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Abstract 
 
The Annual Survey of Local Government Finances (ALFIN) is conducted by the U.S. 
Census Bureau and provides statistics about the financial activities of state and local 
governments across the nation. The Economic Statistical Methods Division (ESMD) 
currently uses a combination of Empirical Best Linear Unbiased Predictor (EBLUP), and 
Horvitz-Thompson (HT) methods to estimate these statistics. In this paper we explore a 
linear mixed model Hierarchical Bayes estimator. All three estimators are then evaluated 
through a Monte Carlo simulation experiment using data from the 2007 and 2012 Census 
of Governments. The performance of the three estimators is compared through their mean 
squared errors and relative bias. 
 
Key words: Annual Survey of State and Local Government Finances; EBLUP; Hierarchical 
Bayes; Small Area Estimation 
 
  

1. Introduction 
 
Every five years, the Economic Directorate of the U.S. Census Bureau conducts a census 
of over 90,000 local government units to collect data on their financial activities. In the 
years between two consecutive censuses (years ending with 2 and 7, e.g. 2007, 2012, and 
2017) the Economic Directorate also conducts the Annual Survey of Local Government 
Finances (ALFIN), a nationwide sample survey covering all local governments in the 
United States. Estimates published from the ALFIN are aggregated from the five local 
government types: counties, municipalities, townships, special districts, and school 
districts, in conjunction with data collected from the Annual Survey of School Finances. 
The Economic Directorate publishes local level aggregates from the ALFIN along with 
corresponding state level aggregates from the Annual Survey of State Government 
Finances. Statistics from these two surveys are used to estimate the government component 
of the Gross Domestic Product, allocate some federal grant funds, and provide information 
to assist in public policy research. More information about the ALFIN can be found at: 
http://www.census.gov/govs/local.  
___________________________  
Disclaimer: Any views expressed are those of the authors and not necessarily those of the 
U.S. Census Bureau.  
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We used two estimation methods for the 2014 ALFIN survey cycle: for each estimation 
cell a choice between a Horvitz-Thompson (HT) and Empirical Best Linear Unbiased 
Predictor (EBLUP) estimator was made based on each estimator’s performance in that cell 
in simulation research. In prior years we had used calibration, but calibration was found to 
perform poorly upon further evaluation and was subsequently abandoned. While EBLUP 
has offered a huge improvement over HT and calibration estimators, there is room for 
further investigation. Additionally, there are compelling reasons to wish to conduct 
estimation under a fully Bayesian framework. For this research, we conducted an 
evaluation to compare the performance of three estimators: HT, EBLUP, and Hierarchical 
Bayes (HB). We used data from the 2007 and 2012 Censuses of Governments: Annual 
Survey of Local Government Finances (CoG-F) to carry out the evaluation. 
 

2. Data 
 
Data collected for the ALFIN are provided by state and local governments across the 
country. Each financial activity reported by local governments is assigned to an item code. 
These item codes can be grouped into one of four main categories: revenues, expenditures, 
assets and debts. Approximately four hundred item codes are included in these four 
categories. In the production environment, we currently select between EBLUP and HT 
estimators for only the expenditures and revenues item codes. For all other item codes, the 
HT estimator is used. The ALFIN consists of a sample of local governments along with 
school district data provided by the Annual Survey of State Government Finances. The 
annual statistics from the ALFIN data are published in two products: the downloadable file 
and viewable file. The downloadable file provides estimates of the total for each item code, 
both by state and for the nation at three different levels: local governments, state 
governments and combined state and local governments. In contrast, the viewable file 
provides aggregates of item code totals for the four main categories, as well as totals for 
some of the more notable detailed items. Statistics from the viewable file are given both by 
state and for the nation and published online in a nested table format. The coefficient of 
variation (CV) is provided for each estimate.  
 
The scale of the ALFIN statistics presents formidable challenges when making estimates. 
During non-census years, over 30,000 state-item code totals must be estimated for the 
annual downloadable file. The cell sizes, based on the number of local governments 
contributing to the state item code estimates, are often small (n<10), and design-based 
estimators such as Horvitz-Thompson can become unstable in these conditions. This 
research continues earlier efforts by Schilling et al (2016), and Love et al (2013, 2014) to 
find alternate estimators that improve estimation stability and precision for the ALFIN.  
 
Small area estimation (SAE), can be used to calculate estimates and measures of variability 
for areas, or domains, with sample sizes that are too small for direct estimation with 
traditional estimators such as HT. Using small area methods, the effective sample sizes can 
be increased by “borrowing strength” from similar domains with models and auxiliary data. 
Though the models can take a variety of forms, the overall goal is an appreciable increase 
in estimation accuracy over that of the direct estimator. Small area methods offer promise 
as an alternative approach to handle the challenges posed by ALFIN estimation. Auxiliary 
data from the CoG-F can be leveraged through models and small area methods to improve 
ALFIN estimates. The use of small area estimation for ALFIN is appropriate because cell 
sample sizes by domain (state by item code pairs) cannot be controlled and are often too 
small for reliable direct estimation. The small cell sample sizes are the result of a sample 
design that is not a direct-element design. Instead, the sampled units are local governments, 
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which have different combinations of item codes. The item codes associated with a local 
government can vary over time, and obscure item codes can be associated with small local 
governments, which can have low selection probabilities.  
 

3. Sample Design 
 
The ALFIN uses a two-phase sample design. In the first phase, a group of local 
governments is designated as certainties (weight=1) and included in the sample, while other 
local governments are selected using a stratified probability proportional-to-size (πPS) 
design (Särndal et al, 1992). In the second phase, a modified version of cutoff sampling 
(Dalenius & Hodges, 1959) is used to reduce the number of non-contributory 
municipalities, townships and special districts in the sample. This sample design was 
implemented in 2014 and allows the Economic Directorate to reduce sample size and 
respondent burden for small cities, townships and special district governments, while 
maintaining estimate precision and data quality. Data from the 2012 CoG-F provides the 
auxiliary information used for the size variable and to identify certainty units on the frame.  
 
The sample design was implemented using a multi-step process. First, large governments 
were designated as initial certainty units. Next, remaining units were stratified by state and 
government type. Four of the five local government types (counties, municipalities, 
townships and special districts) were sampled by this design. Next, in the first stage of the 
design, a stratified πPS sample was selected, where the size variable was defined as the 
maximum of total expenditures and a second variable that could be total taxes, total 
revenues, or long-term debt, depending on the government type. Next, a cut-off point was 
calculated for the second stage of the design using the cumulative square root of the 
frequency method (Dalenius & Hodges, 1959), to distinguish between small and large 
government units in the municipal and special district strata. Finally, the strata with small-
size government units were subsampled. For municipal strata, subsampling was carried out 
using a simple random sampling design; for special district strata, subsampling was 
accomplished through systematic sampling.  
 

4. Estimation Methods 
 
4.1 Parameters of Interest  
 
In all cases we wish to obtain an estimator for the total of item code c in state k: 
 

𝑡𝑡𝑘𝑘𝑘𝑘 = � 𝑦𝑦𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖∈𝑈𝑈,𝑖𝑖∈𝑘𝑘

 

 
Note that one government unit (i) can have multiple item codes (c). 
 
4.2 Direct Estimator (Horvitz Thompson) 
 
The traditional design-based Horvitz-Thompson (HT) estimator is used as a baseline 
estimate: 
 

�̂�𝑡𝑘𝑘𝑘𝑘𝐻𝐻𝐻𝐻 =  � 𝑤𝑤𝑖𝑖𝑘𝑘𝑦𝑦𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖∈𝑆𝑆,𝑖𝑖∈𝑘𝑘
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Where the design weight 𝑤𝑤𝑖𝑖𝑘𝑘 = 1
𝜋𝜋𝑖𝑖𝑘𝑘

 and 𝜋𝜋𝑖𝑖𝑘𝑘 is the inclusion probability for unit i in state 
k, and sample units are summed for state k. 
 
The HT estimator is unbiased with respect to the sample design, but can also exhibit high 
variance in the presence of small sample sizes such as are often present in estimation for 
ALFIN. 
 
4.3 EBLUP Estimator 
 
Consider a Linear Mixed Model (LMM) for sample data y on auxiliary variable (X) that 
includes both fixed (β) and random (γ) components, as shown below: 
 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝜺𝜺 
 
This gives us the following nested unit-level model (Rao, 2003): 
 

𝑦𝑦𝑖𝑖𝑘𝑘𝑘𝑘 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑘𝑘𝑘𝑘 + 𝑣𝑣𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑘𝑘𝑘𝑘 
 
Where the 𝑦𝑦𝑖𝑖𝑘𝑘𝑘𝑘  denotes the cth item code value for the ith government unit in state k for the 
current year; 𝑋𝑋𝑘𝑘𝑖𝑖𝑘𝑘 a corresponding item code value from the most recent Census of 
Governments; 𝛽𝛽0 and 𝛽𝛽1 are the fixed effects (the unknown intercept and slope 
respectively). The 𝑣𝑣𝑖𝑖𝑘𝑘 are the random complement to the fixed X, or the small area specific 
random effects for our data; the 𝜀𝜀𝑘𝑘𝑖𝑖𝑘𝑘 are errors for the individual observations 𝑖𝑖 = 1, … ,𝑁𝑁𝑖𝑖𝑘𝑘. 
The distribution of the random effects corresponds to the deviations of item code log values 
from the value of 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑘𝑘𝑘𝑘. In addition, we assume that 𝑣𝑣𝑘𝑘𝑘𝑘~𝑁𝑁(0, 𝜏𝜏2), and 
𝜀𝜀𝑖𝑖𝑘𝑘𝑘𝑘~𝑁𝑁(0,𝜎𝜎2). To account for the skewed nature of the data and reduce heteroscedasticity 
we transform the data to a log scale: 
 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖𝑘𝑘𝑘𝑘) = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖𝑘𝑘𝑘𝑘) + 𝑣𝑣𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑘𝑘𝑘𝑘 
 
Once the model has been fit and diagnostics are used to assess goodness of fit, the 
following model-based predictor is used for out-of-sample units: 
 

𝑦𝑦�𝑖𝑖𝑘𝑘𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑒𝑒��̂�𝛽0 + �̂�𝛽1𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖𝑘𝑘𝑘𝑘) + 𝑣𝑣�𝑘𝑘𝑘𝑘� 
 
where the estimated fixed and random parameters are estimated via restricted maximum 
likelihood using the SAS® PROC MIXED procedure. 
 
An estimate of 𝑡𝑡𝑘𝑘𝑘𝑘 is given by: 

�̂�𝑡𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸 = � 𝑦𝑦𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖∈𝑆𝑆,𝑖𝑖∈𝑘𝑘

+ � 𝑦𝑦�𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖∈𝑆𝑆𝑐𝑐,𝑖𝑖∈𝑘𝑘

 

 
Note that 𝑦𝑦�𝑘𝑘𝑖𝑖𝑘𝑘 is the model dependent predictor of the non-sampled part (Sc) of the 
population (U). 
 
Because the EBLUP model borrows strength across domains (in this case across item 
codes) and from auxiliary information (namely the last census of governments) while 
allowing for domain specific variation it can significantly reduce estimator mean squared 
error compared to the HT, particularly in estimation cells with small sample sizes. 
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However, the model is dependent on normality assumptions and hence potentially 
sensitive to outliers. 
 
4.4 Hierarchical Bayes 
 
Consider now a similar nested unit-level model, but under a hierarchical Bayesian model 
specification which is described as follows. As before we transform to the log scale: 
 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖𝑘𝑘𝑘𝑘)|𝑿𝑿,𝜎𝜎𝑘𝑘2, 𝑣𝑣𝑘𝑘𝑘𝑘, 𝜏𝜏𝑘𝑘2,𝑋𝑋𝑖𝑖𝑘𝑘𝑘𝑘  ~ 𝑡𝑡4�𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖𝑘𝑘𝑘𝑘) + 𝑣𝑣𝑘𝑘𝑘𝑘 ,𝜎𝜎𝑘𝑘2� 

�𝛽𝛽0𝛽𝛽1
�  ~ 𝑁𝑁 ��01� , �100 0

0 100�� 

𝑣𝑣𝑘𝑘𝑘𝑘  | 𝜏𝜏𝑘𝑘2 𝑖𝑖𝑖𝑖𝑖𝑖~  𝑁𝑁�0, 𝜏𝜏𝑘𝑘2� 

𝜏𝜏𝑘𝑘2 ~ 𝑖𝑖𝑖𝑖𝑣𝑣 − 𝛤𝛤(0.01 ,0.01) 
𝜎𝜎𝑘𝑘2 ~ 𝑖𝑖𝑖𝑖𝑣𝑣 − 𝛤𝛤(0.01, 0.01) 

 
The choice of 𝜈𝜈 = 4 degrees of freedom in the likelihood is due to Lange, Little, and 
Taylor (1989). 
 
Posterior simulation is run using SAS® PROC MCMC for a sufficient number of 
iterations such that we have D independent samples of the parameters from their joint 
posterior distribution 𝑒𝑒�𝑿𝑿, 𝜏𝜏𝑘𝑘2,𝜎𝜎𝑘𝑘2,𝑣𝑣𝑘𝑘|𝒚𝒚� once burn-in and thinning are accounted for. For 
𝑖𝑖 = 1, … ,𝐷𝐷 using the marginal posterior samples of �𝑿𝑿(𝑑𝑑),𝒗𝒗(𝒅𝒅)|𝒚𝒚� we then have the 
following model-based predictor for out-of-sample units: 
 

𝑦𝑦�𝑖𝑖𝑘𝑘𝑘𝑘
(𝑑𝑑) = 𝑒𝑒𝑒𝑒𝑒𝑒 ��̂�𝛽0

(𝑑𝑑) + �̂�𝛽1
(𝑑𝑑)𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖𝑘𝑘𝑘𝑘) + 𝑣𝑣�𝑘𝑘𝑘𝑘

(𝑑𝑑)� 
 
And in turn for 𝑖𝑖 = 1, … ,𝐷𝐷 we have the estimator (as before 𝑦𝑦�𝑖𝑖𝑘𝑘𝑘𝑘

(𝑑𝑑) is the model dependent 
predictor of the non-sampled part (Sc) of the population (U)): 
 

𝜑𝜑𝑘𝑘𝑘𝑘
(𝑑𝑑) = � 𝑦𝑦𝑖𝑖𝑘𝑘𝑘𝑘

𝑖𝑖∈𝑆𝑆,𝑖𝑖∈𝑘𝑘

+ � 𝑦𝑦�𝑖𝑖𝑘𝑘𝑘𝑘
(𝑑𝑑)

𝑖𝑖∈𝑆𝑆𝑐𝑐,𝑖𝑖∈𝑘𝑘

 

This gives us the HB estimator for 𝑡𝑡𝑘𝑘𝑘𝑘: 

�̂�𝑡𝑘𝑘𝑘𝑘𝐻𝐻𝐸𝐸 =
1
𝐷𝐷
�𝜑𝜑𝑘𝑘𝑘𝑘

(𝑑𝑑)
𝐷𝐷

𝑑𝑑=1

= 𝜑𝜑𝑘𝑘𝑘𝑘
(.) 

And the HB variance estimator: 

𝑉𝑉�(𝑡𝑡𝑘𝑘𝑘𝑘|𝒚𝒚) =
1

𝐷𝐷 − 1
��𝜑𝜑𝑘𝑘𝑘𝑘

(𝑑𝑑) − 𝜑𝜑𝑘𝑘𝑘𝑘
(.)�

2
𝐷𝐷

𝑑𝑑=1

 

 
Like the EBLUP model, the hierarchical Bayes model used here is able to borrow strength 
both across time and across domains, leading to improved performance over design-based 
estimators.  
 
Bayesian modeling has multiple advantages over classical models that provide the 
motivation for its use. The hierarchical Bayesian approach to inference is straightforward, 
can be used to fit complicated models, and has important applications to small area 
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estimation. Hierarchical modeling explicitly accounts for area-to-area variation and takes 
advantage of the multilevel structure of the sample data. Additionally the ease with which 
robust modelling assumptions can be incorporated into a Bayesian framework make the 
hierarchical Bayesian approach more flexible than the classical EBLUP (which as 
mentioned previously is dependent on normality assumptions). 
 
For this evaluation a total of 15000 iterations were run, discarding the first 2500 as burn-
in. The remaining iterations of the chain were then thinned by taking every 5th observation 
to give D=2500. 
 

5. Evaluation Design 
 

This evaluation uses data from the Finance components of the 2007 and 2012 Census of 
Governments. The universe is the intersection of 2007 data with 2012 data, including only 
the units surveyed during both census years. For simplicity, the universe is further restricted 
to include non-zero values on the variables of interest, or the four main groups of item 
codes. The universe for this evaluation is comprised of approximately 85,850 units.  
 
The 2007 CoG-F provides the auxiliary data, and serves as the sampling frame. The 
production sampling design is applied to select 1000 replicated samples from the 2012 
CoG-F data. For each sample replicate we estimate the 2012 state totals for both 
expenditure and revenue item codes using the three estimators: HT, EBLUP, and HB. 
During the analysis, we computed the relative root mean squared error (RRMSE) and 
relative bias for each estimator from the 1000 samples. We performed this analysis on a 
subsample of 7 states (California, Idaho, New Mexico, New York, Ohio, South Carolina, 
and Wyoming). 
 
5.1 Relative Root Mean Square Error (MSE)  
 
We used the mean square error (MSE) as a primary measure for evaluating estimator 
quality. In this evaluation, we calculate MSE for all three estimators over all sample 
replicates. The MSE for a state-item code combination is calculated as 𝑀𝑀𝑀𝑀𝑀𝑀� (�̂�𝑡𝑘𝑘𝑘𝑘) =
1
𝑅𝑅
∑ ��̂�𝑡𝑘𝑘𝑘𝑘

(𝑟𝑟) − 𝑡𝑡𝑘𝑘𝑘𝑘�𝑅𝑅
𝑟𝑟=1 , where �̂�𝑡𝑘𝑘𝑘𝑘

(𝑟𝑟)is the estimated state total of an item code for one sample 
replicate (r), and as before 𝑡𝑡𝑘𝑘𝑘𝑘 is the true state total of an item code. In our paper we take 
R= 1,000. In order to compare estimators we normalize the MSE by its corresponding cell 
value, giving us the Relative Root Mean Square Error (RRMSE): 
 

𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀� =
�𝑀𝑀𝑀𝑀𝑀𝑀� (�̂�𝑡𝑘𝑘𝑘𝑘)

𝑡𝑡𝑘𝑘𝑘𝑘
 

5.2 Relative Bias 
 
The bias of an estimator is measured as the difference between its expected value and the 
true value of the parameter being estimated. In our evaluation, relative bias is calculated 
for a state-item code combination as: 

𝑅𝑅𝑅𝑅� (�̂�𝑡𝑘𝑘𝑘𝑘) =
1
𝑅𝑅
�

�̂�𝑡𝑘𝑘𝑘𝑘
(𝑟𝑟) − 𝑡𝑡𝑘𝑘𝑘𝑘
𝑡𝑡𝑘𝑘𝑘𝑘

𝑅𝑅

𝑟𝑟=1

 

As noted above R=1,000 in our evaluation. 
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6. Results and Evaluation 
 
A comparison of the estimated RRMSE of the three estimators is given in Table 1. The 
values indicate the number of times an estimator outperforms the others for 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀� . These 
results are compiled from 1000 replicates with each replicate yielding state-item code 
estimates over 7 states for a total of 1058 possible estimates per replicate, which reduces 
to 836 estimation cells per replicate once we exclude state-item code estimates from cells 
containing only certainty units. 
 

Table 1: Number of Times an Estimator Outperforms the Others for RRMSE 
(836 cells = state by item code estimates) 

 
HT EBLUP HB 
49 260 527 

 
NOTE: Ties are not listed in Table 1; these can be attributed to 222 state - item code estimates that are from 
cells having only certainty units, with 2 exceptions, where the Calibration estimator defaulted to HT.  
Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Finance 
 
Table 1 demonstrates the clear superiority of small-area models over the traditional design-
based HT estimator. HT is outperformed by either EBLUP or HB in approximately 94% 
of the estimation cells. In Table 2 we then compare only the two model-based estimators 
to each other. 
 

Table 2: Direct Comparison of EBLUP and Hierarchical Bayes for RRMSE 
(836 cells = state by item code estimates) 

 
EBLUP HB 

287 549 
NOTE: Ties are not listed in Table 2; these can be attributed to 222 state - item code estimates that are from 
cells having only certainty units, with 2 exceptions, where the Calibration estimator defaulted to HT.  
Data Source: U.S. Census Bureau, 2007 and 2012 CoG-F 
 

In a direct comparison HB outperforms EBLUP approximately 65% of the time with 
respect to RRMSE. 

Similarly a comparison of the estimated relative bias (𝑅𝑅𝑅𝑅� ) for the three estimators is 
given in Table 3. 
 
Table 3: Number of Times an Estimator Outperforms the Others for Relative Bias 

(836 cells = state by item code estimates) 
 

HT EBLUP HB 
694 60 82 

NOTE: Ties are not listed in Table 3; these can be attributed to 222 state - item code estimates that are from 
cells having only certainty units, with 2 exceptions, where the Calibration estimator defaulted to HT.  
Data Source: U.S. Census Bureau, 2007 and 2012 CoG-F. 
 
As shown in table 3 show HT outperforms the other two estimators with respect to bias 
over 80% of the time. This result is unsurprising because HT is unbiased with respect to 
the sample design. 
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In table 4 we directly compare the two model-based estimators to each other: 
 

Table 4: Direct Comparison of EBLUP and Hierarchical Bayes for Relative Bias 
(836 cells = state by item code estimates) 

 
EBLUP HB 

346 490 
NOTE: Ties are not listed in Table 4; these can be attributed to 222 state - item code estimates that are from 
cells having only certainty units, with 2 exceptions, where the Calibration estimator defaulted to HT.  
Data Source: U.S. Census Bureau, 2007 and 2012 CoG-F 
 
HB outperforms EBLUP with respect to bias in approximately 59% of estimation cells. 
This represents an improvement, but not an enormous one. 
 
Tables 5 and 6 provide an overall comparison of the mean 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀�  and average relative 
bias for the three estimators relative to cell size. Categories are formed for median cell sizes 
calculated over the 1000 sample replicates for the non-certainty (πPS) units only. The last 
two categories show that the median cell size can be zero, indicating some state-item code 
combinations are obscure and have only one or two contributing πPS units, but not for 
every sample replicate. Two separate categories are formed for the obscure state-item code 
estimates, reflecting that some of these estimates can also include contributing certainty 
units, while others are reliant on only the πPS units. 
 

Table 5: Overall Estimator Comparison for Mean RRMSE by Cell Size 
(836 cells = state by item code estimates) 

 
Median Cell 

Size (πPS 
units only)  

Number of 
Cells  

 

Mean RRMSE 
HT EBLUP HB 

All cell sizes 836 248% 34.6% 35.2% 
>30 135 6.60% 3.82% 2.78% 

21-30 69 11.5% 4.44% 4.82% 
11-20 108 11.1% 3.67% 2.80% 
6-10 111 22.8% 6.78% 5.84% 
1-5 275 42.3% 14.0% 17.5% 
0* 102 67.9% 13.7% 11.9% 
0** 36 5083% 603% 603% 

* Includes other contributing certainty units in the estimates.  
** Estimates calculated only from πPS units (no certainty units). 
NOTE: Table 5 excludes 222 state-item code estimates that are from cells having only certainty units.  
Data Source: U.S. Census Bureau, 2007 and 2012 CoG-F 
 
The results from Table 5 expand on the findings from Tables 1-2, in that the two model-
based estimators clearly outperform HT with regards to RRMSE over all size categories. 
As expected the HT estimator can still perform moderately well in cells with large sample 
sizes, while the superiority of the model-based approaches is clearest in cells with very 
small samples. Additionally while HB may offer some marginal improvements over 
EBLUP, its dominance is not nearly as clear as that of model-based approaches over the 
traditional HT. While HB may outperform EBLUP in more cells, EBLUP has a slightly 
lower average mean RRMSE overall, indicating that HB may have an extremely high 
mean-squared error in a few cells. 
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Table 6: Overall Estimator Comparison for Average Relative Bias by Cell Sizes 

(836 cells = state by item code estimates) 
 

Median Cell 
Size (πPS 
units only)  

Number of 
Cells  

 

Average Relative Bias 
HT EBLUP HB 

All cell sizes 836 210% 23.6% 26.3% 
>30 135 -0.04% -2.37% 0.28% 

21-30 69 -0.01% -3.14% 0.56% 
11-20 108 0.15% -1.85% -0.25% 
6-10 111 -0.05% -3.07% -2.03% 
1-5 275 1.39% 0.64% 4.55% 
0* 102 -0.45% 3.91% 3.74% 
0** 36 4870% 561% 570% 

* Includes other contributing certainty units in the estimates.  
** Estimates calculated only from πPS units (no certainty units). 
NOTE: Table 6 excludes 222 state-item code estimates that are from cells having only certainty units.  
Data Source: U.S. Census Bureau, 2007 and 2012 CoG-F 
 
Similarly, the results from Table 6 expand on the findings from Tables 3-4, with HT 
showing by far the best performance in terms of average relative bias, whereas the two 
model-based estimators are very similar to each other in terms of performance. The one 
exception is the second obscure state-item code category, where the estimates are 
calculated using only πPS units. Under these conditions, the average relative bias for HT 
reach extreme values, while the two models outperform HT due to the presence of non-
sampled units in each model. As with RRMSE, HB may outperform EBLUP in a larger 
number of estimation cells, but EBLUP shows lower bias on average, indicating that HB 
may suffer from very high bias in a few cells. 
 

7. Conclusions 
 

Our evaluation shows a clearly superior performance by model-based small area 
approaches (EBLUP and HB) with respect to 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀� , while HT outperforms the other two 
estimators with respect to average relative bias due to the HT estimator’s unbiasedness 
property. While in most cases the model-based approach is superior to HT, the Hierarchical 
Bayes approach offers only incremental improvements over the EBLUP mode. In 
particular, while the hierarchical Bayesian model offers lower 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀�  and bias in a larger 
number of cells than does EBLUP, the model often underperforms EBLUP in some of the 
smallest cell size categories, leading to an overall higher average 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀�  and bias. 
However, Bayesian models still offer certain inherent advantages over frequentist models, 
and the hierarchical Bayesian model introduced here can serve as an entry point for more 
complicated models that could potentially offer further improved performance relative to 
EBLUP. 
 
 
  

2834



 

 

8. References 
 
Dalenius, T. and Hodges, J.L. (1959). “Minimum Variance Stratification,” Journal of the 
American Statistical Association, 54, 88-101. 
 
Lange, K.L., Little, R.J.A., and Taylor, J.M.G. (1989). “Robust Statistical Modelling Using 
the T-Distribution,” Journal of the American Statistical Association, 84, 881-896. 
 
Love, E., Barth, J. and Tran, B. (2014). “Evaluating Calibration Estimators for the 
Annual Survey of Local Government Finances,” 2014 Joint Statistical Meetings.  
 
Love, E. and Tran, B. (2013). “Evaluation Study of Calibration Estimation for the Annual 
Survey of Local Government Finance,” 2013 Federal Committee on Statistical 
Methodology Research Conference. 

 
Rao, J.N.K. (2003). Small Area Estimation, New-York, John Wiley & Sons, Inc. 
 
Saerndal, C.E., Swensson, B., and Wretman, J. (1992). Model-Assisted Survey Sampling. 
New York, Springer-Verlag. 
 
Schilling, P., Betrouni, R., and Tran, B. (2016). “The Performance of the Empirical Best 
Linear Unbiased Predictor in Annual Survey of Local Government Finances,” 2016 Joint 
Statistical Meetings. 

2835




