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Abstract
The task of finding variance change points has been the focus of considerable research in sequen-

tial data analysis. In spite of empirical success of many change point algorithms, there are several
unresolved issues: (a) use various probabilistic modeling assumptions in one form and another, (b)
fail when there are multiple change points, especially when a dominant change point masks other
change points, (c) check each point is a change point or not, thus increase computation extensively.
We present a novel offline algorithm which uses a dynamic mode decomposition based data-driven
dynamical system and local adaptive window to iteratively detect variance change points. We pro-
pose a variance descriptor function which is used for guiding the focus-of-attention of change points.
For detecting change points, it is used for generating regions of interest and providing coarse infor-
mation, which automatically governs the location and the size of window to detect change points at
different scales. The proposed algorithm is completely data driven, does not require a probabilistic
model, and detects multiple variance change points accurately and efficiently on many time series.

Key Words: Time series, Change point, Dynamic mode decomposition, Peak finding, Scale space.

1. Introduction

We consider the problem of iteratively detecting and handling variance change in sequential
data. Given a fixed sample size of a sequential data, detecting all its variance change points
accurately is a challenging problem and has important applications in many areas such
as healthcare, oil & gas, economics, business analytics and others. In these application
areas, it is always desirable to search for the causes and sources of change points, so that
such change point behavior can be properly analyzed and better understood; and if desired
post detection prescriptive recommendation could be taken. Therefore, the task of finding
change points has been the focus of considerable research in sequential data analysis.

Market fluctuation and change in company’s policies can cause abrupt variance change
and occasional bursts of activities in stock price [9], [16]. Sensor data from oil and natural
gas may have abrupt changes in the variable of interest because of presence of oil and
gas underneath the sea surface or anomalies in large equipment operation [11]. Similarly,
change point detection could be characterized as presence of cancerous cell in a micro
environment of the tissue sample and thus could be use as a useful diagnostic tool [18].
Further, implantation of new devices and sensors can affect the nature and accuracy of the
measurements and can give rise to variance change points [3], [4].

In workplace platform of the call center, call volume (number of calls per day) of mil-
lion of customers from hundreds of companies are monitored and analyzed around the
clock and throughout the year, see Fig. 1. In call volume data, change points arise either
due to known business calender like Thanksgiving, Christmas, and New Year or external

∗IBM Research, Vasant Kunj, New Delhi, India 110070
†IBM Research, Vasant Kunj, New Delhi, India 110070
‡Sagacito Tech, Nehru Place, New Delhi, India 110019
§Google Research Labs, Mountain View, San Francisco, USA 94043
¶IBM Research, Vasant Kunj, New Delhi, India 110070

2898



events like movement in economy, merging and splitting of businesses. For example, esti-
mating a change point and its impact due to an announcement of new iphone in the market
by Apple is a very difficult problem, and its inaccurate estimation generally costs hundreds
of million of dollars to a company. Accurate detection of variance change point in call vol-
ume data is very useful as it provides insights into the business events, market fluctuations,
maturation, and instabilities of the business and sales; and thus it helps the call center to
generate good forecast, better capacity plan and seat allocation plan to handle customer’s
call without financial risks Fig. 1.

In addition to call volume, another important feature that governs the dynamics of a
call center is the average handle time (AHT). AHT is the average time taken by an agent to
answer a call from a customer, starting from initiation of the call to completion. Therefore
the estimation of AHT is a very important metric because the number of agents required to
answer all the calls is calculated based on AHT. In the work presented here, we are given
AHT of the agents in a time series form and goal of the analysis is to find the variance
change points within the data. It is important to determine the time instances when the
variance changes occur in AHT. If the variation in AHT increases consistently from the
previously seen pattern, that means agents are taking more time to answer calls, and also
within the same time period some other calls are answered in relatively small time. For
some calls, AHT is so high, it may lead to a situation where a large number of calls are
kept in a queue and more often than not important calls may get dropped without being
answered. Hence when the variation within AHT is large, it is important to have enough
number of agents deployed to answer all the calls. Only after the variance change points
are detected in a time series, one can schedule enough agents to answer calls within the
specified time.

Often time series exhibit abrupt changes in variable(s) of interest such as sudden change
in mean or variance or both, or occasional bursts of activities and outliers [9], [16]. Some-
time, they undergo such a drastic change at a point that their behavior before or after this
point is completely independent. Sequential data in which each observation is assumed to
be made up of distinct components: trend, season, cycle, regression, intervention, and error,
might have variance changes in all these components independently or semi-dependently.
It is important to model such behavioral changes explicitly for robust estimation procedure
and for extracting outlier information.

Variance change point affects larger fraction of the time series as compared to additive
and innovational change points. Additive change point represents sudden ”pulse” which
die out immediately, while innovational one represents sudden ”pulse” followed by gradual
decay to the original time series. If a large variance change in time series is ignored, then
the time series in high variance region would be highly erratic and therefore the standard
change point algorithms would detect several additive and innovational change points in
this region [16]. On the other hand, if this large variance change is accurately detected
and properly handled, then only few or no change points would be left. Thus, one large
variance change point is equivalent to detecting several others additive and innovational
change points. Therefore ignoring variance change in the data could have a catastrophic
affects, could lead to wrong statistical results, can have a detrimental impact on forecasting
accuracy, and can even affect the model specification.

1.1 Challenges & Limitations in Prior Art:

Accurate detection of change points can be challenging due to the presence of inherent
noise, volatility, and haphazardness. Most of the existing change point algorithms perform
well when the time series has few relative change points, however difficulties in accurate
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Figure 1: Workforce analytics of call center. The system leverages standard assets and
power by back-end analytics of forecasting, capacity planning, and assumption manage-
ment. Forecasting engine develops good quality medium to long-range forecasts of call
volume and average handle time (AHT), and performs season extraction. Capacity plan-
ning engine develops analytics to improve scheduling efficiency index for both front and
back office environment and prescribes optimal mix of flexible workforce. Assumption
management engine develops prediction of head counts and attrition for robust and optimal
planning of future workforce.

detection of change points arise due to masking effects, when time series has multiple
variance change points that occurs in patches. Detection becomes most difficult when
these patches overlap significantly, which models many realistic phenomenons. Before one
market fluctuation or change in company policy decays out, another effect enters into the
system. Further, many existing algorithms use generative models for sequential data that
could make the change points detection methods suffer from several pitfalls: (a) To use
parametric distribution, harsh simplifying assumptions usually need to be made e.g. the
time series is stationary and error is iid and follows a Gaussian distribution, the form of
the probability model remains the same but the parameters change over a prolonged period
of time etc.. , and (b) Log likelihood can have many local maxima or the maximum is
on or near the boundary. Change points methods based on autoregressive moving average
(ARMA) model and likelihood ratio test have similar problems, and do not fit a good model
in general, and therefore are not able to detect multiple variance change points in the data
[16].

Inclán and Tiao proposed a method to detect multiple variance change points using
normalized cumulative sums of squares of a sequence of independent random variables
[7]. They establish two facts about cumulative sum of squares: (a) It is a function of
likelihood ratio test and F statistics to test equality of variances change, (b) When there is
a sudden variance change the cumulative sum of squares exhibits an abnormal pattern with
high probability and therefore its plot represents a better picture of variance change. The
success of their algorithm was largely dependent on: potential change point, impact factor
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of the detected influential data point, order of the variance change points, and threshold
value, and thus was not able to capture successfully all the variance change points present in
the data. One reason their algorithm fails, is that the cumulative sum of squares is based on
the assumption of uncorrelated random variables, which doesn’t hold true in many realistic
sequential datasets.

1.2 Key Contributions:

We make the following contributions:

1. We present a novel and efficient algorithm for variance change point detection which
doesn’t require any modeling assumption or any knowledge of underlying govern-
ing equation of the time series process. The proposed algorithm, DVCPD (Dynamic
Mode Decomposition based Variance Change Point Detection), is completely data
driven. It is based on DMD (Dynamic Mode Decomposition) [14] [15] and uses a lo-
cal adaptable window and sequential hypothesis testing to iteratively detect variance
change point(s).

• The location and size of the window is automatically governed by the accep-
tance and rejection of the hypothesis. Thus, the variance change is detected
locally as well as globally unlike the well-known methods (Tsay 1988) [16] or
(Inclán and Tiao 1994) [7] where the variance change is detected on the whole
dataset.

• DVCPD addresses the masking problem by normalizing the data in a suit-
able way so that the presence of other variance changes, that might have been
hidden due to masking, could be accurately detected. We use a suitable nor-
malizing method using the notion of a base model. A base model is the largest
subsection of the time series where variance remained constant. The reason
for considering such a base model is to capture the behavior of the time series
during which the variance remained constant over the longest time span.

• Using real-world uni-variate datasets (even with multiple change points) we
demonstrate the superior accuracy as well as performance of our approach as
compared to well-known prior-art.

1.3 Organization

The remainder of this paper is as follows: In Section 2, we give a complete review of
the DMD theory and algorithm which consider the time series as dynamical system. In
Section 3 we demonstrate how DMD and local adaptable window can be combined to give
a model free and robust variance change point detection algorithm (DVCPD). In Section ??,
we show extension of DVCPD to multivariate data. In Section 4 we provide empirical
analysis on real-world univariate and multi-variate datasets, demonstrating the ability of
our algorithm to effectively detect variance change points. In the conclusions Section 5
we summarize the merits, limitations, and extensions of the DMD method for prediction
and change point detection, and highlight some open problems and directions for future
research.

2. Dynamic mode decomposition (DMD) Theory

DMD is a data-driven dynamical system [14] [15] [17] [8] that works by extracting the
relevant information from a sequence of data. Similar to the Arnoldi algorithm, it fits
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a high-degree matrix polynomial to the data sequence. An inter-snapshot linear map is
identified that acts as a low dimensional approximation of the system dynamics. This linear
map is computed by processing the data sequence, generated by a nonlinear process, and
represents the optimal linear operator (in a least- squares sense) that describes the evolution
of the dynamics over a small time interval. The eigenvalues and eigenvectors of this map
then capture the principal dynamics contained in the snapshot basis.

DMD is an attractive choice for high dimensional time series as well as multiple input-
output response of a highly complex non-linear dynamical system. Unlike state space
methods [3], auto regression integrated moving average (ARIMA) [2], and other predic-
tive models that are based on various assumptions of random or Gaussian process, DMD is
completely model free for non-stationary and non-linear multi-variate time series. It has an
elegant formulation, has relatively low time complexity and can be applied to big data with
ease.

The representation of a nonlinear process by a linear sample-to-sample map is closely
linked to the concept of a Koopman operator, an analysis tool for dynamical systems. This
type of spectral analysis of nonlinear processes provides the mathematical foundation of
DMD and has recently been applied to complex fluid flows [12]. Consider data points
collected at a given time, with a total of T + 1 samplings in time. Let xt ∈ RJ be a vector
of the J data points collected at time t = 1, 2, ..., T, T + 1. The data can be grouped into
matrices as follows:

X = [x1 x2 x3 ... xT ]

Y = [x2 x3 x4 ... xT+1]

The Koopman operator A maps the data at time t to the data at time t+1 such that xt+1 =
Axt. The DMD algorithm will estimate the Koopman operator A that best represents the
data in Krylov matrix K(A, x1, T ) ∈ RJ×T [5] defined by:

K
def
= K(A, x1, T ) = [x1 Ax1 A

2x1 ... A
T−1x1].

If c ∈ RT solves the linear system Kc = −xT+1 = −ATx1, then it follows that [5]

AK = KC, (1)

where C has the form

C =


0 0 · · · 0 −c1
1 0 · · · 0 −c2
0 1 · · · 0 −c3
...

...
...

...
...

0 0 · · · 1 −cT

 .

The matrix C ∈ RT×T is said to be a companion matrix, whose eigenvalues are given
by the characteristic polynomial

det (λI − C) = c1 + c2λ+ · · ·+ cTλ
T−1 + λT .

Thus, DMD algorithm connects the estimation of Koopman operator A to the companion
matrix methods and sparseness of C. It follows from (1) and singular value decomposition
(SVD) of X = UΣV T ,

AX = XC

AUΣV T = UΣV TC

AUΣ = UΣV TCV

AU = U
(
ΣV T

)
C
(
V Σ−1

)
AU = UC̃, (2)
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where C̃ =
(
V Σ−1

)−1
C
(
V Σ−1

)
∈ Rr×r is mathematically similar to the companion ma-

trix C. Thus, in practice DMD method is the idea that because AU = UC̃, eigenvalues of
the matrix C̃ approximate the eigenvalues of the Koopman operator A. However, the eigen-
vectors of matrix C̃ also approximate the eigenvectors of A. Apply eigen-decomposition
of C̃ = WΩW−1 to

AU = UC̃

AU = UWΩW−1

A (UW ) = (UW )Ω

AΦ = ΦΩ, (3)

where Φ = UW . The jth DMD mode or the jth eigenvector of the Koopman operator A
is the jth column of the matrix Φ,

ϕj = Uwj . (4)

The overall time complexity of DMD s dominated by thin SVD and hence is O(J.T 2+
T 3). Since the window for DMD computation, n, moves over the whole time series it much
less than total number of time stamps. Further, parallel and online implementation of thin
SVD result in analysis in real-time.

2.1 DMD Prediction

The DMD prediction of the data xDMD at a lead time l after the data vector xT was col-
lected is given by

xDMD(l) = AlxT

=
(
ΦΛΦ−1

)l
xT

= ΦΛlΦ−1xT

= ΦΛlb, (5)

=
r∑

j=1

λlbjϕj (6)

where Λ = diag (λ1, λ2, . . . , λr) ∈ Rr×r is the diagonal matrix of eigenvalues of A, ϕj is
the jth column vector of the matrix Φ, and the vector b solves the over-determined system

Φb = xT (7)

whose least square solution is given by

b =
(
ΦTΦ

)−1
ΦTxT . (8)

2.2 Connection of DMD to Fourier Transform

In this section we show that under the assumption xT+1 = x1, DMD eigenvalues and
modes becomes the eigenvalues and eigenvectors of the well known Fourier transformation
matrix. The assumption of xT+1 = x1 can easily be seen when time series data has periodic
season with period T . In order to prove the result we need a Lemma [5].
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Lemma 1. Let DT ∈ RT×T is the downshift permutation matrix that pushes the compo-
nents of a vector down one notch with wraparound

DT =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

 ,

then V = FT , V −1DTV = Λ = diag (λ1, . . . , λT ), where FT is a T × T discrete Fourier
transform matrix, and

λj+1 = ω̄j = cos

(
2πj

T

)
+ i sin

(
2πj

T

)
(9)

for j = 0, . . . , T − 1.

Theorem 2. If xT+1 = x1, then DMD eigenvalues are given by 9.

Proof.

AX = [x2|x3|x4|...|xT+1]

= [x2|x3|x4|...|x1]
= XDT

= XFTΛF
−1
T

A (XFT ) = (XFT ) Λ

AΦ = ΦΛ,

where Φ = XFT is the matrix of DMD modes. The jth DMD mode for 1 ≤ j ≤ T could
be obtained by comparing jth column of Φ = XFT ,

ϕj = XFT (:, j)

= X


1
ωj−1

ω2(j−1)

...
ω(T−1)(j−1)


ϕj =

T∑
k=1

ω(k−1)(j−1) xk. (10)

Note from the expression (10) when j = 1 the first DMD mode becomes ϕ1 =∑T
k=1 xk, proportional to the mean.

2.3 Convolutive Dynamic Mode Decomposition

The standard DMD serves as basis for the development of convolutive DMD (CDMD). The
simplest form of the CDMD is defined as

Y =
P−1∑
p=0

ApXp + E, (11)
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where E ∈ RI×T is random error matrix, Y ∈ RI×T is a output data matrix, Ap ∈ RI×J

is a set of unknown matrices. Xp’s can be defined in various ways. X = X0 ∈ RJ×T is
the input data matrix, and Xp means columns of X are shifted to the right p spots, while
the columns shifted into the matrix from the outside are set to zero. This shift represents
a time delay or lagp in the input data matrix and is performed by horizontal shift matrix
operator such that Xp = XTp. The columns shifted into the matrix represent the prior data
before the reference starting time, and if no prior information is available we could set it to
zero. When p = 0, CDMD reduces to the standard DMD and has a closed form solution
A0 = Y X†

0 , where X†
0 = XT

0

(
X0X

T
0

)−1 ∈ RT×J is the pseudo inverse of X0.

D

(
Y ∥

∑
p

ApXp

)

=
1

2
∥Y −

P−1∑
p=0

ApXp∥2F

=
1

2
tr

(Y −∑
p

ApXp

)T (
Y −

∑
p

ApXp

)
(a)
=

1

2
tr

(Y −∑
p

ApXp

)(
Y −

∑
p

ApXp

)T
 ,

(a) follows from tr(ATA) = tr(AAT ). Using the identity∇Atr(AAT ) = 2A in calculation
of gradient ∇ApD with respect to Ap, and setting it to zero we obtain

−Y XT
p +

P−1∑
j=0

AjXjX
T
p = 0, (12)

for p = 0, 1, . . . , P−1. If P ≤ 2 one can obtain a closed form solution. Analytical solution
provides insight about the matrix Ap. For example, taking P = 2 (12) become

−Y XT
0 +A0X0X

T
0 +A1X1X

T
0 = 0 (13)

−Y XT
1 +A0X0X

T
1 +A1X1X

T
1 = 0. (14)

Using (14) and definition of pseudo inverse X†
1 , A1 is rewritten as A1 = (Y − A0X0)X

†
1 ,

and substituting it in (13) gives

A0 = Y (I −X†
1X1)X

T
0

(
X0X

T
0 −X0X

†
1X1X

T
0

)−1
,

= Y (I − P1)X
T
0

(
X0X

T
0 −X0P1X

T
0

)−1
,

where Pi = X†
iXi is an orthogonal projection matrix. Similarly, substituting A0 = (Y −

A1X1)X
†
0 from (13) into (14), we get

A1 = Y (I − P0)X
T
1

(
X1X

T
1 −X1P0X

T
1

)−1

When P ≥ 3 finding an analytical solution using elimination technique becomes in-
tractable. In order to find an optimal solution an iterative updates are necessary. From
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equation (12), iterative update of Ap is obtain as follow:

ApXpX
T
p =

Y −
p∑

j ̸=p

AjXj

XT
p ,

(a)
=

ApXp + Y −
P∑

p=1

ApXp

XT
p ,

(b)
= (ApXp + Y − Ŷ )XT

p ,

= ApXpX
T
p + (Y − Ŷ )XT

p ,

A(k+1)
p

(c)
= A(k)

p + (Y − Ŷ )X†
p,

(15)

in (a) we add and subtract ApXp, in (b) we used Ŷ =
∑P

p=1A
(k)
p Xp the current estimate

of Y , and in (c) X†
p represent the pseudo inverse of Xp.

2.4 DMD Algorithm

Algorithm 1 DMD Algorithm
1: procedure DMD(data = (x1, x2, ..., xT ))
2: Arrange data into matrices X = [x1|x2|...|xT−1] and Y = [x2|x3|...|xT ]
3: Compute (reduced) SVD of X, X = UΣV T

4: Define matrix, Ã ≜ UTY V Σ−1

5: Compute eigenpairs of Ã, writing Ãw = λw.
6: Each non-zero eigenvalue λ is a DMD eigenvalue
7: DMD mode corresponding to λ is : φ = 1

λY V Σ−1w
8: end procedure

3. DVCPD Algorithm

This section provides an overview the design for the DVCPD algorithm as well as details on
the phases of the algorithm (in separate sub-sections for sake of clarity) along with sample
run of the main procedure used in the algorithm (Algorithm, Fig. 2).

3.1 Design Overview:

We designed the variance change point detection algorithm so that it can accurately detect
local and global change points in the given time series. For this, we consider varying win-
dow sizes. Varying window sizes are supposed to describe the local state of the underlying
process. We start with smaller window sizes to detect true change point locally and then
increase the window size unto a significant proportion of the whole time series so we can
detect change points globally. Thus, using adaptive window sizes we can detect change
points both locally and globally. Further, we re-normalise the time series to cover the cases
where some change points may be hard to discover due as they are in the vicinity of other
change points. In the experimental section, we show that our algorithm accurately detects
the variance change points as compared to typical algorithms [16] [7].
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3.2 Model Construction:

We fit DMD model on the given time series, {X1, . . . , XT }, using Algorithm 1. (In general,
we could also use other models as well such as: (a) the best possible ARIMA(p, d, q)
model and estimate the exact shocks a = {a1, a2, . . . , aT } using maximum likelihood
method (Box, Jenkins, and Reinsel, 2008) [2], or (b) State space model with a represented
as estimated smoothed observation disturbance or smoothed state disturbance (Durbin and
Koopman, 2012) [3].)

3.3 Iterations with Adaptable Window Sizes:

This section describes the procedure AdaptWindowIter. We consider a subsection of the
data by constructing a starting window of size [αT ] in each iteration, where α ∈ P =
{α0, α0 + β, α0 + 2β . . . , αmax}, and [x] is the largest integer smaller than equal to x,
and we search for the variance change point in this window. The reason behind searching
variance change in a window is to detect true change point locally. If the data has a variance
change within a small section then our algorithm should be able to capture it by taking
windows of smaller sizes. In order for our algorithm to detect variance change globally
we take the starting window size (of the last iteration) as large as αmax of the entire data.
Hence, by adaptably changing the window size we can capture variance change points
locally as well as globally.

We use the method cumulative sum of squares ((Inclán and Tiao, 1994) [7]) on the
shock {a1, a2, . . . , aT }, starting with α = α0, to detect the potential variance change point
k. After determining the value of k we split the time series observation X into two subsec-
tions {X1, X2, . . . , Xk−1} and {Xk, X2, . . . , X[αT ]} and apply the Wald test statistics W ∗

to decided if the kth point is a true variance change point or not. If the kth is a variance
change point, we move our window to the next section of data or otherwise increase the
starting size of the window by [αT ] and check for the potential change point and the true
variance change point again. If two variance change points detected are within 10 data
points of each other we choose the one which has smaller P-value. We iterate the algorithm
for different values of α till α = αmax as shown in Fig. 2.

3.4 Sample Run of AdaptWindowIter Procedure:

The execution of DVCPD algorithm (Fig. 2) can be visualized using the grid plot in Fig. 2.
This grid plot is obtained by reading the results of each iteration of DVCPD on the IBM
Stock Price dataset.

The first row is the first iteration of the algorithm, with an initial window size of 10%
of the total length of the IBM dataset. Similarly, the subsequent rows describe subsequent
iterations. In the grid plot shown, the algorithm runs with α0 = 10% to αmax = 30%, as the
lower and upper bounds on the starting window sizes respectively, with a step of β = 2%
across any two iterations. Hence there are total 11 rows in the plot. Each row describes
how the algorithm progresses in each iteration. This is done by reading information from
the individual smaller square boxes that comprises the grid plot. Each square box has two
levels of text:

(a) The lower text, which appears as a pair of numbers describes the window. The
number prior to the comma is the starting position of the window, while the number after
the comma is the size of the window. In the first row, the closest integer value to 10% of
the total dataset length is 36, while the window starts from 0 in every iteration. Hence the
lower level of text in the first element of the first row is 0,36.
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Algorithm 2 DVCPD: Variance change point detection
1: while no variance change is detected do
2: DMD model construction (Algorithm, Fig. 1)
3: procedure ADAPTWINDOWITER(data, residual)
4: for α = α0, (α0 + 2 ∗ β),..., αmax do
5: while All data is read do
6: Select window(start, size)
7: Find Impact point(window) k
8: Wald test(window, k)
9: if rejected then variance CP

10: move window to next section
11: else Increase window size by [αT ]
12: end if
13: end while
14: end for
15: Determine split points and base model
16: end procedure
17: Time series←Normalization
18: end while
19: Change points in previous iteration are true variance changes

(b) The upper level of text in the square box is the impact point observed in the window
using the cumulative sum of squares technique.

As described by DVCPD Algorithm (line 8), this impact point is verified by Wald test
statistics to check if the point is a true variance change point. The colour of every ele-
ment describes if it was accepted by Wald test as a true variance change point. The green
colour represents that these points are true variance change points, while the points in the
blue colour elements were marginally rejected and points in the red colour elements were
rejected by a significant margin.

Consider the first iteration of algorithm as represented in the first row of the grid plot
(Fig. 2). The window increased from 36 (in the first square box) to 72 (in the second square
box), while the starting position remained the same as the impact point in the first element
was rejected to be a true variance change point. Similarly, the window size increases to
108 and then to 144 and 180, because the impact point fails to qualify as a true change
point while the starting position of the window remains the same (0). Finally, for window
(0, 216), a true change point is obtained at point 180. If the impact point qualifies as a
true change point, then the starting position shifts while the size of the window remains the
same.

subsectionChange Points Selection: Let mi is the number of variance change points
detected when Algorithm 2 was started by taking α = α0 + β(i − 1), i = 1, 2, . . . , γ,
where, γ = (αmax−α0

β + 1). The number of variance change points present in the data is
defined as m = mode of m1,m2, . . . ,mγ . This definition is intuitive since we are applying
our algorithm for each α from α0 to αmax, the variance change points that were detected
for some value α = α0 should also be detected for other values of α which are close to
α0 if it has a significantly large impact factor. So, we are taking the number of variance
change points to be that size which has occurred most number of times. Finally the true
ith, 1 ≤ i ≤ m variance change point is the mode of k1i , k

2
i , . . . , k

γ
i . This definition is also

intuitive because if a variance change point is a true variance change point it should get
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Figure 2: A sample run of the first iteration of the Algorithm 2 on the IBM time series data.
Each row corresponds to different value of p. Different colors represent different range of
values of Wald test statistics T for testing hypothesis θ = σ2

2−σ2
1 = 0 against θ ̸= 0: green

means T ≥ 8 and reject the hypothesis, blue means 3 ≤ T < 6.6, and red means T ≤ 3.
The pair of numbers at the bottom of each box represent the start position and the size of
the window, while number on the top describes the impact point observed in the window
using the cumulative sum of squares. From the above figure, reading information from the
green square boxes, 235 is the variance change point in the first iteration.

detected for most values of α. By using this method let m detected variance change points
are denoted by {k1, k2, . . . , km} such that k1 < k2 < . . . < km. Then the entire original
data set {X1, X2, . . . , XT } can divided in m+ 1 different sections such as

• subsection 1: {X1, X2, . . . , Xk1−1},

• subsection 2: {Xk1 , Xk1+1, . . . , Xk2−1},

• ..............................................................,

• subsection m+ 1: {Xkm , Xkm+1, . . . , XT }.

3.5 Base Model Selection & Normalization:

The variances of the data set in two adjacent subsections are significantly different from
each other. The subsection with largest number of data points is taken as the base model.
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It is essential to determine a base model because one needs to normalize the entire dataset
with respect to the base model. The main purpose of normalization is to remove the effect
of already detected variance change point and re-run the above proposed algorithm on the
updated data to capture new variance change points which could have been present in the
data but remained hidden due to the effect of an already detected variance change point
which has a very large impact factor.

Now we describe how the data is normalized to obtain the updated data. Let assume the
process in the subsection i has the largest number of data points and i ∈ {2, 3, . . . ,m}. Let
Vb be the variance of the process {Xki−1

, Xki−1+1, . . . , Xki−1} in subsection i. Let Vl be
the variance of the process in the subsection i−1 with data points {Xki−2

, Xki−2+1, . . . , Xki−1−1}
and let Let Vr be the variance of the process in the subsection i + 1 with data points
{Xki , Xki+1, . . . , Xki+1−1}. Then the updated new process X∗

t , t = 1, 2, . . . T is obtained
by setting:

X∗
t =


X̄ +

√
Vb
Vl
(Xt − X̄) if 1 ≤ t < ki−1

Xt if ki−1 ≤ t < ki

X̄ +
√

Vb
Vr
(Xt − X̄) if ki ≤ t ≤ T

where, X̄ is the average of all T data points in the original data set. Observe that due
to this normalization variances in subsection i − 1, i and i + 1 of that updated data
{X∗

1 , X
∗
2 , . . . , X

∗
T } are all same and in particular the variance is equal to Vb.

3.6 Final Change Points Selection:

The next iteration in the outer while loop in Algorithm (Fig. 2) is executed again on the
updated data {X∗

1 , X
∗
2 , . . . , X

∗
T }. This leads to further change points, re-normalization and

updates to the data using the new base model. This process is repeated until no variance
change point is detected. Let us assume that the entire process is repeated S times and
AI is the collection of true variance change points detected in the Ith repetition. Then the
collection of all true variance change points is given as

K =
s∪

I=1

AI . (16)

4. Experimental Results & Analysis

In this section, we present the experimental results on variance change point detection using
both real data and simulated data. The results on both univariate and multi-variate datasets
have been presented below.

4.1 Analysis on Univariate Data

We performed time series modelling of uni-variate data using DMD as well as ARIMA
and State Space Model (Kalman Filter) to compare and demonstrate the quality of results
obtained by DMD (Algo. 1) based time series modelling and prediction. The errors ob-
tained from these models are then fed into the variance change point detection algorithm,
DVCPD to obtain the change points. The obtained change points are then compared against
the change points obtained using well-known algorithms: (Tsay 1988) [16] and (Inclan &
Tiao 1994) [7]. In DVCPD algorithm, we took the value of α0 = 0.1, β = 0.01, and
αmax = 0.3. Other combinations of these parameters also give similar results, hence those
results obtained have been omitted for brevity and clarity. We used the following uni-variate
datasets:
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Figure 3: IBM Stock price: Modeling Error of DMD vs ARIMA vs State Space

• IBM Stock Price: Variations in first difference of the closing IBM stock price from
1961 to 1962 (also used in (Tsay 1988) [16]) with total 369 points.

• Nile data 1: Yearly water level in Nile river from 622 AD to 1284 AD, total 663
points in this series.

• Dow Jones Returns 1972 to 1975: Daily returns of Dow Jones Industrial Average
from 1972 to 1975 (also used in (Ryan 2007) [1]) with total 1093 points.

• Average Handling Time: Average handling time of staff members from 2009 to
2012 at a large call center

4.1.1 IBM stock price

The data set considered here is the first difference of the IBM stock closing price from May
17, 1961 to November 2, 1962 as reported by (Box, Jenkins, and Reinsel, 2008) [2]. This
paper identified an ARIMA(0, 1, 1) as the best model for this series. However, they found
that some evidence of possibility of inadequacy of the ARIMA(0, 1, 1) might be in part
by change in variance. Therefore, this data set is extensively studied by various authors
to illustrate their theory of variance change (Inclán and Tiao, 1994) [7], (Tsay, 1988) [16],
and (Nhu, Martin, and Raftery, 1996) [9].

Model Accuracy Comparison: Fig. 3 presents the modeling error (measured as abso-
lute difference in values predicted by the model and the actual value) for DMD, ARIMA
and State Space modelling algorithms. It shows that DMD modelling error is very similar
to the ARIMA and State Space Models. The change points detected with these models
(using DVCPD, Fig. 2) are all same, demonstrating the modelling fidelity of DMD.
Change Points Detected: The change points detected with these models (using DVCPD,

Fig. 2) are all same. Fig. 4 presents the results from multiple iterations in DVCPD algo-
rithm and the corresponding change points detected. DVCPD detects 236, 279, and 181
points as the variance change points in the first iteration. Since the largest section on which
variance remained stable is from data point 1 to data point 235, this section is taken as the
base model. With respect to the base model the difference data is normalized to get the
updated data. The plot of the normalized data is given in Fig. 4. The algorithm is then
applied on the updated data, and 279th point is found as the variance change point. And
finally, once again on the re-normalized data the algorithm detected 180th as the variance
change point.

1http://lib.stat.cmu.edu/S/beran
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Figure 4: IBM Stock Price: Analysis. Variance change points as thick vertical lines

Superior Detection Over Prior Art: In contrast, prior algorithms are not able to
detect all these change points. (Inclan and Tiao 1994) [7] found the change points as 235th

and the 279th data points. (Tsay 1988) [16] detects variance change at only the 237th point.
Wichern et. al. (Wichern, Miller and Hsu, 1974) [6] finds the variance change points as
180 and 235. Thus, DVCPD detects more change points that well-known prior change
point detection algorithms.

Superior Runtime: The complete DVCPD takes 49.59s when DMD is used for model
construction (Sec. 3) while with ARIMA it takes 240s and with State Space it takes 50.31s.
The DMD model construction step over all iterations is faster (1.59s) as compared to
ARIMA (192s) and State Space (2.31s) which results in faster DVCPD. This demonstrates
the superior performance of our approach.

4.1.2 Nile data

We consider the classic example of change point data set, the minimum water levels of the
Nile river during the AD 622-1284, measured at the island of Roda, near Cairo, Egypt.
Several authors have reported evidence supporting a change point in this data around the
year AD 722 (Ray and Tsay, 2002). The domain knowledge suggests the reason for this
change point is the implantation of new device, nilometer, in the year AD 715, which
affected the nature and accuracy of the water level measurements.

Model Accuracy Comparison: Fig. 5 presents the modeling error (measured as ab-
solute difference in values predicted by the model and the actual value) for DMD, ARIMA
and State Space algorithms. It shows that the DMD modelling error is very similar to the
ARIMA and State Space Models though at some points DMD error is higher and at other
points State space modelling error is higher as compared to ARIMA. The change points
detected with these models (using DVCPD, Fig. 2) are very similar.
Change Points Detected: Fig. 6 presents the results from multiple iterations of DVCPD

and the corresponding change points detected on Nile data. DVCPD detects 720 and 805
points as the variance change points. Since the largest section on which variance remained
stable is from data point 805 onwards, this section is taken as the base model. With re-
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Figure 5: Nile Data: Modeling Error of DMD vs ARIMA vs State Space

Figure 6: Nile dataset: Analysis

spect to the base model the difference data is normalized to get the updated data. The plot
of the normalized data is given in Fig. 6. The algorithm is then applied on the updated
data, and 881, 814 and 720 are found as the variance change points. And finally, on the
re-normalized data (which starts looking like white noise) the algorithm detected 720 again
as the variance change point. A change point, which is a variance change point, around
AD 722 is clearly visible and agrees with previous result which uses sequential Bayesian
one step ahead prediction in the presence of change points (Garnett and et. al. 2010) [4],
(Saatci, Turner, and Rasmussen, 2010) [13].

Superior Detection Over Prior Art: We need to fix this paragraph. It got repetition
from the IBM result! In contrast, prior algorithms are not able to detect all these change
points. Inclan and Tiao found the change points as 235th and the 279th data points. [16]
detects variance change at only the 237th point. Wichern et. al. (Wichern, Miller and Hsu,
1974) [6] finds the variance change points as 180 and 235. Thus, DVCPD detects more
change points that well-known prior change point detection algorithms.

Superior Runtime: The complete DVCPD takes 88.7s when DMD is used for model
construction (Sec. 3) while with ARIMA it takes 421s and with State Space it takes 93.6s.
The DMD model construction step over all iterations is faster (3.7s) as compared to ARIMA
(336s) and State Space (8.61s) which results in faster DVCPD. This demonstrates the su-
perior performance of our approach.
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Figure 7: Dow Jones Returns: Analysis

4.1.3 Dow Jones Returns 1972 - 1975

Here, we consider the time series data of daily returns of the Dow Jones Industrial Average
from July 3, 1972 to June 30, 1975. Several major events including the OPEC oil embargo
occurred during this time period that had potential macroeconomic effects. The errors from
DMD, ARIMA and State Space are very similar and hence lead to very similar variance
change points (Figure in supplementary material). Results of multiple variance change
point detection and normalization in different iterations, using DVCPD, are shown in the
Fig. 7. A single variance change point is detected at point 337, which represents Oct.22,
1973. The oil embargo was put in effect in October 1973 and our algorithm is able to
capture it correctly.

4.1.4 Average Handling Time

Here, we consider the time series data of daily average handling time (AHT) of staff mem-
bers from 01-08-2009 to 09-30-2012 at a call center. If the staffs are newly employed they
take more time to answer customer’s query and their daily averaging handling time fluctuate
significantly. While an experienced staff members answer each customer more efficiently
and thus their daily average handling time are relatively smooth. It was expected this data
would show variance change points as daily average handling time fluctuate among staff
members depending upon skill and experience level of the staff, the day and the nature of
the business and the customer itself. We first extracted long term trend and weekly and
yearly seasons from this time series using elastic smooth season fitting algorithm (Li and
Moore, 2008) [10]. Fig. 8 shows the difference between the modeled data and actual. The
errors from DMD, ARIMA and State Space are very similar and hence lead to very similar
variance change points using DVCPD (Fig. 2).
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Figure 8: AHT Data: Modeling Error of DMD vs ARIMA vs State Space

Results of multiple variance change point detection and normalization in different iter-
ations, using DVCPD, are shown in the Fig. 9. In the first iteration, the variance change
points obtained are: 56, 276 and 786. In the second iteration no new change point is ob-
tained, while in the third iteration the new change points obtained are: 355 and 983.

Figure 9: AHT Data: Variance change points and normalized series in different iteration
on the time series of average handling time. Variance change points are marked with the
thick vertical lines.

5. Conclusions & Future Work

We proposed the design DVCPD which elegantly captures the variance change locally and
globally and uses normalisation to capture hidden change points. By using DMD, it pro-
vides model-free approach that makes it flexible while still being accurate. On multiple
un-variate data sets, empirical results show the efficacy of the DVCPD algorithm. It detects
variance change points that are similar or better than prior approaches [16] [7] and owing
to DMD provides superior performance over ARIMA and State Space.

Many existing change point algorithms check each point is a change point or not, there-
fore they become computationally intensive if the time series is large. Further, high dimen-

2915



sional time series make the computational performance suffer most. We noted that most
variance changes do not arise instantaneously, they enter into the time series at some and
their impacts get maximized some time point later. Using this insight, if it is possible to
derive probability distribution of change points over time indices, then one could signif-
icantly decrease the computation time by allowing algorithm to adaptively check change
points only in the regions of high probability.
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