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Abstract 

The purpose of the study is to present a regularization method for estimating differential item 
functioning (DIF) parameters under generalized linear models. DIF occurs when the probabilities 
of correctly responding to an item are unexpectedly different for individuals from different 
groups with a same latent ability level. Traditional DIF detection approaches usually require all 
items except the one under detection to be DIF-free, which is possibly wrong. Otherwise, failing 
to identify invariant anchors will lead to inflated type I errors. This problem can be solved by 
simultaneous estimation of DIF parameters in one model by using regularized logistic regression. 
Simulation studies were conducted to compare this proposed method with other DIF detection 
techniques such as Mantel-Haenszel method and logistic regression method, and the results 
indicated the feasibility and applicability of the proposed method. 
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1. Introduction

Nowadays, educational and psychological tests are widely used to measure individuals’ latent 
traits such as intelligence, attitudes, and other abilities or skills. For this purpose, high-quality 
items are in demand in order to provide a valid and accurate measure for the latent trait. 
Differential item functioning (DIF) has received a lot of attention over the past decades, which 
occurs when the probabilities of correctly answering an item are unexpectedly different for 
people from group to group with a same latent ability level (Holland & Wainer, 1993). Items with 
DIF may reflect measurement bias (Millsap & Everson, 1993) and may lead to discrimination 
against particular groups (Zumbo, 1999).  

DIF is a very important indicator for researchers and test developers to confirm that items display 
the same statistical properties for individuals from different groups within the population. 
Generally, uniform DIF indicates the item of interest consistently gives one group an advantage 
across all ability levels, and non-uniform DIF occurs when an item gives an advantage to a 
reference group at one end of the ability continuum while favors the focal group at the other end 
(Walker, 2011). In the context of item response theory (IRT), an item showing uniform DIF only 
varies in the difficulty parameter, while an item displaying non-uniform DIF varies in the 
discrimination parameter, and possibly the difficulty parameter (Mellenbergh, 1982). 

A large number of parametric and non-parametric methods have been developed to detect DIF 
over the years, such as the Mantel-Haenszel (NH) test (Holland & Thayer, 1988), logistic 

2946



regression (Swaminathan & Rogers, 1990), SIBTEST (Shealy & Stout, 1993), and Raju’s area 
measures (Raju, 1988). These methods are often conducted for each item and treated as an item-
by-item approach (Swanson et al., 2002), which typically focus on analyzing each item 
individually. There are several problems with these approaches. First, the assumption that all 
items except the studied item or the anchor items are supposed to be invariant over groups is not 
guaranteed (Magis, Tuerlinckx, & De Boeck, 2015). Previous studies (e.g., Wang & Yeh, 2003; 
Wang, 2004; Stark et al., 2006; Woods, 2009) suggest that if a set of anchor items is 
contaminated, the Type I error rate are often inflated, and the test score may not be a fair measure 
for the latent traits. In addition, those DIF detection approaches are based on multiple testing 
since every item is tested at a time, thus adjustment procedures such as Bonferroni correction or 
Holm’s procedure, should be used to evaluate DIF items in order to control Type I error rates 
(Kim & Oshima, 2012). Moreover, since multidimensionality is commonly recognized as a 
possible cause of DIF, the individual-item focused approaches may fail to explain such causes of 
DIF and are unable to guide researchers in reviewing the testing items (O’Neill & McPeek, 
1993).  

An intuitive solution to address these problems is to detect DIF items on a test or assessment at 
the same time, and Magis, Tuerlinckx & Boeck (2015) proposed an approach called LR Lasso 
DIF method which allows simultaneous DIF detection of all items in a single modeling approach. 
This method is based on logistic regression (LR) and focuses on the identification of uniform DIF 
in Rasch models. The L1-norm penalty for DIF parameters, that is the Lasso penalty, was added 
to the log-likelihood in estimation, and a higher value of the penalty term shrinks more model’s 
coefficients for DIF parameters towards zero. However, the authors used examinee’s test score as 
a proxy for ability. From the point of view of IRT, individuals correctly respond to the same 
number of items may have different levels of ability if those items vary in their difficulties. In 
order to obtain more accurate results, the DIF analysis model was modified and the estimated 
person ability from IRT modeling rather than the test score was used to represent examinee’s 
latent ability level in DIF analysis. 

2. Research Purpose

This study aims to use the regularization method to detect DIF items. Comprehensive simulation 
studies were conducted to evaluate the performance of uniform DIF detection under the 
framework of GLMs. In this case, the regression coefficients representing DIF for each item can 
be estimated simultaneously by including all item and person characteristics in a single model, 
and the assumption that the anchor set should be DIF-free is no longer required. This object can 
be achieved if the Type I error is well controlled below 0.05 and the power is good under 
different simulated conditions. Also, the proposed method was compared with other commonly 
used DIF detection techniques including LR and MH test.   

3. Method

3.1 DIF Detection Model 
The mathematical form of one-parameter logistic model can be written as: 

𝑃(𝑌𝑖𝑗 = 1|𝜃𝑗) = 𝜋𝑖𝑗 =
exp(𝜃𝑗 − 𝑏𝑖)

1 + exp(𝜃𝑗 − 𝑏𝑖)
or 

 Logit(𝜋𝑖𝑗) = 𝜃𝑗 − 𝑏𝑖, 𝜃𝑗~𝑁(0, 𝜎2) 
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where 𝑃(𝑌𝑖𝑗 = 1|𝜃𝑗) is the probability that an examinee j (j = 1,…, J) with ability level of 𝜃𝑗 
responds to an item i correctly, 𝑌𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖𝑗), and 𝑏𝑖 is the difficulty of item I (I = 1,…, I). 
This is the standard logistic regression model for predicting a dichotomous outcome variables 
from given independent variables (Bock, 1975).  

The above logistic regression model can be used to model DIF by adding a variable representing 
group membership (e.g., focal group and reference group): 

Logit(𝜋𝑖𝑗ℎ) = 𝜃𝑗 − 𝑏𝑖 + 𝛾𝑖𝐺𝑗ℎ 
where 𝜋𝑖𝑗ℎ is the probability that a person j in group h responds to item i correctly; 𝑏𝑖 is the 
difficulty of item i; 𝜃𝑗 represents the latent ability level of person j; 𝐺𝑗ℎ indicates group 
membership: 𝐺𝑗ℎ = 1 when person j belongs to group h, otherwise 𝐺𝑗ℎ = 0; 𝛾𝑖 corresponds to the 
group difference in terms of item i, which are the parameters of interest for DIF modeling. Once 
the model is fitted, the DIF effects can be identified by examining 𝛾𝑖 (𝛾𝑖 ≠ 0). 

3.2 Penalized Estimation 
Let 𝝎 = (𝑏1, … , 𝑏𝐼 , 𝛾1, … , 𝛾𝐼) which contains all model parameters. Traditional maximum 
likelihood estimation (MLE) aims to find a set of parameter values that maximizes the log-
likelihood 𝑙(𝝎) of making the observations given the parameters. The regularization approach is 
designed to maximize the penalized log-likelihood function 𝑙𝑝(𝝎) rather than the log-likelihood 
function 𝑙(𝝎) when estimating DIF parameters, which can be expressed as follows: 

𝑙𝑝(𝝎) = 𝑙(𝝎) − 𝜆𝑱(𝝎) 
Here, 𝑱(𝝎) is a L1-penalty term that penalizes specific structures in the parameter vector 𝝎, and 
𝜆 is the penalty parameter.  

Two commonly used penalty terms are L1-norm and L2-norm penalty, which are used in Lasso 
regression and ridge regression correspondingly. The choice of using an L1-penalty shrinks the 
model’s coefficients towards zero and returns a very sparse solution, while using an L2-penalty 
means the estimated coefficients approach zero but do not equal zero exactly. In terms of our 
research purpose, that is to detect DIF items, it is more appropriate to employ L1-penalty since 
we expect the coefficients for non-DIF parameters are exactly zero. Obviously, if 𝜆 = 0, the 
maximum likelihood estimated is obtained; when 𝜆 increases and is greater than zero, more DIF 
parameters are shrunk to zero; if 𝜆 → ∞, all parameters are equal to zero.  

An important issue in penalized estimation is the choice of the penalty parameter 𝜆 which 
determines the number of items flagged as DIF items. Usually, information criteria such as 
Akaike information criterion (AIC) and Bayesian information criterion (BIC), as well as cross-
validation (CV) are used to find the optimal tuning parameter. According to previous findings 
(e.g., Magis et al., 2015), AIC and CV have a higher power but also a higher Type I error rate 
than BIC and flag more non-DIF items as DIF items. Therefore, we only consider BIC in the 
simulation studies since it is more conservative: 

𝜆𝐵𝐼𝐶 = arg min BIC(𝜆) = arg min(−2𝑙(�̂�) + 𝐾(�̂�) ∙ log 𝑛) 
where 𝑙(�̂�) is the log-likelihood of the current parameter vector �̂�; 𝐾(�̂�) indicates the number of 
free parameters to be estimated; and n is the number of item responses in the dataset. 

3.3 Simulation Design 
Simulated datasets were generated to perform DIF analyses with J persons and I item responses. 
Three test lengths were examined, consisting of 20 items, 40 items, and 60 items. Three group 
sizes of 500, 1000, or 2000 subjects were considered and the focal and reference group have the 
same sample size. Two percentages of DIF with 10% or 20% were taken into account. In terms of 
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direction and magnitude of DIF, only unidirectional drift on the item difficulty parameter with 
DIF size of 0.4 or 0.8 were considered. Latent ability distribution is set to N(0,1) for both 
reference and focal group. Thus, there are in total 36 conditions; for each condition, 500 
replications were generated.  

Item parameters of 60 multiple-choice items from a statewide test were used as true item 
parameters, and the first 20, 40 and all values were used under different conditions. The mean and 
standard deviation for 20 items, 40 items, and 60 items are 0.70 and 0.76, 0.64 and 0.82, and 0.68 
and 0.81correspondingly. Simulated item responses were generated following the 1PL item 
response model.  

Four DIF detection methods were performed in the simulation studies: 1) the proposed lasso LR 
method using ability estimates in the DIF model; 2) the LR Lasso DIF approach (Magis et al., 
2015) using test score in the DIF model; 3) traditional LR; 4) MH test. The power values 
indicating the proportion of DIF items that are correctly flagged as DIF items, and Type I errors 
indicating the proportion of non-DIF items that are incorrectly flagged as DIF items were 
recorded as outcome measures for each approach. The full simulation studies were conducted in 
R (R Development Core Team, 2013). 

4. Results

Figure 1 and Figure 2 demonstrate the power and Type I error rates for all four approaches by 
group size (500, 1000 or 2000) and DIF magnitude (0.4 or 0.8), depending on test length of 20 
items (the first row), 40 items (the second row), or 60 items (the last row), and 10% (the first 
column) or 20% (the second column) DIF items in the test correspondingly. 

According to Figure 1, using IRT ability estimates rather than total test score in the regularized 
LR model leads to higher power in all situations. MH and LR approaches generally have very 
similar performance in detecting DIF items correctly. Specifically, when sample size or DIF 
magnitude is large, the proposed lasso LR in this paper exhibits same or greater power in 
detecting DIF items compared to LR or MH methods. In other situations, that is, when sample 
size and DIF magnitude are both small, for example, when group size equals to 500 and 1000, 
and the DIF magnitude is 0.4, MH and LR methods have a much better performance than the 
other two lasso approaches. 

The results are not surprising since the more conservative strategy—BIC criterion was used to 
select the penalty parameter. Also, previous research examined that when the DIF magnitude is 
small than or equal to 0.4, there is a very minimal effect on equating and ability estimation 
(Wells, Subkoviak, & Serlin, 2002). Therefore, when the DIF magnitude is small, it is more 
important to prevent over identification of DIF items. If in some situations a higher power is 
desired regardless of the Type I error, other criteria such as AIC or CVs can be considered when 
determining the cutoff value of the penalty parameter.  

In Figure 2, the proposed lasso method has the lowest Type I error rates in all manipulated 
conditions, and even the largest Type I error is smaller than 0.05. However, there are many false 
alarms using MH and LR methods in certain situations.  
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20 items; 10% DIF items 20 items; 20% DIF items 

40 items; 10% DIF items 40 items; 20% DIF items 

60 items; 10% DIF items 60 items; 20% DIF items 

Figure 1. Power
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20 items; 10% DIF items 20 items; 20% DIF items 

40 items; 10% DIF items 40 items; 20% DIF items 

60 items; 10% DIF items 60 items; 20% DIF items 

Figure 2. Type I Error Rate 
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5. Conclusions

The purpose of the study is to present a regularized LR method to DIF which allows simultaneous 
estimation of all DIF parameters in a single model. The simulation results are encouraging since 
the proposed method is able to detect DIF items accurately in most situations especially when the 
DIF magnitude and the sample size are large. At the same time, it has an outstanding performance 
in controlling for Type I error rates compared to other DIF detection methods which prevent over 
identification of DIF. Another advantage of the regularized LR method is that it is very flexible 
since it can be easily generalized to multiple-group comparison with more than two groups or 
even continuous covariates such as age by modifying the parameter representing group 
membership in the model. Future research is desired to examine the performance of this method 
in detecting non-uniform DIF and to investigate its applicability in DIF detection for polytomous 
items.  
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