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Abstract 
The use of volatility models to conduct volatility forecasting is gaining momentum in 
empirical literature. However, it is known that volatility persistence, as indicated by the 
estimated parameter  , in Stochastic Volatility (SV)  model is typically high. Since 
future values in SV models are based on estimation of the parameters, this may lead to 
poor volatility forecasts.  Furthermore, this high persistence, according to some research 
scientists, is due to the structure changes (e.g. shift of volatility levels) in the volatility 
processes, which SV model cannot capture. Hidden Markov Models (HMMs) allow for 
periods with different volatility levels characterized by the hidden states. This work deals 
with the problem by bringing in the SV model based on Hidden Markov Models 
(HMMs), called HMM-SV model. Via hidden states, HMMs allow for periods with 
different volatility levels characterized by the hidden states. Within each state, SV model 
is applied to model conditional volatility. Through Empirical analysis using the proposed 
HMM-SV models does not only address the structure changes, but also, provides better 
volatility forecasts and establishes an efficient forecasting structure for volatility 
modeling. 
 
Keywords:  Forecasting, Hidden Markov model, Stochastic volatility, stock exchange  

1.0 Introduction 
A great deal of attention has been paid in finance, as well as in empirical literature for 
practically measuring risk to modeling and forecasting the volatility of stock market 
indices via stochastic volatility (SV) model. No doubt, forecasting the volatility of stock 
indices is an important aspect of many financial decisions. For instance, investment 
managers, option traders and the financial managerial bodies are all interested in 
volatility forecasts in order to either construct less risky portfolios or obtain higher profits 
(Panait and Slavescu, 2012). Various volatility models have been recommended to 
describe the statistical features of financial time series. The most common models among 
these are the SV models.  Other volatility models include the autoregressive conditional 
heteroskedasticity (ARCH) models by Engle (1982) and extended to generalized ARCH 
(GARCH) by Bollerslev, et al., (1995). Their success lies in their ability to capture some 
empirical stylized facts of financial time series, such as time-varying volatility and 
volatility clustering.  
 
SV modeling has been applied to time-varying volatility (Taylor, 1982, 1986). For 
example, SV models can be used to model the variance as an unobserved component that 
follows a particular stochastic process. In SV models, it is usual to model volatility as a 
logarithmic first order autoregressive process. This model, though theoretically attractive, 
is empirically challenging as the unobserved volatility process enters the model in a non-
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linear fashion which leads to the likelihood function depending upon high-dimensional 
integrals. 
  
In this paper, we propose a solution to the problem of high in SV models by bringing in 
Hidden Markov Models (HMM) to allow for different volatility states (periods with 
different volatility levels) in time series. Persistence parameter   estimated as being 
close to unity, implies a high degree of volatility persistence. By using HMM, within 
each state, we enable the SV model to model the conditional variance. The ensuing 
HMM-SV models indeed yields better volatility forecast compared to SV models for both 
simulated data and real financial data sets.  
  
2. Related Literature 
Two recent studies that compare the usefulness of the SV model with GARCH models in 
applied forecasting situations can be seen in So et al. (1999) and Yu (2002). So et al. 
(1999) ascertained that in modeling and forecasting foreign exchange rates, the SV model 
estimated as a state space model does not outperform GARCH model. Yu (2002), on his 
own part, used the SV model to forecast daily stock market volatility for New Zealand. 
By means of forecast accuracy tests, he discovered that the SV model surpasses 
performance of GARCH models. The mixed results from these two papers suggest the 
need for further research on the relative merits of SV models in applied forecasting 
situations.  
 
Although standard SV models improve the in-sample fit a lot compared with constant 
variance models, numerous studies find that SV models give unsatisfactory forecasting 
performances, (Figlewski, 1997). Xiong-Fei and Lai-Wan (2004) argued that the usually 
overstated volatility persistence in SV models may be the cause of poor forecasting 
performances. Lamoureux (1990), shows that this well-known high persistence may 
originate from the structure changes in the volatility processes, which SV models cannot 
capture. Lamoureux demonstrated that any shift in the structure of financial time series 
(e.g. the shift of unconditional variance) is likely to lead to misestimating of the SV 
parameters in such a way that they entail too high a volatility persistence. 
 
Nelson (1991) and Glosten, et al., (1993) have used the GARCH model to compute the 
effects of negative and positive shocks on volatility. They find different effects for 
positive and negative unexpected returns, but both lead to variance increases. Kim, et al. 
(1998), in recent times, applied Hidden Markov model (HMM), instead of ARCH, to 
handle the effects of volatility in economic data. Here, the difference between the HMM 
and ARCH is the unconditional variance (shift in the structure of volatility levels of 
financial time series} . If there are sequential changes in regime, some researchers advise 
that some more intuitive approaches need to be considered, and using different regimes 
may contribute to the return-generating process in the market.  
Diebold (1986) and Lamoureux and Lastrapes (1990) contended that the high estimated 
value for persistence parameter may reflect structural changes that occurred during the 
sample in the variance process. This is related to Perron (1989) observation that changes 
in regime may give the spurious impression of unit roots in characterizations of the level 
of a series.  
 
Hamilton and Susmel (1994) apprehended that the long run variance could obey regime 
shift; they suggested an ARCH process that will allow the parameters of an ARCH 
process to come from one of several different regimes, with transitions between regimes 
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governed by an unobserved Markov chain. The effect will vanish if they use weekly data, 
because sparse time point makes the dependence weaker. In using HMM, Chu et al., 
(1996) chose a two-stage process to represent the return behavior in the stock market. 
They first considered the return behavior in stock market as a Markov process. Then, the 
different return regimes derived from the first stage were utilized to estimate the 
volatility. Lastly, they found that the negative deviations in returns can have larger 
increases in volatility than the positive ones. Accordingly, they think the return and 
volatility are not linear but asymmetrical.  
 
2. HMM-SV model 
2.1 Hidden Markov Model  
Hidden Markov Model (HMM), originally introduced in 1957 and early 1970’s, (see 
MacDonald & Zucchini, 1997, Cappe et al. 2005) has found many applications in most 
contemporary fields like the signal processing, medicine, engineering, and management 
applications. Thus, the contemporary reputation of statistical methods of HMM is not in 
question.  A HMM is a bivariate discrete-time process   0,

kkk YX  where   is a 
homogeneous Markov chain which is not directly observed but can only be observed 
through  that produce the sequence of observation.  is a sequence of 

independent random variables such that the conditional distribution of kY  only depends 

on kX .The underlying Markov chain  is called the state sequence.  

HMM are also defined through a functional representation known as state space model. 
The state space model (Doucet and Johansen, 2009) of a HMM is represented by the 
following two equations:    
    (State equation)             ),( 1 tttt wxFx                                                                      (1)         
(Observation equation)       ),( tttt vxHy                                                                      (2)  

where f  and g are either linear or nonlinear functions, while tw  and tv  are error terms. 
Models represented by (1) - (2)  comprises a class of HMMs which includes non-linear 
Gaussian state-space models, such as the stochastic volatility (SV) models to be defined 
in the next section 
  
2.2 Stochastic volatility model 
Stochastic volatility models (see Shephard (1996) for a review) are a variant of non-linear 
Gaussian state-space model which take variation in the volatility of the observed data into 
account. The SV model due to Taylor (1982) can be expressed as an autoregressive (AR) 
process: 
                                             ttt wxx  1                                                                    (3)                                       

                                             t
t

t v
x

r 









2
exp                                                                (4) 

where )1,0(~,),(~,),0(~ 2
000 NvNxNw tt  , 0}{ ttr  is the log-returns on day t, 

,we call   the constant scaling factor, so that 0}{ ttx  represents the log of volatility of 

the data, )log( 2
t  where )var(2

tt r  .In order to ensure stationarity of  tr  , it is 

  0kkX

  0kkY   0kkY

  0kkX
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assumed that 1¦¦  . Taking the logarithm of the square of equation (4), results in a 
linear equation,  
                                                    ttt zxy                                                               (5) 
where 

2
1

222222 ~).(log)(log,)(log)(log,)(log  ttttttt vvEvzvEry   so 

that tz  has a centered 2
1log   distribution.      

Equations (3) & (5) form the version of the SV model which can be modified in many 
ways; together they form a linear, non-Gaussian, state-space model for which (5) is the 
observation equation and (3) is the state equation.  
 
2.2.1 Stochastic Volatility with heavy –tailed distribution 
The standard form of the SV model is given in equations (3) & (4). In equation (4) tv  
follows a normal distribution. Various authors have argued that real data may have 
heavier tails than can be captured by the standard SV model. 
 
A modification of the linearized version of the SV model (see equation (3) and (5), 
wherein it is assumed that the observational noise process, tz  is a student-t distribution is 
considered. The model, first presented in Shumway and Stoffer (2006), retains the state 
equation for the volatility as:  
                                             ttt wxx  1                                          
but the proposed student-t distribution with degrees of freedom, v , for the observation 
error term, tz , effects a change in the observation equation:  

                                  ttt zxy                       ,,,1,~ nttz vt                     (6) 
For the parameter estimates of the proposed SV model with student-t, the likelihood 
functions have been maximized by using the Sequential Monte Carlo Expectation 
Maximization algorithm (Nkemnole et al., 2015) in the MATLAB optimization routines.  
  
2.3 HMM with stochastic volatility Model 
Our model is a blend of the original SV model and HMMs. To start with, we use HMMs 
to divide the entire time series into regimes with different volatility levels. The return of 
the time series is assumed to be modeled by a mixture of probability densities and each 
density function corresponds to a hidden state with its mean and variance. In the HMMs, 
Sequential Monte Carlo Expectation Maximization algorithm (SMCEM) algorithm is 
employed in finding the state sequence in the time series (Nkemnole, 2014) which 
consists of three main steps: filtering, smoothing, and estimation. Subsequently we get 
the subsets of original time series corresponding to different states (volatility levels). 
Afterwards, within each regimes, we allow SV model with different parameter sets to 
model the conditional variance as: 
                                              tt

i

t wxx  1 , ),0(~ Nwt  

                                              tt

i

t zxy   
where i  denotes the state of the time series at time t . ,, ii  and i are the parameter 
sets of the SV model related to state i .  
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Then, for the volatility forecast 2
t  , ( 0}{ ttx  represents the log of volatility of the data, 

)log( 2
t  where )var(2

tt r ) of the global model, there is need for us to predict the 
state i  of time series at time 1t  (next state).  
 
After the next state i  at time 1t  has been determined, we choose the corresponding SV 
model with parameter sets ,, ii  and i to make volatility forecast. 
Criteria for assessing the accuracy of the models to predict which includes mean absolute 
error (MAE), mean square error (MSE), mean absolute percentage error (MAPE) are 
listed on section 4. SPSS and MATLAB were used to analyse the data to produce figures 
and results of the models. 
  

2.4   Sequential Monte Carlo Expectation Maximization (SMCEM) Algorithm    
        Analysis 
Estimation procedures 
The entire estimation procedure consists of three main steps: filtering, smoothing, and 
estimation. With the output of filtering and smoothing step an approximate expected 
likelihood is calculated.  are estimated to model the changing volatility. 
 
2.4.1 Filtering Step: 
The algorithm for the filtering and smoothing steps below are sane of the work of 
Nkemnole, et al. (2015) From here M samples from )|,( YXf  for each t  were obtained 
as follows. 
i) Generate ),(~ 2

00
)(

0 Nf i

 
For nt ,,1   
ii) Generate a random number MjNw i

t ,,1),,0(~)(    

iii) Compute )()(
1

)( i

t

i

t

i

t wfp    
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




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


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v
x

t
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t
v

ey
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   b. Generate )(i

tf  by resampling with weights, )(i

t  
 
To save computing time, it is essential to start with good initial parameters. The initial 
value of  and  are obtained based on the method of moments, Anderson et al. (1969).   
 
2.4.2  Smoothing step 
In the smoothing step, particle smoothers that are needed to get the expected likelihood in 
the expectation step of the EM algorithm were gotten:  
Suppose that equally weighted particles Mif i

t ,,1},{ )(  from )|,( tt Yxf are 
available for nt ,,1   from the filtering step. 

 1) Choose ][][ )()( j

n

i

n fs   with probability 
M

1
. 

2) For 01 tont   

},,{ 

2762



         a)Calculate

2
1

~2
2

~2)()(
1)()(

1
)(

1| 2
1exp

2

2
1

)2(
1

2
)(exp)|(

)(
11








 


























 









 




v

s

t

sj

t

i

tj

t

i

t

i

tt
v

ey

v

v

v

fs
fsf

j
tt






 
for each j  
        b) Choose  ][][ )()( j

t

i

t fs   with probability j

tt 1|  . 

3) )},,{()( )()(
0

)(
:0

i

n

ii

n sss  is the random sample from )|,,( 0 nn Yxxf   
4) Repeat 1-3, for Mi ,,1  and calculate  
























































n

t

x

tvy

t

v
x

t

M

i

n

t

i

t

n

t

i

t
n

tt

M

i

n

t

i

t
n

t

M

i

i

t
n

t

v

ey
eyv

vn

v

ey
E

M

xsxs

p
M

xs

p
M

s

x

t

tt

t

1

1ˆ2
2

2
1

2

1
1

)(
1

)(

1,
1

2)(

1

)(

2
1)1(

)2(
2

1

,
)ˆ)(ˆ(

ˆ,
1

)ˆ(
ˆ,ˆ

 
2.4.3  Estimation Step 
This step consists of obtaining parameter estimates by setting the derivative of the 
expected likelihood, of the complete data },,,,,{ 10 nn yyxx   given },,{ 0 nxx   , 

with respect to each parameter to zero and solving for ,ˆ,ˆ  and ̂ . 
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By the above method, we got the following estimates 
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where 
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3 Volatility Forecast Evaluation and Comparison 
3.1 Data and Methodology 
Both simulated data sets and real financial data sets were utilized in the volatility forecast 
experiments. Also, the in-sample and the out-of-sample forecasting performances were 
considered. To start with, we used simulated data set to verify if the proposed model 
solves the problems of excessive persistence in SV model; we generated more than 11000 
observations and discarded the initial 10000 samples. 
   
Then, we employed the use of real financial data sets in our experiments to establish the 
viability of the proposed model. The real financial data sets consist of the daily exchange 
rate series of the Nigerian Naira, Ghana Cedi, British Pound and Euro, all against the U. 
S. Dollars  (from January 2, 2010 to December 31, 2014).  
  
3.1.1 Jarque-Bera Statistics  

Jarque-Bera statistics is applied to examine the non-normality of the exchange rate series 

 

 

Figure 1. Naira/dollar exchange rate index summary statistics 

Figure 1 shows a positive skewness, 1.220108, and a high positive kurtosis, 3.489442. With reference to 
the Jarque-Bera statistics, Naira/dollar exchange rate index is non-normal at the confidence interval of 
99%, since probability is 0.000000 which is less than 0.01. Consequently, there is need to convert the 
Naira/dollar exchange rate index series into the return series. 
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Figure 2. Cedi/dollar exchange rate index summary statistics

Figure 2 shows a positive skewness, 1.220410 as well as a positive kurtosis, 3.490659. As indicated by 
Jarque-Bera statistics, the Cedi/dollar exchange rate index is non-normal at the confidence interval of 
99%, since probability is 0.0000 which is less than 0.01. So the need also arises to convert the Cedi/dollar 
exchange rate index series into the return series. 

 

 

Figure 3. Euro/dollar exchange rate index summary statistics 

Figure 3 shows a positive skewness, 1.224487, and a positive kurtosis, 3.506883. As indicated by the 
Jarque-Bera statistics, Euro/dollar exchange rate index is non-normal at the confidence interval of 99%, 
since probability is 0.0000 which is less than 0.01; hence the need to convert the Euro/dollar exchange 
rate index series into the return series. 

 

Statistics Pound/Dollar 
Mean 0.152918 

Std. Dev. 0.272588 
Skewness 1.220855 
Kurtosis 2.492430 

Jarque-Bera 194.6209 
Probability 0.000000 

Figure 4.  Pound/dollar exchange rate index summary statistics 

Figure 4 shows a positive skewness, 1.220855, and a positive kurtosis, 2.492430. As 
indicated by the Jarque-Bera statistics, Euro/dollar exchange rate index is non-normal at 
the confidence interval of 99%, since probability is 0.0000 which is less than 0.01; hence 
the need to convert the Euro/dollar exchange rate index series into the return series. 
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3.1.2  Transformation of the exchange rate index series of the Nigerian Naira,Ghana   
         Cedi, British Pound and Euro 
On the whole, the movements of the stock indices series are non-stationary, and 
therefore, not suitable for the study purpose. The stock indices series are transformed into 
their returns so that we get stationary series. The transformation is: 

                                  
1

ln100



t

t

t
p

p
r                                                                         (11) 

where 
tr  , tp  is the exchange rate at time index t , 1tp  the exchange rate  just prior to 

the time t . 
 
3.1.3 Augmented Dickey-Fuller (ADF) Test and Phillips-Perron (PP) Test on 
Naira/Dollar,Cedi/Dollar, Pound/Dollar and Euro/Dollar exchange rates index 
Returns Series 
 
Both the ADF and PP tests are used to obtain verification regarding whether 
Naira/Dollar, Cedi/Dollar, Pound/Dollar and Euro/Dollar exchange rates return series is 
stationary or not. 
  
Table 1. ADF test on Naira/Dollar, Cedi/Dollar, Pound/Dollar and Euro/Dollar   
              exchange rate  returns 
               t-

Statistic 
  

  Naira/Dollar 
index 

Cedi/Dollar 
index 

Pound/Dollar 
index 

Euro/Dollar 
index 

 ADF test 
statistic 

 -43.12567 -45.56412 -47.34789 -46.78622 

 1%  
level 

-3.331562 -3.33253 -3.331562 -3.33253 

 5%  
level 

-2.751341 -2.751341 -2.751341 -2.751341 

Test critical 
values 

10%  
level 

-2.456200 -2.456200 -2.456200 -2.456200 

Prob.  0.0001 0.0001 0.0001 0.0001 
 
Table 1 shows that the values of ADF test statistic, -43.12567, is less than its test critical 
value, -2.751341, at 5%, level of significance which implies that the Naira/Dollar 
exchange rates return series is stationary. The result of ADF test also demonstrates that 
the Cedi/Dollar, Pound/Dollar and Euro/Dollar return series are stationary, as the values 
of ADF test statistic is less than its test critical value. 
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Table 2. PP test on Naira/Dollar, Cedi/Dollar, Pound/Dollar and Euro/Dollar 
exchange rates returns 
               t-

Statistic 
  

  Naira/Dollar 
index 

Cedi/Dollar 
index 

Pound/Dollar 
index 

Euro/Dollar 
index 

PP  test 
statistic 

 -43.32035 -45.80403 -47.34789 -46.78622 

 1%  level -3.331562 -3.33253 -3.331562 -3.33253 
 5%  level -2.751341 -2.751341 -2.751341 -2.751341 
Test critical 
values 

10%  
level 

-2.456200 -2.456200 -2.456200 -2.456200 

Prob.  0.0001 0.0001 0.0001 0.0001 
 
Table 2 illustrates the results of the PP test and proves that the Naira/Dollar index returns 
series is stationary, as the values of PP test statistic, -43.32035, is less than its test critical 
value, -2.751341, at the level of significance of 5%. The outcome of the PP test equally 
shows that the Cedi/Dollar, Pound/Dollar and Euro/Dollar exchange rates returns series 
are stationary, since the values of PP test statistic is less than its test critical value. 
 
3.2 Summary Statistics of the Naira/Dollar, Cedi/Dollar, Pound/Dollar and    
     Euro/Dollar exchange rates   returns 
 

 

Figure 5. Naira/dollar exchange rate index returns summary statistics 

Figure 5 reveals a negative skewness, -0.074139, and a positive kurtosis, 8.805879. As indicated by the 
Jarque-Bera statistics, the Naira/dollar exchange rate index returns series is non-normal at 95% 
confidence level, since probability is 0.0000 which is less than 0.05. 
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Figure 6. Cedi/dollar exchange rate index returns summary statistics 

Figure 6 also reveals a negative skewness, -0.096923, and a positive kurtosis, 13.11769. Based on the 
Jarque-Bera statistics, the Cedi/dollar exchange rate index returns series is non-normal at 5% level of 
significance, because the probability, 0.0000, is less than 0.05. 

 

 

 

Figure 7. Euro/dollar exchange rate index returns summary statistics 

Figure 7 also reveals a negative skewness, -0.434943, and a positive kurtosis, 7.993814. Based on the 
Jarque-Bera statistics, the Euro/dollar exchange rate index returns series is non-normal at 5% level of 
significance, because the probability, 0.0000, is less than 0.05. 

 

 

 

Figure 8.  Pound/dollar exchange rate index summary statistics 

Figure 8 also reveals a negative skewness, -0.022958, and a positive kurtosis, 4.262290. Based on the 
Jarque-Bera statistics, the Pound/dollar exchange rate index returns series is non-normal at 5% level of 
significance, because the probability, 0.0000, is less than 0.05. 
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4 Empirical Results and Evaluation 
As the actual volatility at time t is not observable, there is need for some measures of volatility to assess 
the forecasting performance. In this paper we apply the standard approach suggested by Pagan and 
Schwert, (1990). A proxy for the actual volatility 2ˆ

t  is given by 
                                                         22 )(ˆ rrtt                                                                     (12)                                                                                              

where r  is the mean of the time series over the sample period. The statistical performance measures 
Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), 
are applied to select the best performing model both in the in-sample  and the out-of-sample data set 
independently in this study: 

MSE  = 
n

n

t

tt



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                                                                                                             (13) 
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                                                                                                   (15)                                                                                             
  
 

 
where 2̂  is the forecasted variance and 2  the actual variance time period t  and n  is the number   of 
forecasts.  
 
4.1 Statistical Performance 
The evaluation results are shown in Tables 3 and 4 below. A two-state HMM-SV model was used in our 
experiments. In both tables, t-v represents true value, HSV stands for HMM-SV model and SV stands for 
SV model. 1s and 2s  designate the two states with low and high volatility levels, respectively. MSE1, 
MAE1 and MAPE1 are the in-sample MSE, MAE and MAPE while MSE2 MAE2 and MAPE2 are the out-
of-sample MSE, MAE and MAPE.  

 

Table 3.  Statistical performance results for the simulated data set and the true parameter sets    
                compared with those obtained from HMM-SV and  SV models 
Models       MSE1 MAE1 MAP

E1 
MSE2 MAE2 MAP

E 2 
  t-v        S1 

                
S2 

0.41 
0.62 

0.7417 
1.1445 

2.0461 
2.0854 

   

   

 SV 0.72 0.8416 2.2761 0.0402 0.1001 0.2325 0.1010 0.1776 0.2641 
HMMSV   
S1 

0.57 1.2454 2.0445 
      

                   
S2 

0.75 1.3534 2.1034 
0.0321 0.0623 0.1224 

0.0161 0.0562 0.1684 
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Table 4. .Statistical performance results for the stock return data sets and the parameter sets   
                obtained from HMM-SV  and SV models 
Stock 
Exchange 

Models       MSE
1 

MAE
1 

MAPE1 MSE2 MAE
2 

MAPE 
2 

Naira/Dollar  SV 0.8485 4.0273 4.3205 0.3401 0.3211 0.2334 0.2401 0.2211 0.3334 
 HMMSV  S1 0.7875 3.4771 6.9980       
                 S2 0.0685 1.2341 3.8746 0.1021 0.1743 0.2534 0.0021 0.0743 0.2424 
Cedi/Dollar  SV 0.9869 4.1936 5.3824 0.1370 0.1716 0.2265 0.1360 0.1706 0.2255 
 HMMSV  S1 0.8127 4.2368 4.7144       
                 S2 0.0712 3.1134 2.1345 0.0210 0.0595 0.1473 0.0110 0.0495 0.1464 
Pound/Dollar  SV 0.9770 2.1311 0.7654 0.1783 0.0928 0.1922 0.1773 0.0718 0.1812 
 HMMSV  S1 0.9050 1.3136 0.9883       
                  S2 0.0805 1.2136 0.8564 0.0516 0.0783 0.0452 0.0416 0.0783 0.1112 
Euro/Dollar  SV 0.9754 2.3108 0.7627 0.1706 0.2601 0.5784 0.0502 0.1402 0.5138 
 HMMSV  S1 0.8871 1.4605 1.2590       
                  S2 0.0762 1.3605 1.1590 0.0956 0.1943 0.3578 0.0144 0.0943 0.4548 
  
The above results are indicative that that HMM-SV model capture the volatility structure changes 
processes between two different volatility regimes with different volatility persistence  . Nonetheless, 
the SV model cannot capture such volatility structure changes and always show very high volatility 
persistence. Consequently, HMM-SV model offers better volatility forecasts as the MSE (MAE) of 
HMM-SV model is considerably smaller than the SV models for most of the time. 
 
5. Conclusion 
The volatility persistence of widely-used SV model is usually too high leading to poor volatility forecasts. 
The root for this excessive persistence seems to be the structure changes (e.g. shift of volatility levels) in 
the volatility processes, which the SV model cannot capture. 
As we developed our HMM-SV model to allow for both different volatility states in time series and state 
specific SV model within each state, the empirical results for both artificial data and real financial data 
not only takes care of the structure changes (hence giving better volatility forecasts), but also helps to 
establish an proficient forecasting structure for volatility models. 
 
Accordingly, the results for both in-sample and out-of-sample evaluation forecasting performance 
confirm that our model outperforms widely-used SV model, Hence, the results suggest that it is promising 
to deepen the study of volatility persistence, the hidden regime-switching mechanisms inclusive. On long 
run, this will improve volatility forecasts in future research. 
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