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Abstract 
Receiver operating characteristic (ROC) analysis is commonly used to evaluate the overall 
accuracy of continuous diagnostic tests. In this research, we propose a generalized pivotal 
quantity (GPQ) approach to compare the areas under two correlated ROC curves. The 
GPQ-based empirical powers of the equivalence tests for the area difference are simulated 
and compared with those by maximum likelihood and nonparametric methods.  
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1. Introduction 
 
In medical practice, receiver operating characteristic (ROC) is widely used in evaluation 
of a continuous diagnostic test that distinguishes between diseased and normal cases. When 
two or more diagnostic tests are assessed, one primary interest is to compare the accuracy 
of the tests. If the tests are performed on the same study subjects, accounting for correlation 
between ROC curves is necessary. In this article, we compare the accuracy of two 
continuous diagnostic tests via equivalence testing for the difference in the areas of the 
correlated ROC curves. 
 
In literature, several methods have been proposed in evaluation of correlated ROC curves. 
For example, DeLong et al (1998) compared the areas on the basis of correlated U statistics. 
Hanley and McNeil (1983) estimated the correlation of the two areas using Pearson 
correlation coefficients. Venkatraman and Begg (1996) applied permutation test for 
equality of paired ROC curves. Metz et al (1984) tested the equivalence of correlated ROC 
curves using a likelihood ratio test based on discretized continuous measurements. More 
recently, Li (2007) adopted generalized pivotal quantities for comparing the AUCs of ROC 
curves.  Gallas and Pesce (2009) compared partially correlated ROC curves by taking into 
account the practical possibility that some subjects may be evaluated only by one but not 
both of the diagnostic tests. Wan and Zhang (2008), and Zhang and Zhang (2014) 
introduced semi-parametric methods for comparisons of correlated ROC curves and stated 
that their methods are more efficient than both of parametric and non-parametric 
counterparts. Bantis and Feng (2016) compared the AUCs under correlated ROCs given 
fixed specificity or sensitivity level. 
 
In the past, most of the efforts were focused on estimation and evaluation of equality of 
correlated ROC curves. Published papers on equivalence testing for the areas under 
correlated ROC curves are sparse. Zhou et al (2002) used the Delong’s non-parametric 
method for the equivalence test. Another attempt on this aspect was made by Liu et al 
(2006). The authors converted the area difference to the standardized difference for 
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assessing equivalence of paired areas under ROC curves, and compared the standardized 
difference method and its bootstrap version to Delong’s method and bootstrap procedure 
of Delong’s method in terms of the equivalence test powers. Considering lack of literature 
on comparing different methods for the equivalence testing on the basis of the difference 
in areas of correlated ROC curves, and the fact that the equivalence test results may rely 
heavily on the statistical methods and sample sizes, we tackle this problem by examining 
the performance of three methods applied to the equivalence testing: non-parametric 
method (Delong et al (1988)), maximum likelihood method, and generalized pivotal 
quantity approach. The equivalence test powers were empirically calculated based on 
simulation data from bivariate normal distributions under different scenarios. The bias in 
terms of estimation of the area difference between correlated ROC curves was also 
obtained for comparisons. The methods are detailed in next section.  
 
 

2. Definitions and Methods 
 
2.1 Notations and Assumptions 
 
It is assumed that two diagnostic tests are used for each subject in both the diseased 
population and the non-diseased population. Define 𝑋 = 𝑋#, 𝑋%,⋯ , 𝑋'  and 𝑌 =
𝑌#, 𝑌%,⋯ , 𝑌)  as the vectors of bivariate random variables for the diseased and non-

diseased subjects, respectively. Let 𝑋#, 𝑋%,⋯ , 𝑋'  denote independent and identically 
distributed (iid) diagnostic test results from the diseased subjects, with mean vector	𝜇 and 
variance-covariance matrix 𝛴. For 𝑖 = 1,⋯ , 𝑛, 
 

𝑋0 =
𝑋0#
𝑋0%

~𝑁 𝜇, 𝛴 			𝑤ℎ𝑒𝑟𝑒	𝜇 =
𝜇#
𝜇% 	, 	𝛴 =

𝜎#% 𝜎#%
𝜎#% 𝜎%%

, 𝜌9 =
𝜎#%
𝜎#𝜎%

 

 
The population correlation of the bivariate normal distribution is denoted as 𝜌9. 

 
For any i, the two measurements 𝑋0#	𝑎𝑛𝑑	𝑋0%  from the i-th subject are assumed to be 
correlated with a non-zero coefficient 𝜌9, 
 

𝜌9 =
𝜎#%
𝜎#𝜎%

 

 
Similarly, let 𝑌#, 𝑌%,⋯ , 𝑌) be independent and identically distributed test results from the 
non-diseased subjects, with mean	𝜂 and variance 𝛹. For 𝑗 = 1,⋯ ,𝑚, 
 

𝑌@ =
𝑌@#
𝑌@%

~𝑁 𝜂, 𝛹 , 		𝑤ℎ𝑒𝑟𝑒	𝜂 =
𝜂#
𝜂% 	, 	𝛹 =

𝜓#% 𝜓#%
𝜓#% 𝜓%%

, 		𝜌B =
𝜓#%
𝜓#𝜓%

 

 
Also, a non-zero and common correlation coefficient 𝜌B is assumed for two diagnostic 
test results from all non-diseased subjects. 
 
For any i and j, XD#	and	YI#  represent the results from the first diagnostic test, and 
XD%	and	YI% refer to the results from the second diagnostic test. 
 
Under the above assumptions, for each of the two diagnostic tests, a receiver operating 
characteristic curve can be used to measure the overall accuracy. The ROC curve is a plot 
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of the sensitivity (or true positive rate) against its false positive rate (1-specificity), 
constructed by changing the decision thresholds that define positive and negative test 
results. Specifically, at each of the pre-specified threshold values, paired values of 
sensitivity and specificity can be computed and then used to generate one corresponding 
point on the ROC curve. Different diagnostic tests can be visually compared if the ROC 
curves do not intersect each other. Nevertheless, formal comparisons are commonly carried 
out using the total areas under the ROC curves (AUC). In next section, the applied methods 
for estimation and comparisons of the areas under correlated ROC curves are described in 
details. 
 
2.2 Estimation and Comparisons of Areas under ROC Curves 
 
Without loss of generality, we assume that a larger test result indicates greater likelihood 
of the disease. Then the AUC for k-th diagnostic test (k=1,2) can be expressed as  
 

𝜃K = 𝑃M 𝑋0K > 𝑌@K 			𝑓𝑜𝑟	𝑎𝑛𝑦	𝑖	𝑎𝑛𝑑	𝑗 
 
Under the above bivariate normal distributions, the AUC for k-th diagnostic test (k=1,2) 
can be rewritten as a function of 𝜇K, 𝜂K, 𝜎K% and 𝜓K% as follows, 

𝜃K = 𝛷
𝜇K − 𝜂K

𝜎K% + 𝜓K%
 

 
The second expression is used in application of the maximum likelihood and generalized 
pivotal quantity methods for estimation and comparisons of the correlated AUCs. On the 
other hand, using the first expression, the non-parametric method (Delong et al (1998)) 
estimates the AUCs and their correlation regardless of normality of the test data. 
 
2.2.1 Non-Parametric Method 
The nonparametric method by Delong et al (1998) is based on the correlated Mann-
Whitney U statistics, under the assumption that the test results from the same subject are 
correlated. Specifically, the AUC for the k-th diagnostic test is given by 
 

𝜃K =
1
𝑛𝑚

𝐼 𝑋0K, 𝑌@K

'

0V#

)

@V#

 

 
Where 𝐼 𝑎, 𝑏  is the indicator function defined as follows. 

	

𝐼 𝑎, 𝑏 =
1 𝑖𝑓	𝑎 > 𝑏
0.5 𝑖𝑓	𝑎 = 𝑏
0 𝑖𝑓	𝑎 < 𝑏

 

 
The variance of the difference in areas must take into account the correlation. That is, 
 

𝑉𝐴𝑅 𝜃# − 𝜃% = 𝑉𝐴𝑅 𝜃# + 𝑉𝐴𝑅 𝜃% − 2𝐶𝑂𝑉 𝜃#, 𝜃%  
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The covariance estimate is the weighted average of the covariance of the non-diseased and 
diseased estimates 

𝐶𝑂𝑉 𝜃#, 𝜃% =
1
𝑛
𝑠##% +

1
𝑚
𝑠c#% 

 
and for k=1,2 

𝑉𝐴𝑅 𝜃d =
1
𝑛
𝑠#KK +

1
𝑚
𝑠cKK 

 
Where, with 𝑔, ℎ = 1, 2 

𝑠#
f,g =

1
𝑛 − 1

𝑉#
f 𝑋0 − 𝜃h 𝑉#g 𝑋0 − �i

'

0V#

 

𝑠c
f,g =

1
𝑚 − 1

𝑉c
f 𝑌@ − 𝜃h 𝑉cg 𝑌@ − 𝜃i

)

@V#

 

 

𝑉#
f 𝑋0 =

1
𝑚

𝐼 𝑋0f, 𝑌@f

)

@V#

	and		𝑉c
f 𝑌@ =

1
𝑛

𝐼 𝑋0f, 𝑌@f ,
'

0V#

					𝑖 = 1,⋯ , 𝑛; 	𝑗 = 1,⋯ ,𝑚 

 
Where 𝐼 𝑎, 𝑏  is defined as before. 
 
 
2.2.2 Maximum Likelihood Method 

For 𝑖 = 1,⋯ , 𝑛, 𝑋0 =
𝑋0#
𝑋0%

 is a bivariate normal random variable with the following joint 

pdf, 
 

p xD#, xD% =
1

2π Σ
exp −

1
2

xD#
xD% −

µ#
µ%

q

Σr#
xD#
xD% −

µ#
µ%  

 
The log-likelihood function is 
 

𝑙𝑜𝑔 𝑝 𝑥0#, 𝑥0%

'

0V#

 

 
Then the maximum likelihood (ML) estimates are obtained by maximizing the above log-
likelihood function. Specifically, for k=1,2, 
 

𝜇d =
1
𝑛

𝑥0K

'

0V#

		𝑎𝑛𝑑		Σ =
𝜎#% 𝜎#%
𝜎#% 𝜎%%

=
1
𝑛

𝑥0#
𝑥0% − 𝜇#

𝜇%

'

0V#

𝑥0#
𝑥0% − 𝜇#

𝜇%

q

 

 
Similarly, based on the data from the non-diseased group, the ML estimates for η =
η#
η% 		and		Ψ =

ψ#% ψ#%
ψ#% ψ%%

 are 
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𝜂d =
1
𝑛

𝑦0K

'

0V#

	𝑎𝑛𝑑		Ψ =
𝜓#% 𝜓#%
𝜓#% 𝜓%%

=
1
𝑚

𝑦@#
𝑦@% − 𝜂#

𝜂%

)

@V#

𝑦@#
𝑦@% −

𝜂#
�%

q

 

 
Using these ML estimates, under normality, the AUC estimate for the k-th diagnostic test 
can be computed as follows, 
 

𝜃K = 𝛷
𝜇d − 𝜂d

𝜎K% + 𝜓K%
, 𝑘 = 1,2 

 
For estimating the variances 𝑉𝑎𝑟 𝜃K 	𝑓𝑜𝑟	𝑘 = 1,2	and the covariance 𝐶𝑂𝑉 𝜃#, 𝜃% , we 
introduce 𝑎d and 𝑏d for k=1,2, 
 

𝑎d =
𝜇d − 𝜂d

𝜎K%
			and		𝑏d =

𝜓K%

𝜎K%
 

 
and rewrite the equation of 𝜃K below, 
 

𝜃K = 𝛷
𝑎d

1 + 𝑏K%
, 𝑘 = 1,2 

 
Then the variances and the covariance are calculated using the Delta-method formulas 
derived by Liu and Schisterman (2003). 
 
2.2.3 Generalized Inference 
The principles of generalized inference on correlated ROC curves was outlined by Li 
(2007). For computational convenience, we adopted the generalized pivotal quantities 
according to Johnson and Wichern (2008), Bebu and Mathew (2008). Let 𝑆 𝑥  be the 
matrix of sums of squares of the cross-products based on the data from the diseased group,  

𝑆𝑆𝑋 = 𝑋0#
𝑋0%

−
𝜇#
𝜇%

'

0V#

𝑋0#
𝑋0%

−
𝜇#
𝜇%

q

= 𝑆𝑆𝑋## 𝑆𝑆𝑋#%
𝑆𝑆𝑋#% 𝑆𝑆𝑋%%

 

and define 𝜎#∗ = 𝜎# −
|}~
|~

 and 𝑆𝑆𝑋##∗ = 𝑆𝑆𝑋## −
��9}~~

��9~~
. Using the fact that 𝑆𝑆𝑋  has a 

Wishart distribution 𝑊 Σ, 𝑛 − 1 , the following three variables are independent and have 
either chi-square or standard normal distribution (Johnson and Wichern (2008)). 

𝐶%% =
𝑆𝑆𝑋%%
𝜎%

~𝜒'r#% ,			𝐶##∗ =
𝑆𝑆𝑋##∗

𝜎#∗
~𝜒'r%% 		𝑎𝑛𝑑	𝑍 =

𝑆𝑆𝑋#% −
𝜎#%
𝜎%

𝑆𝑆𝑋%%

𝜎#∗𝑆𝑆𝑋%%
~𝑁 0,1  

Then, given 𝑠𝑠𝑥 as the observed SSX, the three quantities below are the generalized pivotal 
quantities with respect to the variance-covariance matrix Σ for the diseased group, as they 
do not depend on any parameters, and their observed values are  𝜎%, 𝜎#%	𝑎𝑛𝑑	𝜎##. Let 

𝑅� =
𝑎##% 𝑎#%
𝑎#% 𝑎%%%

, where 
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𝑎%% =
𝑠𝑠𝑥%%
𝐶%%

, 𝑎#% =
𝑠𝑠𝑥#%
𝐶%%

−
𝑍 𝑠𝑠𝑥##∗ 𝑠𝑠𝑥%%

𝐶##∗ 𝐶%%
,			𝑎## =

𝑠𝑠𝑥##∗

𝐶##∗
+
𝑎#%%

𝑎%%
 

Similarly, we can get the below generalized pivotal quantities 𝑏##% , 𝑏#%, 𝑏%%% 	  with respect 
to the variance-covariance matrix Ψ  for the non-diseased group. Define 𝑅� =
𝑏##% 𝑏#%
𝑏#% 𝑏%%%

. 

𝑏%% =
𝑠𝑠𝑦%%
𝐶%%

, 𝑏#% =
𝑠𝑠𝑦#%
𝐶%%

−
𝑍 𝑠𝑠𝑦##∗ 𝑠𝑠𝑦%%

𝐶##∗ 𝐶%%
,			𝑏## =

𝑠𝑠𝑦##∗

𝐶##∗
+
𝑎#%%

𝑎%%
 

 
The generalized pivotal quantity for 𝜃# − 𝜃% is given by 
 

R�}r�~ = Φ R# − Φ R% 						𝑤ℎ𝑒𝑟𝑒	𝑅K = 𝑅��r��
q 𝑅�� + 𝑅��

r#
𝑅��r�� 

 
𝑅K  depends on the three terms below, as the functions of the sample averages and the 
observed matrices of sum of squares of the cross products. 

		𝑅��r�� = 𝑥K − 𝑦K − 𝑍
𝑅��
𝑛
+
𝑅��
𝑚

#
%
,				𝑍~𝑁 0,1  

 
Where 𝑅�� and 𝑅�� are defined as before. 
 
To obtain 𝜃# − 𝜃% and its variance estimate for each setting, 𝑅��r�� , 𝑅��  and 𝑅��  were 
simulated 1,000 times from the standard normal distributions and the chi-square 
distributions as defined before, then R�}r�~  at each simulation was calculated and its 
median across 1,000 simulations was used as  𝜃# − 𝜃% . The variance of R�}r�~ was 
calculated as the variance estimate of 𝜃# − 𝜃%. 
 
 
2.3 Equivalence Test 
 
It is assumed that accuracy of two diagnostic tests will be compared using the equivalence 
test for the difference in areas of correlated ROC curves, with ∆ as equivalence margin, 
 

𝐻c: 𝜃# − 𝜃% ≥ ∆  vs. 𝐻�: 𝜃# − 𝜃% < ∆ 
 
 Then, using normal approximation, the test power can be expressed below, given 
confidence level of 1 − 𝛼 and true area difference of d. 

𝑃
∆ − 𝜃# − 𝜃%

𝑉𝐴𝑅 𝜃# − 𝜃%
> 𝑍#r�		|		 𝜃# − 𝜃% = 𝑑 < ∆  

 
 

3. Simulations 
 
Simulation was performed to compare the performance of the three methods applied in the 
equivalence testing. We focus on comparisons of the equivalence test powers. As the 
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simulation requires quite a few of parameters, it is only practical to consider some useful 
settings (total 1792 settings; 1792 = 2 x 4 x 4 x 8 x 7) as given below. For each setting, 
5,000 replicates of X and Y were simulated. Then each replicate of X and Y per setting 
was used for calculation of  𝜃#, 𝜃%, 𝑉𝐴𝑅 𝜃# − 𝜃% , and the test powers. 

• ∆=0.1 or 0.2 
• Sample sizes 𝑛,𝑚 : (50,50), (50,500), (500,50), (500,500) 
• Correlation coefficients 𝜌9, 	𝜌B : (0.1,0.1), (0.1,0.6), (0.6,0.6) 
• 𝜃K: θ# = 	0.3, 0.8; 𝜃%	via 𝜃# − 𝜃% = 𝑝∆   𝑝 =0.2, 0.8 
• Standard deviations: seven cases were specified 

 
Table 1: Cases of standard deviations used for 

simulation 
SD Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 
𝜓# 1 1 1 1 1 10 10 
𝜓% 1 1 1 1 10 1 10 
𝜎# 1 1 10 10 10 10 10 
𝜎% 1 10 1 10 10 10 10 

 
• Means: 𝜇K calculated via the standard deviations, θd, and 𝜂K = 10𝜓K 

 
 

4. Results 
 
In each setting, the test powers were summarized in terms of medians across 5,000 
replicates. Then for each of the three methods, a setting was counted once if the 
corresponding median power is over 80%. It is observed that the Delong’s method 
produced total 155 successful settings, and the MLE and the GPQ methods yielded more 
successful settings (i.e., 187 and 197 settings, respectively). Table 2 below summarizes the 
numbers of successful settings by one or more methods. 
 
Table 2: Numbers of counted settings summarized by comparison and counting 
methods 

Counting Method 
Successful Method(s) 

Only GPQ Only 
Delong’s 

Only 
MLE 

Delong’s & 
GPQ 

MLE & 
GPQ All Three 

Median Power > 
80% 22 1 19 7 21 147 

 
The influence of sample sizes and population parameters can also be reflected by the 
numbers of successful settings summarized in Table 3. Increasing the sample size in one 
or both groups would result in higher chance of success (i.e., with median power > 0.8). 
None of the settings with n=50 and m=50 achieved at least 80% median power. Elevation 
of standard deviations appears to have little impact on the number of successful settings 
for all the three methods. Increasing the correlation tends to yield higher success rate. In 
summary, regardless of the sample sizes and the correlations, the MLE method and the 
GPQ method yielded better results than the Delong’s method. 
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Table 3: Numbers of counted settings summarized over sample sizes and population 
parameters 

Method 
Sample Sizes (n, m) Standard Deviations Correlations 𝝆𝑿, 	𝝆𝒀  

(50,500) (500,50) (500,500) Case 1 Each of 
Case 2 ~ 6 Case 7 (0.1,0.1) (0.1,0.6) (0.6,0.6) 

Delong’s 24 43 88 23 20~22 25 41 54 60 
MLE 41 38 108 26 24~29 26 46 61 80 
GPQ 25 60 112 27 25~35 29 52 63 82 

 
Table 4 presents the numbers of successful settings under different hypothesis testing 
parameters. The evident difference between the Delong’s method and the other two 
methods occurs at the two scenarios with 𝑝 = 0.8  (i.e., 𝜃#, ∆, 𝑝 = (0.3,0.2,0.8)  and 
(0.8,0.2,0.8)). As the two scenarios correspond to the largest  𝜃# − 𝜃% , the results suggest 
to chose the MLE method or the GPQ method when the true AUC difference is large. 
 

Table 4: Numbers of counted settings summarized by hypothesis testing 
parameters 
Method Hypothesis Testing Parameters: 𝜽𝟏, ∆, 𝒑  

(0.3,0.1,0.2) (0.3,0.2,0.2) (0.3,0.2,0.8) (0.8,0.1,0.2) (0.8,0.2,0.2) (0.8,0.2,0.8) 
Delong’s 21 53 0 23 54 4 

MLE 26 48 6 28 53 26 
GPQ 24 53 8 34 54 24 

 
The above tables only present the numbers of counted or successful settings. In order to 
understand the performance of all three methods across all settings also including those 
unsuccessful ones (i.e., with median power < 80%), the 5%, 50% and 95% percentiles of 
all calculated powers were also obtained. Moreover, considering that the test powers can 
be impacted by the estimation bias with respect to θ# − θ%, we also summarized the bias 
using 5%, 50% and 95% percentiles and present them together with the percentiles of the 
test powers. The Delong’s method tends to produce larger bias than those from the other 
two methods. 
 

Table 5: Percentiles of equivalence test powers and bias of  𝛉𝟏 − 𝛉𝟐 across all 
settings 

Method Power: Median / (5%,95%) Bias: Median / (5%,95%) 
Delong’s 41.2% / (7.2%,>99.9%) 0.0284 / (0.0115, 0.0530) 

MLE 60.6% / (<0.1%, >99.9%) 0.0264 / (0.00960, 0.0469) 
GPQ 64.2% / (11.1%, >99.9%) 0.0263 / (0.0105, 0.0452) 

 
 

5. Discussion 
 
As shown by the above results, in most of the scenarios (all under bivariate normal 
distributions), the GPQ method tends to outperform the other two methods and the 
Delong’s method appears to be the least preferable. However, only about 10% of the 
settings are able to achieve 80% median of the powers, it would be desirable to summarize 
the results with lower median powers and to extend the simulation to consider other 
scenarios. For example, more attention may be focused on the distributions other than 
normal, or the comparisons among more than two ROC curves. In addition, if historical 
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data or prior knowledge is available, then choice of the methods and the equivalence 
margins may be examined with use of the prior information. 
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