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Abstract

Bayesian adaptive methods for phase I trials such as the continual reassessment method (CRM)
and escalation with overdose control (EWOC) do not take into account the time for a patient
exhibits dose limiting toxicity (DLT), since the toxicity outcome is treated as a binary variable.
This characteristic is proven to increase the study duration and makes it almost non-feasible in
practice. Despite there are several methodologies to overcome this limitation in single agent trials,
there only a few approaches specifically designed for drug combinations that model the time to
toxicity. In this paper, we propose a Bayesian adaptive EWOC design that incorporates both
the status of DLT and the time to toxicity using a cure rate model in clinical trials with drug
combinations.

1. Introduction

Cancer phase I clinical trials are the first step when investigating the safety of a potential
drug combination between cytotoxic and biological agents. Patients are usually recruited
sequentially and the dose in which a new cohort of patients is allocated depends on the
doses and dose limiting toxicity (DLT) status of all the previous patients enrolled in the
trial. The target those combination (x, y) is referred to as the maximum tolerated dose
(MTD), and is defined as the dose that produces DLTs in a given fraction of patients:

P (DLT |(x, y)) = θ. (1.1)

There are two phase I designs that perhaps are the most popular: the continual re-
assessment method (CRM) [1], with its modifications [2, 3, 4, 5, 6], and escalation with
overdose control (EWOC) [7], with its extensions [8, 9, 10, 11, 12, 13].

These designs assume that the toxicities will be resolved before enrolling the next
patient in the trial. Such assumption if followed increases the trial duration making the
study non-feasible if it has cycles of therapy longer than 2 months, which is not rare in
treatments that involve radiotherapy. In this way, ad-hoc solutions are to recommend the
same dose used in the last patient or escalate the dose based on the partial information
without modeling such uncertainty.

Several methodologies have been developed to address this limitation for a single agent.
Cheung et al. [14, 15] proposed the time-to-event CRM (TITE-CRM), which is an extension
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the continual reassessment method (CRM) to allow late-onset toxicities by incorporating
different weights in the likelihood function. Mauguen et al. [16] developed a similar
approach using escalation with overdose control (EWOC). Liu et al. [17] presents a CRM
design showing that the late onset toxicities are informative missing data. Tighiouart et al.
[18] discussed an EWOC design that models time to toxicity using a proportional hazards
model to describe the partial information available.

In the last decade, statisticians have studied phase I designs for drug combinations.
There are still some points of controversy such as the selection of the MTD. Several authors
[19, 20, 21, 22, 23, 24] proposed methods that select a unique MTD whereas others [25, 26,
27, 28, 29, 30, 31] proposed methods that select multiple MTDs.

Nonetheless, most of them assume that toxicities will be observed in a short window of
time before enrolling a new patient. There are few exceptions: Wages et al. [32] generalized
TITE-CRM for two agents and Liu et al. [33] did the same based on their previous work
[17].

In this article, we propose a Bayesian dose-finding design that selects multiple MTDs
modeling the status of DLT and the time it takes for a patient to exhibit DLT in drug
combination trials with late-onset toxicities. We describe the two-dimensional dose-toxicity
surface using the the cure rate model [34], which takes into account that a certain fraction
of patients in the trial may never experience a DLT.

The rest of the article is structured as follows. In section 2, we present the dose-toxicity
model and the dose escalation algorithm. In section 3, we describe the simulated scenarios,
the design operating characteristics and the results. Last, in section 4 we present some
concluding remarks.

2. Method

2.1 Dose-toxicity model

Following Chen et al. [34], let N denote the number of toxicities for a patient after the
initial treatment assuming a Poisson distribution with mean λ > 0. Also let Wi denote
the random time for the ith toxicity to happen, that is, Wi can be viewed as an incubation
time for the ith toxicity.

The variables Wi, i = 1, 2, . . . are assumed to be i.i.d. with a common distribution
function F (t|µ) = 1 − S(t|µ), where µ is a vector of parameters associated with F . The
time to toxicity is defined by the random variable T = min{Wi, 0 ≤ i ≤ N}, where
P (W0 = ∞) = 1 and N is independent of the sequence W1,W2, . . .. The survival function
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for T is given by,

ST (t) = P (T > t)

= P (N = 0) + P (W1 > t, . . . ,Wn > T,N ≥ 1)

= exp(−λ) +

∞∑

k=1

S(t)k
λk

k!
exp(−λ)

= exp(−λ+ λS(t))

= exp(−λF (t)), (2.1)

where ST is not a proper survival since

ST (∞) ≡ P (N = 0) = exp(−λ) 6= 0. (2.2)

We also see from equation (2.2) that the cure fraction is given by exp(−λ). As λ → ∞,
the cure fraction tends to 0, whereas as λ → 0, the cure fraction tends to 1. The hazard
function for all the patients is given by

hT (t) = λf(t). (2.3)

Note that hT (t) is not a hazard function corresponding to a probability function since ST (t)
is not a proper survival function.

The survival and hazard functions for the patients who experienced DLT is defined as

SDLT (t) = P (T > t|N ≥ 1) =
exp(−λF (t))− exp(−λ)

1− exp(−λ)
, (2.4)

hDLT (t) =
exp(−λF (t))

exp(−λF (t))− exp(−λ)
hALL(t), (2.5)

where SDLT and hDLT (t) are proper survival and hazard functions, respectively.
In this way, if Z ∼ Bernoulli(p) is the indicator of DLT in the window [0, τ ], where p is

the probability of patient exhibits DLT within one cycle of therapy, follows that

p = 1− P (N = 0) = 1− exp(−λ). (2.6)

The probability of DLT can be modeled as

p = G(β0 + β1x+ β2y + β3xy), (2.7)

where x ∈ [Xmin, Xmax] is the dose level of agent A, y ∈ [Ymin, Ymax] is the dose level of
agent B, and G is a known cumulative distribution function. Suppose that the doses of
agents A and B are continuous and standardized to be in the interval [0, 1].

It is assumed that the probability of DLT increases with the dose of any one of the
agents when the other one is held constant. A sufficient condition for this property to hold
is to assume β1 > 0 and β2 > 0 and the interaction term β3 is non-negative.
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The relationship between p and λ presented in (2.6) implies that,

λ = −log(1− p). (2.8)

Thus, the regression coefficients β affects the cure fraction for the patients who did not
experienced DLT as can be seen by equation (2.7), and the hazard function for the patients
who experienced DLT as can be seen by equation (2.5) and (2.8).

The MTD is defined as any dose combination (x∗, y∗) such that

Prob(Z = 1|x∗, y∗) = θ. (2.9)

The target probability of DLT θ is set relatively high when the DLT is a reversible or
non-fatal condition, and low when it is life threatening. Using (2.7) and (2.9), then

C =

{
(x∗, y∗) ∈ [0, 1]2 : y∗ =

G−1(θ)− β0 − β1x
∗

β2 + β3x∗

}
. (2.10)

The model (2.7) is reparametrized in terms of parameters that clinicians can easily
interpret. Then we define ρ10, the probability of DLT when the levels of drugs A and B
are 1 and 0, respectively, ρ01, the probability of DLT when the levels of drugs A and B are
0 and 1, respectively, ρ00, the probability of DLT when the levels of drugs A and B are
both 0, and the interaction parameter η. It can be shown that

β0 = G−1(ρ00),

β1 = G−1(ρ10)−G−1(ρ00),

β2 = G−1(ρ01)−G−1(ρ00),

β3 = η. (2.11)

The MTD set (2.10) becomes

C =

{
(x∗, y∗) : y∗ =

(G−1(θ)−G−1(ρ00))− (G−1(ρ10)−G−1(ρ00))x
∗

(G−1(ρ01)−G−1(ρ00)) + ηx∗

}
. (2.12)

Let Dn = {(xi, yi, ti, zi), i = 1, · · · , n} be the data after enrolling n patients in the trial.
The likelihood function is

L(µ, β|Dn) =

(
n∏

i=1

S(ti|µ)
Ni−zi(Nif(ti|µ))

zi

)
×

exp

{
n∑

i=1

[Nilog(λi)− log(Ni!)]− nλi

}
. (2.13)
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Summing out the unobserved latent vector N, the complete-data likelihood given in
(2.13) reduces to

L(µ, β|Dn) =

(
n∏

i=1

(λif(ti|µ))
ziexp{−λi(1− S(ti|µ))}

)
. (2.14)

There are several choices for the distributions F andG. The time to toxicity distribution
F could be, for example, exponential, Weibull, log-normal and log-logistic while the dose-
toxicity link could be any link for binary regression.

2.2 Prior and posterior distributions

In this section, we specify the prior distribution we place over the parameters we need to
estimate: ρ01, ρ10, ρ00, η, and µ.

Equation (2.11) implies that 0 < ρ00 < min(ρ01, ρ10) because β1 and β2 are posi-
tive. We assume that ρ01, ρ10, η, µ are independent a priori with: ρ01 ∼ beta(a1, b1),
ρ10 ∼ beta(a2, b2), conditional on (ρ01, ρ10), ρ00/min(ρ01, ρ10) ∼ beta(a3, b3), and η ∼
gamma(a4, b4). If F is defined as Weibull(γ, κ) distribution, then µ = (γ, κ) such that
γ ∼ gamma(a5, b5) and κ ∼ gamma(a6, b6).

Using Bayes rule, it is possible to show that the posterior distribution if the model
parameters is proportional to the product of the likelihood functions times the prior dis-
tribution of each of the model parameters.

π(ρ01, ρ10, ρ00, η, µ|Dn) ∝ π(ρ01, ρ10, ρ00, η, µ)×

n∏

i=1

(λif(ti|µ))
zi exp{−λi(1− S(ti|µ))}

(2.15)
where λi is defined in (2.8) and (2.7).

We employed JAGS [35] to estimate the posterior distribution of these parameters and
to estimate the design operating characteristics of the phase I clinical trial described in the
following section.

2.3 Trial design

In this section we describe a dose escalation/de-escalation algorithm similar to the one
followed by [31, 36] yet different given the time to event nature of our design. It follows the
EWOC scheme, where at each evaluation, the posterior probability of overdosing a future
patient is bounded by a feasibility bound α [7, 31]. For a given cohort of two patients, one
receives a new dose of agent A for a given dose of agent B that was previously assigned.
The other patient receives a new dose of agent B for a given dose of agent A that was
previously assigned. However, instead of treating two patients at a time, we will treat
patients in a continuous way and the posterior probability of overdosing will calculated
after every enrolled patient. Specifically, the design proceeds as follows:
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1. In the first cohort of patients, both receive the minimum dose combination available

(x1, y1) = (x2, y2) = (0, 0).

Let be Dn = {(xi, yi, zi), i = 1, · · · , n}}.

2. In the second cohort of patient, patient 3 receives dose (x3, y3) and patient 4 receives
dose (x4, y4), where y3 = y1, x4 = x2, x3 is the α-th percentile of π(ΓA|B=y1 |D2),
and y4 is the α-th percentile of π(ΓB|A=x2

|D3). Note that, the recommended dose
combination for patient 3 is calculated using the dataset D2, the recommended dose
combination but for patient 4 is calculated using the dataset D3.

3. In the i-th cohort of two patients,

(a) If i is odd, then patient (2i − 1) receives dose (x2i−3, y2i−1) and patient 2i
receives dose (x2i , y2i−2), where

y2i−1 = Π−1
ΓB|A=x2i−3

(α|D2i−2)
and x2i = Π−1

ΓA|B=y2i−2
(α|D2i−1)

.

(b) If i is even, then patient (2i − 1) receives dose (x2i−1, y2i−3) and patient 2i
receives dose (x2i−2, y2i), where

x2i−1 = Π−1
ΓA|B=y2i−3

(α|D2i−2) and y2i = Π−1
ΓB|A=x2i−2

(α|D2i−1).

4. Repeat step 3 until n patients are enrolled subject to the following stopping rule:
if the α-th of π(ΓA|B=y|D) or π(ΓB|A=x|D) is less than 0 or greater than 1, the
recommended dose for the next patient is 0 or 1 respectively. Also, any dose escalation
is restricted to be no more than a pre-specified fraction of the dose range of the
corresponding agent (e.g., 0.1).

2.3.1 Stopping rule

We stop the enrollment to the trial if P (P (DLT |(x, y) = (0, 0)) > θ + ξ1|data) > ξ2, i.e.,
if the posterior probability that the probability of DLT at the minimum dose combination
available in the trial exceeds the target probability of DLT plus ξ1 is higher than ξ2. ξ1
and ξ2 are design parameters chosen to achieve good operating characteristics.

At the end of the trial, we estimate the MTD using (2.12) as

Ĉ =

{
(x∗, y∗) : y∗ =

(G−1(θ)− F−1(ρ̂00))− (G−1(ρ̂10)−G−1(ρ̂00))x
∗

(G−1(ρ̂01)−G−1(ρ̂00)) + η̂x∗

}
, (2.16)

where ρ̂00, hatρ01, ρ̂10 and η̂ are the posterior medians given the data Dn.
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3. Simulation studies

3.1 Set-up and scenarios

We studied four scenarios for the true continuous MTD curve. In all cases, the time
to toxicity distribution F is Weibull(1, 1.5), the dose-toxicity link is Logit, the target
probability of DLT is fixed at θ = 0.33, and the trial sample size is n = 40 patients.
Scenario (1), (ρ00, ρ10, ρ01, η) = (10−7, 3 × 10−6, 3 × 10−6, 10), shows two drugs that are
very safe within the range of available doses in the trial but the true MTD curve lies near
the upper-right corner of the xy plane. In scenario (2), (0.01, 0.2, 0.9, 20), the MTD of agent
A when agent B is at its minimum dose level is within the range of doses of drug A but the
MTD of agent B when drug A is at its minimum dose level is above the maximum dose
level of agent B. Scenario (3), (0.001, 0.6, 0.01, 10), is a case where drug A is safe but the
MTD of agent B when drug A is at its minimum dose level is just above 0.8 and scenario
(4) (0.01, 0.2, 0.9, 100) presents two drugs that are highly interactive with η = 100.

Priors for ρ01, ρ10, ρ00, η are the same chosen in Tighiouart et al. [31]. In addition,
priors for γ, κ are chosen as gamma(1, 1) and gamma(1, 1).

3.2 Operating Characteristics

We evaluate the performance of the two model Time to Event and Binary assessing the
safety of the trial designs as well as the efficiency of the estimate of the MTD curve based
on 1000 simulated trials.

3.2.1 Safety

We assess trial safety by reporting the average percent of DLTs across all 1000 trials and
the percent of trials that have a DLT rate exceeding θ + δ, for δ = 0.1. The threshold
θ + 0.1 is usually considered to be an indication of an excessive DLT rate.

3.2.2 Efficiency

We present an estimate of the MTD curve using the average posterior medians of the model
parameters. Under the reparameterization, the estimate is

Ĉ =

{
(x∗, y∗) : y∗ =

(G−1(θ)−G−1(ρ̂00))− (G−1(ρ̂10)−G−1(ρ̂00))x
∗

(G−1(ρ̂01)−G−1(ρ̂00)) + η̂x∗

}
, (3.1)

where F (.) is the logistic function and ρ̂00, ρ̂01, ρ̂10, η̂ are the average posterior medians of
the parameters ρ00, ρ01, ρ10, η from all m = 1000 trials. The next measure of efficiency is
the pointwise average relative minimum distance from the true MTD curve to the estimated
MTD curve. For i = 1, . . . ,m, let Ci be the estimated MTD curve and Ctrue be the true
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MTD curve. For every point (x, y) ∈ Ctrue, let

d
(i)
(x,y) = sign(y′ − y)×min{(x∗,y∗):(x∗,y∗)∈Ci}((x− x∗)2 + (y − y∗)2)1/2, (3.2)

where y′ is such that (x, y′) ∈ Ci. This is the minimum relative distance of the point (x, y)
on the true MTD curve to the estimated MTD curve Ci. If the point (x, y) is below Ci,

then d
(i)
(x,y) is positive. Otherwise, it is negative. Let

d(x,y) =
1

m

m∑

i=1

d
(i)
(x,y). (3.3)

This is the pointwise average relative minimum distance from the true MTD curve to the
estimated MTD curve and can be interpreted as the pointwise average bias in estimating
the MTD. Let ∆(x, y) be the Euclidian distance between the minimum dose combination
(0, 0) and the point (x, y) on the true MTD curve and 0 < p < 1. The last measure of
efficiency we consider is

P(x,y) =
1

m

m∑

i=1

I(|d
(i)
(x,y)| ≤ p∆(x, y)). (3.4)

This is the pointwise percent of trials for which the minimum distance of the point
(x, y) on the true MTD curve to the estimated MTD curve Ci is no more than (100× p)%
of the true MTD. This statistic is equivalent to drawing a circle with center (x, y) on the
true MTD curve and radius p∆(x, y) and calculating the percent of trials with MTD curve
estimate Ci falling inside the circle. This will give us the percent of trials with MTD
recommendation within (100× p)% of the true MTD for a given tolerance p.

3.3 Results

Table 1 presents the average percent of DLTs varies between 9.05% and 40.5% for Binary
model and 11.38% and 34.14% for Time to Event model. In addition, the percent of
trials with an excessive DLT rate is significantly less when the uncertainty of the partial
information is modeled than it is ignored.

Figure 1 shows the plots of the true and estimated MTD curves obtained using (3.1).
The two designs are similar in the four scenarios.

Figure 2 displays the pointwise average relative minimum distance from the true MTD
curve to the estimated MTD curved under the four scenarios (1)-(4) as defined in (3.3).
In the scenarios (2) - (4), the average bias is similar for the two model. The binary model
presents slight smaller bias only scenario (1).

Figure 3 contains the pointwise percent of MTD recommendation for tolerance p = 0.2
as defined in (3.4). In scenario (1), the binary model is better than time to toxicity model;
in scenario (2) and (3), time to event model present better results, and in scenario (4) both
models are similar to each other.
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Table 1: Average DLT rate and % trials: DLT rate ¿ + 0.10 under scenarios (1)-(4)

Scenario Design
DLT Rate

(DLT Rate ¿ 0.43)

1 Time to Event 11.38 (0)
Binary 9.05 (0)

2 Time to Event 29.85 (0.8)
Binary 37.54 (15.4)

3 Time to Event 24.01 (0)
Binary 32.01 (3.4)

4 Time to Event 34.14 (2.5)
Binary 40.5 (27.2)

Figure 1: True and estimated MTD curves under scenarios (1)-(4)
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Figure 2: Pointwise average relative minimum distance from the true MTD curve to the
estimated MTD curve under scenarios (1)-(4)
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Figure 3: Pointwise percent of MTD recommendation for p = 0.2 under scenarios (1)-(4)

4. Concluding Remarks

We described Bayesian adaptive designs for cancer phase I clinical trials using two drugs
with continuous dose levels taking in account lower grade toxicities. We compared these
results to Tighiouart et al. [31]. In each case, vague priors were used for quantifying
the toxicity profile of each agent a priori. We studied design operating characteristics of
the methodology under four practical scenarios. The binary and time to event designs
are similar in efficiency, but time to event is safer. Further investigation under different
scenarios is still needed.
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