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Abstract
Collection operations of a national census require careful planning and monitoring. With the mount-
ing pressure to control survey costs, there is growing interest in methods to livecast the remainder
of operations throughout collection activities. The problem of forecasting survey operations costs
and response rates is one that has been discussed at great length already. However, models in the
literature are generally planning tools that are not designed to update predictions over the course
of collection operations. For the 2016 Canadian Census, Statistics Canada developed a microsi-
mulation model designed to produce updated forecasts of subnational costs and response rates on
a regular basis that reflected the most recent collection data available. The model built to meet
this operational requirement produces reasonable outputs at small geography levels and was used
to identify and address collection issues early during field non-response follow-up activities. In
this paper, we discuss the general design of the model, methods to estimate parameters, upcoming
improvements to the model that could not be implemented in time for 2016 and provide a qualitative
evaluation of the utility of the model during the 2016 Canadian Census collection activities.

Key Words: Responsive design, microsimulation, survey planning, census, response model, oper-
ation model, survey cost, response rate

1. Introduction

Monte Carlo simulation models have long been used to explore phenomena too complex
for classical modeling techniques. In the context of survey collection operations, micro-
simulation models have been used to evaluate route optimization algorithm (Chen 2008),
survey response rates under different collection strategies (Doherty 2011), interviewer as-
sisted collection (Couture, Bélanger and Neusy 2010, Karr, Cox and Kinney 2012) and
several other applications. On another front, collection paradata have increasingly been
used in the management and monitoring of survey collection operations (Kreuter, Couper
and Lyberg 2010). Yet, examples of microsimulation models used for live collection fore-
casting or livecasting that integrate collection paradata on an ongoing basis are far more
difficult to find, mainly because most surveys have too short a collection period or too
small a sample to efficiently use such an approach. One exception is a population census
which, in Canada for example, is the result of several collection activities spanning over a
three months period.

Given the costs of collection operations of a national census, such methods offer the
potential for high reward, especially since the resources required to develop and maintain
a livecasting model are small whereas any potential gain in efficiency for collection opera-
tions that may result from the method scale with the size of the collection operation. Thus,
it was sufficiently appealing for Statistics Canada to develop a microsimulation framework
to forecast end of collection response rates and costs at subnational levels as a mean to
improve our ability to monitor and manage collection activities for the 2016 Census. This
paper describes the discrete-time stochastic process framework that was developed for the
2016 Canadian Census collection operations in such a way that it could be used to simulate
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the remainder of collection given the current progress while learning, where possible, from
the available collection data in order to improve the forecast. This is an initial step towards
livecasting survey collection operations that can also be used as a planning tool or as a
responsive design tool in the monitoring and management of collection operations.

This paper begins with an overview of the 2016 Canadian Census collection operations
and geography. Then, we describe the stochastic framework for the simulation and its con-
stituents while providing methods for estimating the model parameters. Next, we elaborate
on methods that did not make it into the 2016 model but will improve parameter estima-
tion and assumptions for future iterations of the model. Finally, we provide a qualitative
evaluation of the impact of the model on the collection operations of the 2016 Canadian
Census.

2. Overview of the Canadian Census Collection Operations

The 2016 Canadian Census was conducted between May 02, 2016 and July 29, 2016. The
collection strategy consisted of a wave methodology to promote self-response and Inter-
net response during the month of May, which was followed by field and telephone non-
response follow-up activities in June and July. The wave methodology (Mathieu 2017) is
a sequence of treatments such as reminder letters, a paper questionnaire package and auto-
mated telephone reminders that are aligned with a general communication strategy through
various media. There were two dwelling occupancy verification operations conducted on a
subset of dwellings during the month of May.

The census collection frame is a mixture of an address-based dwelling frame and an
area frame to be listed by field interviewers. Approximately 98% of the dwelling frame
units in the country are in scope for the forecasting model and they can be categorized
according to their collection methodology as belonging either to mail-out areas, a partition
of the address-based frame, or list/leave areas, a partition of the area frame.

The Canadian Census collection operations management is decentralized with hierar-
chical reporting tied to the collection geography. The collection geography is broken down
hierarchically into Canada, 5 Regional Offices (RO), 25 Local Census Offices (LCO), 1866
Crew Leader Districts (CLD) and 45,133 Collection Units (CU). At the lowest level of
supervision, Crew Leaders supervise a small team of interviewers and are responsible to
achieve response objectives in their assigned CLD. This results in interviewer mobility
being frequent within a CLD but less so across CLDs.

A key objective of collection operations is to achieve as high a response rate as possible
while maintaining homogeneity of response rates across collection areas in Canada. To
ensure resources are used appropriately, we use a tolerance process designed to halt costly
operations such as field and telephone non-response follow-up in areas that have met certain
criteria. The initial tolerance strategy consists of progressively relaxing tolerance criteria
during collection but it can be updated at any time in reaction to the observed collection
progress and remaining resources available. Therefore, the tolerance strategy acts as a
responsive design tool as it enables Statistics Canada to modify the collection strategy on
the fly in order to optimize response rates and homogeneity objectives.

3. A discrete-time stochastic process framework for collection operations

During collection activities, census management receives separate reports on the current
level of expenses for various pay elements and the state of collection progress described
through a tolerance rate, a proxy for the response rate that is used in the tolerance process.
This tolerance rate accounts for preliminary information that may be reverted later such as
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Table 1: Dwelling Frame Unit Collection Statuses

Value Code Status Label Status Description

0 Unresolved Unresolved is the default or initial status of dwelling
frame units

1 Occupied Dwelling is occupied and provided a valid response
2 Unoccupied Dwelling is unoccupied
3 Cancelled Frame unit is not a dwelling
4 Other resolved Frame unit was occupied on Census Day but a valid re-

sponse cannot be obtained (e.g. respondent moved, re-
fusal)

5 Tolerance Met Unresolved unit for which interviewer led collection ac-
tivities were halted by the tolerance process

treating a paper response as valid as soon as Canada Post receives it only to find out during
processing that it was completely empty.

The microsimulation model described hereafter is designed to forecast subnational end-
of-collection tolerance rates and expenses for a subset of pay elements that constitute a
large share of the operational budget, are highly correlated with collection progress and
are therefore more likely to differ from planned values. For example, field interviewers
account for a very large proportion of the overall collection budget and may be asked to
work more hours or additional interviewers may be hired if the observed self-response rates
are worse than planned in their area. By contrast, regional managers are few in numbers
and are required to work about the same hours no matter the staff on strength under their
supervision. Therefore, the time claimed by field interviewers is included in the model but
the time claimed by regional managers is not. Put differently, pay elements that account for
a small share of the overall budget or to be easily predicted represent a small risk and the
increased model complexity from their inclusion outweighs the benefit of including them.

Collection progress at the dwelling frame unit level, is tracked through a classification
variable with a finite set of possible outcomes called the (dwelling) collection status. For
the 2016 Canadian Census forecasting model, we consider an aggregated and re-indexed
subset of the collection statuses over m = 6 possible outcomes as described in Table 1.

To develop the microsimulation framework, we consider the probability space {Ω,Σ,P}
with sample space

Ω = {0, 1, . . . ,m− 1}η = {(x1, x2, . . . , xn)|xi ∈ (0, 1, . . . ,m− 1) ∀ i = 1, 2, . . . , n}

corresponding to assigning a collection status to each of the η dwelling frame units in scope
for the model, Σ a σ-algebra of subsets of Ω and P a probability measure on this space
and define the stochastic process of the collection status of a single dwelling frame unit
i at the end of collection day t by Xi = {Xi(t) : t = 0, 1, . . . } on this space. A possible
method to forecast collection progress from the current state corresponds to simulating
Xi(tend)|Xi(tnow) where tend corresponds to the end of collection operations and tnow
the most recent completed collection day with available data. In order to build a model
that can produce a forecast for any given tnow < tend, we ought to define a model such
that (X1(t), . . . , Xη(t)) | {Xi(0), . . . , Xi(t− 1) : i ∈ (1, . . . , η)} can be simulated. That
is, we ought to design a model such that simulating the collection process corresponds to
simulating the conditional process day by day for all remaining collection days from some
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tnow. Modeling the process of a dwelling collection status directly is not an easy task as it
involves a number of distinct activities. Therefore, we define the following processes for a
dwelling frame unit i:

Ri = {Ri(t) : t = 0, 1, . . . } the self-response process
Ni = {Ni(t) : t = 0, 1, . . . } the field non-response follow-up process
Ci = {Ci(t) : t = 0, 1, . . . } the telephone non-response follow-up process
Yi = {Yi(t) : t = 0, 1, . . . } the apartment occupancy verification process
Zi = {Zi(t) : t = 0, 1, . . . } the dwelling occupancy verification process
Qi = {Qi(t) : t = 0, 1, . . . } the tolerance process

Each process is defined on a subset of the outcome statuses for Xi(t) and is initialized
as unresolved at t = 0. No assumptions are made about the independence of the processes
for a given unit or about the independence of the units for any given process at this point.

The collection status Xi(t) is the result of a deterministic set of rules on the above pro-
cesses which is equivalent to saying that there exists some function γ such that

Pr (Xi(t) = γ(x, r, n, c, y, z, q)|
Xi(t− 1) = x,Ri(t) = r,Ni(t) = n,Ci(t) = c, Yi(t) = y, Zi(t) = z,Qi(t) = q) = 1

That is, the random process Xi(t) is conditionally constant. The dwelling frame unit
resolution process described in this way shares similarities with a survival process with
competing causes of resolution from the various survival subprocesses it depends on.

Even though the microsimulation model is defined at the dwelling frame unit level, the
forecast statistics of interest are mostly geospatial or spatiotemporal aggregates. To express
the desired statistics, we define the collection of sets {Λj : j ∈ (RO,LCO,CLD,CU)}
where each collection of sets Λj defines a partition of Canada Λj = {Λj

k : k ∈ (1, 2, . . . , |Λj |)}.
That is, ΛCU is the set of the 45,133 CU sets ΛCU

k each containing all units in the kth CU.
The forecast statistic of interest for collection progress is the tolerance rate. A simpli-

fied version of the tolerance rate for a set U is TOL(U) =
∑

i∈U 1{Xi(tend)=1}∑
i∈U 1{Xi(tend)∈(0,1,4,5)}

where

| · | denotes the cardinality of a set. The tolerance rate is defined over the subset of pri-
vate occupied dwellings. It is slightly different from response rates in the treatment of
the unresolved cases and in the use of temporary information left to be confirmed that is
not explicitly defined in the simplified version of the tolerance rate used in this paper. The
objective is for the microsimulation model to produce reasonable forecasts for {TOL(Λj) :
j ∈ (RO,LCO)} but the statistic is defined for all geography levels under the model design
and was extensively used at the CLD level during collection.

3.1 The self-response process

The self-response process Ri(t) is defined over the subset of collection statuses {0, 1, 2, 3}.
It can be integrated to the global process by adding a condition on Xi(t) to deal with cen-
soring of the self-response process resulting from competing processes. In the context
of a model for the time to self-response, resolution outcomes from other processes may
be interpreted as simply preventing us from observing the self-response process from that
day forward, effectively censoring the self-response process. This type of interpretation of
competing causes is extensively used in survival models theory and practice. Among the
collection statuses, the tolerance met status that is generated by the tolerance process to be
described in Section 3.5 censors interviewer led activities but not self-response. As such,
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the distribution of Ri(t) can be defined by the transition matrices

Pr(Ri(t)|Ri(t− 1), Xi(t− 1) ∈ {0, 5}) =


pRi,0,0(t) pRi,0,1(t) pRi,0,2(t) pRi,0,3(t)

0 1 0 0
0 0 1 0
0 0 0 1


Pr(Ri(t)|Ri(t− 1), Xi(t− 1) /∈ {0, 5}) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


where a matrix element in position (j, k) is the probability pRi,j,k(t) that a dwelling frame
unit i with a self-response status j at time t − 1 has a self-response status k at time t. The
diagonal elements with probability 1 simply mean that a resolved dwelling with outcome j
will not go unresolved nor change resolution outcome afterwards. In practice, the condition
Xi(t− 1) ∈ {0, 5} =⇒ Ri(t− 1) = 0 but the diagonal block is added for completeness
as the derivation rules expressed by the γ function were not explicitly defined.

If we define the random variable for the time to self-resolution of unit i by Ti, and
note that it corresponds to the first time that the process Ri(t) ̸= 0, then it follows that
Ti ∼ minv(Ri(v) ̸= 0) and that the survival process of the time to self-resolution taken
over discrete intervals of time can be described as a function of the pRi,0,0(t).

SRi(t) = Pr(Ti ≥ t)
= Pr(minv(Ri(v) ̸= 0) ≥ t)
= Pr(Ri(v) = 0 ∀ v ∈ {0, 1, . . . , t− 1})
=

∏t−1
v=1 Pr(Xi(v) = 0|Xi(v − 1) = 0)

=
∏t−1

v=1 p
R
i,0,0(v)

Thus, a conditional process where dwellings first decide if they will respond at time
t and conditionally establish their resolution outcome provides a general method to esti-
mate the various probabilities. A possible model to estimate the time to self-resolution
which is appropriate for the wave methodology time varying effects is an extension of the
Cox proportional hazards model with time varying covariates and coefficients log(h(t)) =
α(t) +

∑K
k=1 βk(t)xk(t) which can be estimated with the complementary log-log model

log(− log(1 − pRi,0,0(t))) = αt +
∑K

k=1 βkxi,k(t) after making appropriate transforms of
the time varying coefficients into the corresponding covariates. The complementary log-log
model follows from time interval grouping of a continuous survival process (Agresti 2002,
Allison 2010). The conditional distribution of resolution outcomes is a simple multinomial
distribution.

An important challenge is that survival model estimation methods assume that survival
is homogeneous given the variables accounted for in the model. In our context, sever-
al covariates that might be of interest in a parametric or semi-parametric survival model
are unknown until the unit is resolved. One such important covariate is the dwelling oc-
cupancy status which is especially problematic for the conditional model rationale dis-
cussed previously. Since dwelling frame covariates are not available for the list/leave areas,
the only covariates readily available for all dwellings for the forecasting model are wave
methodology specific event times and those are essentially identical for all dwellings with
the same collection method. As such, the chosen estimation method was the non-parametric
Kaplan-Meier estimator of the survivor function (Hosmer and Lemeshow 1999, Allison
2010). The conditional multinomial distribution Ri(t)|Ri(t−1) ̸= 0, Ri(t−1) = 0, Xi(t−
1) ∈ {0, 5} ∼ Mt(p

∗
1,t, p

∗
2,t, p

∗
3,t) was estimated for each time t by the maximum likelihood
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estimator p̂∗j,t = # units at risk for self-response at t-1 with outcome j at t
# units at risk for self-response at t-1 resolved at t . Certain assumptions may be

required if the length of future survey collection cycles are longer than that of the cycle
used for model estimation. Separate estimates of the survival and multinomial models
were obtained for mail-out areas and list/leave areas and parameters for unit i were those of
their collection method estimate. We note that the required forecasting model parameters

for the self-resolution process Ri(t)|Ri(t − 1), Xi(t − 1) are p̂Ri,0,0(t) =
ˆSRi

(t+1)

ˆSRi
(t)

and

p̂Ri,0,j(t) = p̂∗j,t(1− p̂Ri,0,0(t)).
If the collection methodology changes between two cycles, a parametric complemen-

tary log-log model restricted to covariates available on the collection frame such as those
defining the collection strategy provides a general framework to incorporate methodology
changes in the forecasting model. Additionally, a more complete parametric model may
be used if the model framework is used for planning only and not for livecasting. For
planning, the conditional distribution of the dwelling characteristics are not needed and
past cycle data or some augmented version of it may be used as a simulation frame.

The chosen model clearly violates the homogeneity assumption of the survival self-
resolution process. In Section 4, we propose a Bayesian approach using an occupancy
propensity model to mitigate the issue.

3.2 The field non-response follow-up process

The field non-response follow-up process (NRFU) Ni(t) is similar to Xi(t) in that it is
better understood as the combined process of the time when attempts are made and the
outcome of said attempts. Thus, we define the field attempt outcome process Fi = {Fi(a) :
a = 0, 1, . . . } over the subset of collection statuses Fi(a) ∈ {0, 1, 2, 3, 4} and the attempt
counting process {AF

i (t) : t > 0} where AF
i (t) is the cumulative number of field non-

response follow-up attempts made on dwelling i at time t and set Ni(t) = Fi(a) where
AF

i (t) = a for the derivation of Xi(t). The distribution of Fi(a)|Fi(a−1) can be described
by the transition matrix

Pr(Fi(a)|Fi(a− 1)) =


pFi,0,0(a) pFi,0,1(a) pFi,0,2(a) pFi,0,3(a) pFi,0,4(a)

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


where a matrix element in position (j, k) is the probability pFi,j,k(a) that a dwelling

frame unit i with a field attempt outcome status j after attempt a−1 has a field attempt out-
come status k after attempt a. The binary NRFU resolution process described by pFi,0,0(t)

and (1− pFi,0,0(t)) is also a survival process. Unlike the self-resolution survival process, it
is a true discrete-time process. Thus, a parametric estimation of the corresponding model
with appropriate transforms of the time varying coefficients could be obtained using the

logit model log(
pFi,0,0(t)

1−pFi,0,0(t)
) = αt +

∑K
k=1 βkxi,k(t) instead of the complementary log-log

model (Agresti 2002, Allison 2010).
One may ask whether the probability of attempt outcomes on the same dwelling really

changes as a function of the attempt number. It is likely that the aggregate behavior follows
from the change in distribution of the unobserved heterogeneity among units with constant
hazard. That is, a collection of heterogeneous units consisting of a mixture of easy and
hard cases, each with constant probabilities across attempts would result in a process with
probabilities varying across attempts. However, even if the true model is constant hazard
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across attempts given some covariates, is does not mean that a multinomial logistic model
for attempt outcome that does not vary by the attempt number is more appropriate for our
purpose. In particular, such a model would be much less appropriate as a tool to evaluate the
impact of different staffing scenarios. Thus, by repeating the estimation method described
for the conditional self-response model using the logit model instead of the complementary
log-log model the estimated stochastic process parameters do vary across attempt numbers
due to the unobserved heterogeneity but are more suitable than attempt invariant parameters
for our purpose.

In order to mitigate the problem of unobserved heterogeneity for live forecast, the fol-
lowing method was adopted such that the distribution used to simulate the residual collec-
tion period for units in an area would more likely have been generated from a cluster with
a similar mixture of the unobserved covariates:

1. Produce empirical estimates of F k(a)|F k(a−1), a ≤ ak for each ΛCLD
k crew leader

district using past cycle data and generalize the process for a > ak assuming that
F k(a)|F k(a−1) ∼ F k(ak)|F k(ak−1) ∀ a > ak. The parameter ak is chosen such
that stable estimates can be produced.

2. Assign each of the |ΛCLD
k | distributions to C clusters. The clusters were obtained

using Ward’s method for hierarchical clustering and the Hellinger distance measure

H(Gj , Gk) =

√√√√√√ ∞∑
i=1

(√
gja −

√
gka

)2

2
,

where Gk ∼ mina(F
k(a) ̸= 0) is the probability distribution of the number of

attempts to obtain a resolution outcome and gka = Pr(Gk = a).

3. Produce empirical estimates of F c(a)|F c(a − 1), a ≤ ac for each cluster and an
additional c = C +1 cluster using Canada-wide data and generalize for a > ac as in
step 1 above.

4. Assign an initial cluster from the C + 1 clusters to each of the |ΛCLD
k | CLDs using

past cycle attempt outcome data mapped onto the current cycle geography using a
maximum likelihood classifier. Assign areas made almost exclusively of dwelling
growth between the two cycles to the Canada wide cluster c = C + 1.

5. At the beginning of the microsimulation for a live forecast at tnow, reclassify each
area based on the attempt outcome data observed to date using the maximum likeli-
hood classifier under certain regulatory conditions.

Field collection operations procedures are such that crew leaders are responsible to
provide each interviewer they supervise with a list of unresolved cases for them to work
on. There are soft rules in the system aiming for attempts to be captured and lists to be
renewed on a daily basis while accommodating collection in remote areas with poor Internet
access. The list making and the implicit ordering that will manifest through the ordering
of the attempts are manual processes. That is, no system exists to optimize the creation or
ordering of the assignment list. If such a tool existed, it would be possible to integrate it in
our microsimulation framework.

The list assignments also lock cases in the centralized collection system such that cases
that are on an active field interviewer list assignment are rendered unavailable for tele-
phone non-response follow-up. It was possible to account for this dependency because
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of the model framework as detailed later in the telephone non-response follow-up attempt
counting process.

The stochastic analog of the list and attempt making processes used in the microsi-
mulation consists of two sequential simple random samples. The list-making sample was
drawn from the subset of unresolved cases (Xi(t) = 0) within the crew leader district and
the attempt allocating sample was drawn from the list. Censoring of the NRFU process
from other processes is handled by the list-making mechanism and the attempt counting
process. That is, Pr(Ai(t) > a|Ai(t − 1) = a,Xi(t − 1) ̸= 0) = 0 due to the sampling
condition which implies that Pr(Ni(t) = n|Ni(t − 1) = n,Xi(t − 1) ̸= 0) = 1. This
sampling process naturally introduces dependence between units but it is assumed that the
attempt-outcome process Fi(a) remains independent between dwelling frame units. To
address the situation where more than one attempt per case was made on any given day, it
was assumed that no more than two attempts per case per day would be done and that all
cases would first be attempted once and the residual number of attempts would be sampled
from units not resolved by the first attempt to remain consistent. While this may strike
as challenging to implement in the discrete time framework, it can be easily implemented
by observing that the attempt-outcome process can be fully simulated upon initialization
leaving only the attempt counting process to be simulated daily basis. We do not claim that
the sequential SRS results in an appropriate model for what is being done in the field but
the distribution of the number of attempts produced by this method was sufficiently similar
to the distribution observed in past cycles for our purpose.

Before we discuss how list and attempt sample sizes are established, we briefly describe
the field staffing model. The model considers a staffing capacity and the effective staff.
They are both defined as a number of interviewer hours for a given day and CLD. This
capacity can be fully specified as a model input or derived using recent pay claim data
and a simple model that is beyond the scope of this paper. An underlying assumption
of the aggregation is that interviewer productivity is homogeneous within a CLD but some
variation is implicitly accounted for in the attempt-outcome process estimation method with
the rationale that interviewer characteristics are unobserved covariates of the dwellings they
attempted.

The strength of the microsimulation framework stems from the effective staffing com-
ponent, which establishes the staff working for a given day and CLD as a function of the
capacity and the maximum available workload. The maximum available workload for a
CLD k at time t is defined as

∑
i∈ΛCLD

k
1{Xi(t)=0} · TPAk(t) ·min(2, Gi −AF

i (t)) where
TPAk(t) is an average time per attempt parameter for CLD k estimated for different in-
tervals of time from past cycle data and Gi is the attempt number of the first resolution for
unit i obtained from the principle that the attempt-outcome process can be fully simulated
upon initialization.The effective staff is thus defined as min(max workload, staff capacity).
The total size of the lists follows a similar rationale also using average list sizes from past
cycle data. Stochastic improvements to the use of such simple averages as models of case
density or through route optimization instead of using an estimate for different intervals of
time is left for future work.

Finally, the key forecast statistic of interest for the field operation costs for an appro-
priately defined set U is:

FC(U) =
∑

(k:ΛCLD
k ⊂U)

tend∑
t=tnow

2∑
l=1

(H(t, k, l)RH(k, l) +K(t, k)RK(k))

where H(t, k, l) is the number of hours claimed at time t in CLD k by interviewers (l = 1)
or supervisors (l = 2), RH(·, ·) the hourly rate, K(·, ·) the kilometers claimed and RK(·)
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the kilometer rate.

3.3 The telephone non-response follow-up process

The telephone non-response follow-up operations were conducted from 25 Collection Sup-
port Units (CSU) located in each of the 25 Local Census Offices (LCO). The telephone
non-response follow-up process Ci(t) is similar to the field non-response follow-up process
Ni(t) in that it is broken down into a telephone attempt outcome process and an attempt
counting process. We define the telephone attempt outcome process Di = {Di(a) : a =
0, 1, . . . } over the subset of collection statuses Di(a) ∈ {0, 1, 2, 3, 4} and the attempt
counting process {AD

i (t) : t > 0} where AD
i (t) is the cumulative number of telephone

non-response follow-up attempts made on dwelling i at time t. The stochastic process
Di(a) is described by the transition matrix for Di(a)|Di(a− 1)

Pr(Di(a)|Di(a− 1)) =


pDi,0,0(a) pDi,0,1(a) pDi,0,2(a) pDi,0,3(a) pDi,0,4(a)

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


where a matrix element in position (j, k) is the probability pDi,j,k(a) that a dwelling

frame unit i with a telephone attempt outcome status j after attempt a − 1 has a tele-
phone attempt outcome status k after attempt a. The telephone attempt-outcome pro-
cess parameters can be estimated following the same methods as those described for the
field attempt-outcome process. The quality of the telephone attempt outcome paradata
that was available was of worse quality than that of the field attempt outcome. As a
result, a single Canada-wide estimation was done with various assumptions about the
data leaving no place for the clustering and classification methods used for the field non-
response follow-up process. The field attempt-counting process is assumed to be non-
informative of the telephone attempt-outcome process and vice versa. That is, we assume
that Di(a+1)|

[
D(a), AD

i (t) = a,AF
i (t) = b

]
∼ Di(a+1)|

[
D(a), AD

i (t) = a
]
. This is a

strong assumption for our estimation methods but the quality of the telephone attempt data
for the 2011 Census offered no better alternative.

The key differences with the field process is that the CSU attempt-counting process
AD

i (t) can make up to 3 attempts per day, does not have a list making step, the attempt
sample is drawn nationally from the subset of unresolved dwelling that were not sampled
on a field interviewer list, have a valid telephone number and are flagged as eligible for
telephone follow-up. The dwelling level telephone eligibility flag could be updated from
head office through an overnight process and was used as a responsive design tool to focus
telephone follow-up in areas that needed it the most. This overnight process was also
implemented in the microsimulation model.

Since the telephone non-response follow-up was conducted from LCOs, the staffing
model for telephone follow-up was aggregated in terms of interviewer hours at the LCO
level, everything else discussed for NRFU staffing holds in this case as well.

3.4 The occupancy verification processes

The Dwelling Occupancy Verification (DOV) and the Apartment Occupancy Verification
(AOV) processes are activities conducted on subsamples of dwellings and large apartment
buildings respectively. The samples are drawn exclusively in the mail-out collection areas
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where we have a good quality survey frame and are based on an occupancy propensity
model. The DOV is a field operation resembling field NRFU excepted that a single attempt
is made for any given case and slightly different procedures are used for these attempts.
The AOV is a telephone operation conducted by the Collection Support Units that is very
similar to the telephone non-response follow-up. The key difference is that an apartment
building manager is contacted to obtain the occupancy status of each apartment unit. Their
objective is to improve the efficiency in resolving unoccupied and canceled dwelling frame
units by making attempts closer to the Census Day and using procedures that are more
appropriate for unoccupied and canceled dwellings.

Their modeling and estimation are analogous to those for the field and telephone non-
response follow-up respectively, therefore, we refer the reader to Subsections 3.2 and 3.3
for details.

3.5 The tolerance process

The tolerance process is an overnight scheduled process that calculates tolerance rates and
a number of quality indicators, and compares them with established thresholds. A plan
of daily thresholds for the entire collection period is established before collection but may
be subject to ad hoc changes. The rates and indicators are estimated at the collection unit
level (ΛCU

i ) and the objective of this process is to halt costly field and telephone operations
in CUs with high tolerance rates to ensure resources are spent elsewhere in an attempt to
achieve more homogeneous response rates across Canada. There are three possible out-
comes from the tolerance process:

1. If tolerance thresholds and quality conditions are met, the collection unit area now
meets tolerance and all unresolved collection statuses become tolerance met statuses
indicating that field and telephone activities are halted in the area.

2. If tolerance thresholds or quality criteria are not met but a relaxed set of conditions
are met, the collection unit is sent for a manual review.

3. Otherwise, collection operations continue in the area.

Of course, introducing the manual process in a microsimulation model is unreasonable.
Different options were considered, but the effect of treating relaxed criteria as not meeting
them was marginal given that the manual process took one or two days to address and
the regular criteria were often met by then. The key purpose of this manual process is
to ensure that appropriate quality control is performed by supervisors in areas that cannot
meet quality conditions after they reached a high tolerance rate. For example, if a large
proportion of the dwelling frame units in an area had a collection status of other resolved,
certain quality conditions possibly could not be met even after resolving every single case.
The quality review could result either in some erroneous outcome codes to be identified
and corrected, generally in the form of reseting a case status to unresolved to return it to
collection, or, if the observed data was confirmed as correct, in meeting tolerance through
a manual procedure despite failing the quality conditions. This quality control process was
not modeled but it was partially taken into account in the estimation of the various attempt-
outcome processes by treating the first resolution outcome for cases that were reset from
quality control procedures as an unresolved outcome.

The tolerance process Qi = {Qi(t) : t = 0, 1, . . . } defined on the subset of collection
statuses {0, 5} is deterministic when conditioned on all other observed processes for all
units within the same collection unit. That is, the conditional distribution

Qi(t)|
[
Qi(t− 1) = 0, {Xi(t− 1), Ri(t), Ni(t), Ci(t), Yi(t), Zi(t) : i ∈ ΛCU

k }
]
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is constant.

4. Towards a Bayesian Occupancy model

As discussed several times in section 3, the conditional model for the type of resolution
outcome likely has more to do with unobserved heterogeneity than with the randomness
of the attempt outcome and therefore constitutes a violation of the survival model assump-
tions. A model design feature that did not make it into the 2016 Census model but would
go a long way towards improving this issue is the use of a dwelling occupancy propensity
model to simulate dwelling occupancy. The occupancy propensity is already modeled for
the occupancy verification processes and can improve the forecasting model if treated as a
probability. This improvement is scheduled to be added to the existing model for the next
census cycle.

The notation developed so far is not adequate to provide an explicit formula for the
posterior probability at time tnow that a dwelling is occupied given the observed processes.
We only note that the joint distribution of the attempt counting processes, when appropri-
ately conditioned on the dwelling being unresolved for each attempt is independent of the
dwelling occupancy status.

This Bayesian posterior probability that a dwelling is occupied given the observed pro-
cesses would be used to simulate dwelling occupancy upon initialization of a simulation
such that the day-by-day stochastic processes can be simulated according to their respec-
tive conditional estimates.

5. Results and Model Utility

Due to the nature of the model outputs, we cannot share the key results that were the end-
of-collection tolerance rates and costs compared with their true realization. We instead
provide a qualitative assessment of the utility of the model in the collection of the 2016
Canadian Census. Also, we argue that evaluating forecast results in relation to the true
realization of the process is inappropriate without context as the model was also used as a
responsive design tool in such a way that it worked against its own assumptions. That is, as
a forecasting tool, it was not designed to account for responsive design micromanagement
decisions that were taken after study of the simulation results.

The model was scheduled to enter production around the 6th week of collection, shortly
after field operations had started. The very first cost forecast provided a quantitative figure
for the surplus that resulted from observed self-response rates that exceeded our original
planning. This figure impacted the general strategy for the remainder of collection.

Beyond its planned purpose, the model was used to estimate staffing deficit by Crew
Leader District by incrementally increasing the initial staffing levels drawn from pay claims
data until tolerance objectives were met for each CLD. The difference in effective staffing
between the initial model and the final iteration model were used as an estimate of the
deficit. A list of areas with the largest modeled staffing deficit was produced and regional
managers were required to provide corrective plan to census management. In past census
cycles, such corrective plans would have been performed much later in the collection cycle
because traditional progress reports do not account for staffing levels at lower geographic
levels. As a result, it was possible to use cost effective solutions such as hiring or moving
staff on shorter distances to improve response rate homogeneity.

Anecdotally, the model was used to forecast the date at which collection support units
would begin to run out of telephone follow-up cases in the system. It was brought up only
to highlight the flexibility of the model design in predicting timeliness but it turned out to
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be only two days off from the observed situation with the difference explainable from an
inappropriate use of the system.

Ultimately, the performance of the model lies more in how it improved the central of-
fice’s ability to support regional offices in managing collection in smaller areas. The model
output was used as evidence of problems to be addressed and became an integral part of
the dialog between head office and regional offices. It played such a key role in the 2016
Census collection operations that additional outputs were designed and produced to sup-
port regional offices such as heat maps of the end-of-collection tolerance rates predictions.
The regional offices even requested that comprehensive model output be shared with them
directly such that they could act beyond the list of areas they were required to act upon as
resources allowed.

6. Concluding Remarks

The forecasting model that was developed for the 2016 Census fills an important gap in
Statistics Canada’s collection operations management toolbox. It provides a link between
resources and responses at a granular level. It also provides a tool to estimate staffing deficit
for relatively small areas early in collection operations.

The model discussed was an initial take on a general method to forecast costs and re-
sponse rates with a number of strong assumptions, several of which will see improvements
in future versions. The framework developed is sufficiently general that it could be used
for any lengthy collection operation and for most combination of collection activities. It
may even be sufficiently general to eventually be extended to the collection operations of
multiple concurrent surveys.

This work opened up a wide range of applied research projects in time to event variants
of traditional logistic regression models. Parametric time to event models could not only
improve the forecasting model itself but also our ability to evaluate the impacts of potential
changes to the wave methodology. The model is scheduled to replace a number of separate
models produced over the 5 year cycle and will improve coherence of the different planning
models in doing so.

7. Future Work

Future work includes the Bayesian framework for the dwelling occupancy discussed in
Section 4. It also includes parametric estimation of the self-response or self-resolution
model. We also plan to improve various parameters estimates at smaller geography levels
and explore the feasibility of modeling staff mobility if not in the model itself, at least in
the form of output processing from the current framework using staffing capacity surpluses
and deficits. Finally, a lot of program optimization will be done to increase the number of
iterations that can be performed within a short time frame for 2021 production to reduce
the variability due ot the simulation itself for small area forecast statistics.
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