Data 

𝝆𝑿𝟐,  𝑿𝟑 n 𝒓𝒚̂𝟏, 𝒚̂𝟐 

𝐌𝐞𝐚𝐧 

[𝐂𝐈𝐖(𝒚̂𝟏) 
− 

𝐂𝐈𝐖(𝒚̂𝟐)] 

/SD(y) 𝒓𝒚̂𝟏, 𝒚̂𝟐 

𝐌𝐞𝐚𝐧 

[𝐂𝐈𝐖(𝒚̂𝟏) 
− 

𝐂𝐈𝐖(𝒚̂𝟐)] 

/SD(y) 𝒓𝒚̂𝟏, 𝒚̂𝟐 

𝐌𝐞𝐚𝐧 

[𝐂𝐈𝐖(𝒚̂𝟏) 
− 

𝐂𝐈𝐖(𝒚̂𝟐)] 

/SD(y) 𝒓𝒚̂𝟏, 𝒚̂𝟐 

𝐌𝐞𝐚𝐧 

[𝐂𝐈𝐖(𝒚̂𝟏) 
− 

𝐂𝐈𝐖(𝒚̂𝟐)] 

/SD(y) 
0.7 20 0.983 −0.081 0.976 −0.051 0.982 −0.070 0.952 −0.049 
0.7 50 0.988 −0.047 0.983 −0.032 0.986 −0.040 0.953 −0.014 

0.7 100 0.989 −0.032 0.986 −0.022 0.988 −0.028 0.954 −0.006 
0.75 20 0.986 −0.095 0.981 −0.066 0.983 −0.080 0.955 −0.051 

0.75 50 0.991 −0.054 0.987 −0.039 0.989 −0.047 0.955 −0.017 

0.75 100 0.992 −0.037 0.988 −0.027 0.991 −0.033 0.955 −0.008 
0.8 20 0.990 −0.107 0.984 −0.076 0.988 −0.091 0.956 −0.058 

0.8 50 0.994 −0.061 0.989 −0.045 0.993 −0.054 0.956 −0.019 
0.8 100 0.995 −0.042 0.992 −0.031 0.994 −0.037 0.957 −0.012 

0.85 20 0.992 −0.114 0.986 −0.083 0.989 −0.097 0.961 −0.068 

0.85 50 0.996 −0.066 0.991 −0.048 0.994 −0.058 0.961 −0.027 
0.85 100 0.998 −0.045 0.994 −0.034 0.997 −0.040 0.960 −0.017 

0.9 20 0.993 −0.117 0.985 −0.084 0.989 −0.101 0.966 −0.082 
0.9 50 0.997 −0.067 0.992 −0.049 0.995 −0.060 0.965 −0.036 

0.9 100 0.999 −0.047 0.995 −0.036 0.998 −0.042 0.966 −0.024 
0.95 20 0.989 −0.102 0.981 −0.071 0.985 −0.085 0.971 −0.096 

0.95 50 0.993 −0.058 0.988 −0.043 0.991 −0.051 0.971 −0.047 

0.95 100 0.994 −0.040 0.991 −0.030 0.993 −0.036 0.971 −0.032 
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5. Conclusions 

 
Results of the current study seem consistent with the results of the authors’ previous study 
(Mundfrom, Smith, & Kay, 2016). Multicollinearity has an effect on prediction in at least 
some scenarios. It is not clear how best to quantify the effect of multicollinearity on 
prediction, but several ways seem to be informative. Simulations indicate that confidence 
intervals are wider in the presence of multicollinearity. The 𝑟𝑦̂1, 𝑦̂2 values are very high; 
they indicate stronger correlations than for the authors’ previous study that employed 
“tainted” multivariate normal data. Normality tests did not suggest rejection of the null 
hypothesis of normality for many scenarios with the multivariate t and multivariate uniform 
data; this was especially true for t with df = 5. In many cases, level of normality does not 
appear to make much of a difference in confidence interval width for predictions based on 
the data. Multicollinearity appears to affect confidence interval width for smaller sample 
sizes more than it does for larger sample sizes, and it makes a bigger difference in 
confidence interval width for the model with two predictor variables than for the model 
with three predictor variables. 
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