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Abstract
Extreme value analysis is an area of statistical analysis that can be used
in many disciplines. These disciplines include engineering, science, actuarial
science and statistics. Extreme Value Theory (EVT) deals with the extreme
deviations from the median probability distribution and is used to study rare
but extreme events. When considering the use of EVT to model data where
extremes exist, one must consider whether extreme events are stationary or
non-stationary. There are two methods that can be used within EVT for
effective modeling of data; the Block Maxima (BM) method, which follows a
generalized extreme value (GEV) distribution, and the Peaks Over Thresh-
old Method which follows a generalized Pareto distribution (GPD). For this
study, EVT will be used to model spot prices for the West Texas Interme-
diate (WTI) crude oil data from January 1986 to December 2016. With the
spot prices for crude oil data, descriptive statistics will be used to model
and interpret the characteristics of the data set, while determining whether
the data contain extreme data. Next, hypotheses testing will take place to
explore the applicable concepts such as the assumption or normality and in-
dependence. Considering that there are many factors that cause fluctuation
in crude oil prices such as supply and demand, natural disasters and various
world crises, hypothesis testing will also be used to determine whether the
data is stationary or nonstationary. With the conclusion that the data are
nonstationary, last, the BM method for non-stationary extreme events will
be used to analyze return levels. The return levels provide insight about the
cost of future crude oil prices.
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1 Introduction

Crude oil is an important commodity in today’s world. Crude oil is used for
many necessities and luxuries such as transportation, plastic, clothing, food,
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and insulation. Depending on the price of crude oil per barrel, the prices for
our necessities and luxuries fluctuate. When the cost of crude oil per barrel
is high, prices for necessities and luxuries increase. When the cost of crude
oil per barrel is low, then the price for which we pay for our necessities and
luxuries decreases. Understanding how crude oil prices affect the way we
spend money. Data collected crude oil price over time can be analyzed to
predict what the prices of crude oil will look like in future years. This gives
us insight to how the fluctuation in prices and the fluctuation in the amount
of money spent in the future as crude oil prices continue to fluctuate. EVT
is developed to model and assess the risks caused by the extreme events [7].
For this application, the extreme events analyzed are the fluctuations in crude
oil prices. EVT deals with the extreme deviations from the median of proba-
bility distributions and seeks to assess the probability of events that are more
extreme than a certain large value [5]. Using the data of the WTI spot prices
for crude oil from the U.S Energy Information Administration website from
the years of 1986 to 2016, the extreme data values (extremely high prices
for crude oil per barrel) can be found and the probability of the prices that
exceed a certain large value can be analyzed. The purpose for this study is
many fold: First, descriptive statistics are used to analyze the characteris-
tics of the data, Second, hypothesis testing is used to ensure that important
assumptions are met, which is very crucial to how effective the data can be
modeled for further analysis. Third, after choosing which method in EVT is
most effective, parameters are estimated using the maximum likelihood esti-
mation (MLE) approach. Return levels are analyzed to assess the probability
of future crude oil prices and then a brief discussion about the construction
of confidence intervals for the return levels has been presented.

2 Extreme Value Theory

Usually, statistics are used to understand and describe where the bulk of the
data lies in a distribution. EVT deals with the data that falls in the tail of the
distribution, which may contain outliers. Let X1, X2, ..., Xn be a sequence
of independent random variables, with a common distribution function G.
Define Mn = max{X1, X2, ..., Xn}. These Xi’s represent values of a process
that is measured on a regular time scale such as hourly measurements of sea
level or daily mean temperature. Mn represents the maximum of the process
over n time units of the observation [4]. Mn can be found for all values of n
by the following:

Pr{Mn ≤ z} = Pr{X1 ≤ z, · · · , Xn ≤ z}
= Pr{X1 ≤ z} · · ·Pr{Xn ≤ z}
= {G(z)}n

The distribution function G is unknown. To go into further details about
how G can be found, there are two main limit theorems that constitute the
statistical basis for applications in EVT. One of the main limit theorem leads
to the GEV, and the other theorem by Gnedenko-Pickands-Balkema-Haan
leads to the Generalized Pareto Distribution (GPD) [12].
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2.1 Block Maxima Method
Since the distribution function G is unknown, by the extremal types theorem
presented by Fisher and Tippett in 1928, if there exist sequences of constants
{an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} → G(z)

as n → ∞, where G is a non-degenerate function, then G could possibly
belong to a family of models known as Gumbel (Type I), Frechet (Type II)
and Wiebull (Type III). The family of distributions are as follows:

Gumbel:

G(z) = exp
{
− exp

[
−
(z − b

a

)]}
Frechét:

G(z) =

{
0 z ≤ b

exp
{
−
(
z−b
a

)−α}
, z > b

Wiebull:

G(z) =

{
exp
{
−
[
−
(
z−b
a

)α]}
, z < b

1 if z ≥ b

Where in Type I, a > 0 and a > b and in Types II and III, α > 0.

The Gumbel, Frechét and Weibull distributions can be combined into a family
of models having the distribution of the following form [4]:

G(z) = exp
{
−
[
1 + ξ

(z − µ
σ

)− 1
ξ
]}

(1)

which is defined on the set {z : 1+ξz−µ)|σ > 0}, where the location param-
eter (µ), scale parameter (σ) and shape parameter (ξ) satisfy respectively,
−∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞. Equation 1 is known as the GEV
family of distributions, where Gumbel, Frechét and Weibull are sub families,
that are defined by the following respectively: ξ −→ 0, ξ > 0 and ξ < 0.
This method in which the distribution function G can be found is known as
the BM method.

2.2 Peaks Over Threshold (POT) Method

Let Y1, Y2, ..., Yn be a sequence of independent and identically distributed
(i.i.d) random variables with common function F (y). Since EVT deals with
the data within the tail of the distribution, to model the upper tail of F (y),
consider exceedances over a threshold u and let X1, X2, ..., Xk denote the
excess (or peaks). Peaks Over Threshold (POT) is used when taking these
peak values occurrences during any period of time from a continuous record
[6]. POT depends on the threshold u which is defined by Xi:
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Xi = Yi − u|Yi > 0 (2)

where the exceedances over u for i = 1, 2, ...., k are asymptotically distributed
and follow a generalized Pareto distribution (GPD) [11]. The two limit the-
orems associated with GEV and GPD show that information on the dis-
tribution of extremes can be gathered in two ways: one, by measuring the
maximum of a sample whose size n goes to infinity, or two, by recording the
excess function of that sample when increasing the threshold u to its upper
limit [12]. For this study, the BM method is used. The BM method is used
for the spot prices for crude oil per barrel data because the data can be
be divided into non-overlapping periods of equal size. Before using the BM
method, descriptive statistics are used to model the data with a purpose of
finding the characteristics of the spot prices for crude oil per barrel data.

3 Crude Oil Data: Preliminary Analysis

West Texas Intermediate (WTI) spot prices for crude oil are collected from
the U.S Energy Information Administration website from the years of 1986
to 2016. Fig. 1 yields the time plot of the data which reveal some high picks
as well as a possible trend. Histogram of the price Fig. 2 indicates that the
data tend to follow a long tailed distribution.
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Figure 1: WTI Crude Oil Price, 1986-2016
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Crude Oil Prices (Dollars per Barrel)
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Figure 2: Histogram of WTI Crude Oil Price, 1986-2016

Table 1 lists the summary statistics of the data. Note that there is a big
difference between third quartile (Q3) and Maximum value which indicates
presence of outliers in the data. From the boxplot Fig. 3 it is clear that there
exist some outliers in the data.

Table 1: Summary Statistics of Crude oil price

Min. 1st Qu. (Q1) Median Mean 3rd Qu. (Q3) Max.
10.25 19.38 28.01 42.87 63.47 145.31
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Figure 3: Boxplot of Crude Oil Prices

Again if an observation is farther than 1.5fs, where fs = IQR = Q3 − Q1,
from the closest fourth, it is classified as a mild outlier and if 3fs from
the nearest fourth, then it is called an extreme outlier. For crude oil data
fs = Q3 − Q1 = 44.09 and therefore, 1.5fs = 66.14 and 3fs = 132.27. We
observe 1868 out of 7820 observations in the data are mild outliers and 27 of
them are extreme outliers.

We can also construct some hypothesis test to check whether the data deviate
from normal density. Table 2 summarizes the results of the Kolmogorov-
Smirnov test, where the null hypothesis can be written as

Ho: The data follow a normal distribution.

Table 2: Results of Kolmogorov-Smirnov Test

Test Test Statistic (D) p-value
Kolmogorov-Smirnov 1 < 0.01

Here the p−value is very small which implies the deviation of the data from
classical normal distribution.

4 Modeling Crude Oil Price

In sections 3 we conduct a primary analysis of the data set and we have found
that the data set deviates from normal distribution and it also has a long tail.
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We use the generalized extreme value (GEV), the block maxima approach to
model our long tail crude oil price data, i.e., the annual maximum crude oil
price (Xt) are considered to follow Xt ∼ GEV (µ, σ, ξ). The fitted models
are summarized in Table 3.

Table 3: Estimated parameters of the (stationary) GEV model, standard errors are
in parenthesis.

µ̂ σ̂ ξ̂
29.40 (3.20) 14.27 (3.74) 0.849 (0.28)

However, Fig. 4 shows that both the probability plot and QQ-plot have clear
deviation from 45−degree line. We can also observe that the return level
plot shows high variability and the density plot does not yield a good fit.
Therefore it is clear that the stationary GEV Model does not capture the
variability of the data very well.
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Figure 4: Diagnostic plots, stationary GEV model

The time plot Fig. 1 in section 3 indicates a non-stationarity trend in the
data. A non-stationary processes have characteristics that change system-
atically thorough time (Non-homogenous) due to many reasons, e.g., time
trend, seasonal trend, covariate relationship, etc. Variations through time
are commonly modeled as a polynomial trend in the location parameter.
Here we considere the annual maximum crude oil price in year t follow the
following GEV distribution:
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Xt ∼ GEV (µ(t), σ, ξ), (3)

µ(t) = β0 + β1t,

where, scale parameter, σ, and shape parameter, ξ are constant while the
location parameter µ(t) remains a function of time. The corresponding dis-
tribution function for non-stationary generalized extreme value (GEV) [1, 2]
can be written as

F (x;µ(t), σ, ξ) = exp{−
[
1 + ξ

(y − µ(t)

σ

)−1

ξ

]
}. (4)

Table 4: Estimates parameters of the non-stationary GEV model, standard errors
are in parenthesis.

β̂0 β̂1 σ̂ ξ̂
11.58 (4.80) 1.73 (0.289) 14.01 (2.673) 0.382 (0.196)

Table 4 gives the estimates for β̂o and β̂1 as 11.58 and 1.73 respectively,
which yields the estimated linear trend as Eq. 5. The estimates for the scale
and shape parameters are 14.01 and 0.382, respectively. Fig. 5 combines the
linear trend of the non-stationary GEV model with observed data.

µ̂(t) = β̂o + β̂1t (5)
= 11.58 + 1.731t
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Figure 5: Linear trend of the non-stationary GEV model

2843



Predicting Crude Oil Price Using the Non-Stationary EVT Approach

Diagnostic plots Fig. 6 of Non-stationary GEV models shows that both the
probability plot and QQ-plot are approximately 45−degree line. This implies
that the Non-stationary GEV Model with linear trend in location parameter
is a reasonable fit for modeling this data set.
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Figure 6: Diagnostic plots of non-stationary GEV model

We can also check whether non-stationary GEV Model significant over the
stationary case. Here we need to calculate deviation statistic D as

D = 2{`1(M1)− `0(M0)} (6)
= 15.742,

where, `1{M1)} and `0{M0)} are the maximised log-likelihood under the
non-stationary statinary models, respectively. The asymptotic distribution
of D is given by the χ2

1 distribution. Here D is much greater than χ2
1(0.05) =

3.841. Therefore, allowing for a linear dependence in time improve on our
model which allows for a linear trend through time.

The assumption of independence can be investigated by the Von-Neumann
test [14] where the null hypothesis is that the data series consists of indepen-
dent elements. Table 5 gives the results of the Von Neumann test where the
p-value is less than α=0.05, which leads to the conclusion that the data is not
independent. However block maxima method is more ‘relaxed’ in regards to
independence where the Peaks Over Threshold method strictly relies on in-
dependence of the data [10]. Therefore the block maxima method is utilized
here.
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Table 5: Von Neumann test of independence.

Test Test Statistic (C) p-value
Von Neumann -88.31988 < 0.01

5 Return Level Estimation

The extreme quantile of crude oil price per barrel which is expected to exceed
on average once every r years can be obtained by

zr = (β0 + β1t) +
σ

ξ

[(
− log(1− r−1)

)−ξ − 1
]
. (7)

Here we have time-varying return levels zr(t) [13]. For example, an estimate
of the price level we might expect to see for crude oil once every 100 years is
given by

z100(t) = (11.58 + 1.73t)− 14.01

0.38

[(
− log(1− 100−1)

)−0.382 − 1
]
.

Note that z100(t) is a function of t and therefore, the 100-year return levels
estimate vary for t = 32, 34, · · · , i.e. for the years 2017, 2018,· · · , respectively.
We calculate the crude oil price return level for return period r = 10, 20, 50,
and 100 years. Fig. 7 shows the return levels as a function of time. We can
consider the return levels as forecasts of crude oil price as we move through
time.
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Figure 7: Crude oil price return levels for different return periods

6 Summary and Concluding Remarks

For this study, precautionary measures were considered in effectively mod-
eling crude oil data to yield accurate return levels. These results predict
the future cost of West Texas Intermediate (WTI) crude oil per barrel. The
measures taken to ensure accuracy include: descriptive statistics to analyze
the data and understand the data’s unique characteristics and hypothesis
testing to assure that certain assumptions are met and to check whether the
conditions for GEV were stationary or non-stationary. After careful consider-
ations to make sure that the data could be analyzed and modeled effectively,
the model for GEV of non-stationary extremes was used to model the data,
estimate the location, shape and scale parameters and find the return levels
for different return periods.
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