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Abstract 

We estimated heritability (h2) on drug response with SNP data. If we define the true portion of 
available SNPs on variance explained (VE) as h2

M  and then the SNPs potentially can explain all 
the genetic variation in the trait (h2

M
 < = h2 ). The VE by genome-wide significant (GWS) SNPs 

(h2
GWS) may satisfy  h2

GWS <h2
M

 < = h2. However, in model building, we also consider: 1). use 
only the SNPs from target genes; 2). use the SNPs with less linkage disequilibrium among top 
SNPs, and 3). use the SNPs with MAF to be > 0.01. Subsequently, only SNPs with non-zero 
parameter estimates will be used in a 'molecular signature (MS)'. Then VE by MS (h2

MS) may 
be even smaller than h2

GWS  i.e. h2
MS < h2

GWS <h2
M

 < = h2. Within the h2
MS , two  VEs can be 

derived: the placebo (PLA, h2
PLA)  and treated (TRT, h2

TRT) ,  for a drug with significant 
efficacy,  the heritability should satisfy h2

PLA < h2
TRT (within h2

MS). Estimates on real data is  
reported using GCTA method.  Estimates of h2 on whole genome (0.99± 0.72, p< 0.0001) and 
on MS to predict drug response from discovery (0.009±0.002, p=0.34 with PLA arm and 
0.08±0.05, P=0.002 with TRT arm) and validation (0.013±0.015, p=0.13, with TRT arm) data. 
To find the missing heritability, further modeling work with higher SNP density, such as WGS, 
much more SNPs with less stringent p-values  and low MAP in the selected model, and other 
genomic data, such as RNA –seq, and additional clinical information should  be explored. 
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Introduction 

The field of pharmacogenomics is focused on the characterization of genetic factors 
contributing to the response of patients to pharmacological interventions. In genome-
wide association studies (GWAS) of conventional complex traits such as human 
complex diseases and drug response, a fundamental and yet unsolved question is that 
of so-called “missing heritability”, i.e., the significant and often numerous variants 
collectively explaining only a small fraction of the total phenotypic variation [1-8]. 
For example, recent studies show that ~50 variants explain only ~5% of the 
phenotypic variation for human height, a highly heritable trait with narrow sense 
heritability of ~80% [5]. While fully resolving the missing heritability remains a 
challenging task.  Shigemizu et al (2014) with real type 2 diabetes data, reported that the best 
lasso model with cross validated 9 SNPs combined with the clinical factors had 0.073 
(0.91%) more AUC than the model with only clinical factors (0.8057 vs  0.7984) [9].    
 Yang et al. (2011) [10] developed the GCTA software package to estimate the additive genetic 
variance for a trait using genome-scale single nucleotide polymorphism (SNP) data. This method 
first estimated  relatedness with many thousands of markers and then using estimated relatedness 
to estimate the additive genetic variance  of a trait. If the QCed  SNPs adequately capture the 
relationships among individuals at causative alleles, h2   with GCTA methodology  is equivalent 
to narrow-sense heritability [10].  Yang el at (2011) shown  that the variance explained by each 
chromosome is proportional to its length, and that SNPs in or near genes explain more variation 
than SNPs between genes [11].  GCTA also has been used to estimate whole genome heritability   
in susceptibility to schizophrenia (h2 =0.23)[12], human  intelligence (h2=0.40-0.51) [13],  and 
personality (h2=0.7)[14].  Zhou et al (2014) estimated heritability of response to metformin 
(h2=0.34) [15] .  Mirkov, M. U et al (2014)  estimated heritability of different outcomes for 
genetic studies of TNFi response in patients with rheumatoid arthritis (h2=0.59-0.87) [16]. Li, Q., 
et al (2017) estimated heritability of  Clinical response to the atypical antipsychotic paliperidone 
in schizophrenic patients (h2=0.31-0.43)[17]. 
 
Pharmacogenomic biomarkers can optimize an individual’s  therapy; however, the 
overall role of genetic factors in drug response remains uncertain. The majority of 
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genetic variants currently used as clinical pharmacogenomic biomarkers affect drug 
metabolism and transport while fewer biomarkers accurately predict drug response 
(pharmacodynamics) [18],  although a lot of drug response biomarker genomic 
predictive signature have been developed [19-22]. Siebert et al (2016),   reported 
comparative validation of predictions, the heritability estimates of treatment response to RA 
disease on the whole genome (h2=0.36, p=0.05)  and on TNF/TNFR pathway with 333 genes  
( h2=0.02, p=0.3)  from Infliximab+ Adalimumab  TRT arm [23].   Heritability estimation 
on SNP predictive genomic signature on drug response for common disease has not 
been published in the literature.  The objectives of this proposed study are in two 
folds: 1) Some theoretical considerations on the heritability of molecular signature. 2). 
Estimations  of heritability on whole genome and a molecular signature to predict 
drug response both in discover and in independent validation cohorts from  real 
genomic and clinical data sets. 
 
 
Some theoretical considerations 

  
 
Heritability (h2) is a genetic parameter used in breeding and genetics works that estimates how 
much variation in a phenotypic trait in a population is due to genetic variation among individuals 
in that population. Other causes of measured variation in a trait are characterized as 
environmental factors, including measurement error. The definition of genomic heritability (h2

M ) 
is the proportion of variance that can be explained by a linear regression on a massive number of 
markers [1]. If we define the portion of all available genetic markers explained as h2

M and then 
the SNPs potentially can explain all the genetic variation in the trait (h2

M ≤ h2 ). The difference 
between the variance explained by genome-wide significant (GWS) SNPs (h2

GWS) and 
heritability estimate from family studies (h2) has been called the “missing heritability” and the 
difference between h2

GWS and h2
M  is called the “hidden” heritability [3]: 

 
h

2
GWS < h2

M <  h2  (Wray et al. 2013)  (1) 

However, in prediction of drug response, we usually need to build up a prediction model (a 
composite score) from top SNPs identified by GWAS. In model building , we also consider: 1). 
use only the SNPs from target genes, instead of all SNPs appeared to be statistically significant;  
2). use  only the SNPs with less LD between top SNPs, and 3). use only  the SNPs with MAF to 
be > 0.01 et al. Since it is not expected that all biomarkers are important to define subgroup 
membership, the model above may be fit using elastic net [24], which inherently performs 
feature selection through penalized regression. For biomarkers that are not contributing 
significantly to the composite score, the corresponding parameter estimates will be zero in the 
composite score calculation and subsequently only biomarkers with non-zero parameter 
estimates will be used in the definition of a ‘molecular signature (MS)’. For  clinical and 
commercial applications,  the molecular signatures usually  have few variants. 
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Then the heritability of the MS should be defined as h2
MS and h2

MS should be even smaller than 
h

2
GWS with a relationship of: 

h
2

MS < h
2

GWS < h2
M ≤ h2   (2) 

 
A success molecular signature  (MS) should be able to predict the potential drug TRT efficacy 
and identify the subpopulation with higher response rate. Within the h2

MS , two  heritability can 
be derived: the placebo (PLA, h2

PLA)  and treatment  (TRT, h2
TRT) ,  for a drug with significant 

efficacy,  the heritability of TRT cohort should satisfy: 
 

h2
PLA < h2

TRT (within h2
MS)   (3) 

 
 

 

Materials and Methods      
 
Data sets  

Clinical data: Two phase 3 clinical study data with 1,066 patients were divided into discovery 
(313 TRT with a marketed drug and 253 with PLA)   and validation (an independent data set 
with 500 patients treated with the drug).  Due the original clinical study design, the PLA arm for 
validation was not available.  A continues change from baseline score to measure a non-cancer 
treatment efficacy variable was used as phenotype in the heritability estimation.   
Genomic data: a total of 1,066  samples with PGx informed consent were tested with Illumina 
OmniExpress chip with ~ 1Million SNP variants. 
Data for heritability estimation: An 11 SNP model was developed using a two step approach 
(see appendix 1) on the change from baseline on the efficacy score which was used in define the 
responder/non-responder status. Heritabilities were estimated with the whole genome (56,511 
SNPs after QC and LD pruning with r2  LD < 0.1) and the signature (11 SNPs) in discovery data 
sets (313 TRT  and 253 PLA) and an independent validation arm (500 patients in a TRT arm). 

 

  
 

Predictive Model (molecular signature) Building  

 
A 11 SNP model was developed using a two step approach: first select top SNPs on univeriate 
test p-value  and second using elastic net [21]  regression methodologies with the available 
clinical and genomic data (a continues index for drug response) to build up the prediction model 
with 11 SNPs and coefficients. Details of the two-stage  predictive model (molecular signature) 
development  for subgroup identification are  in appendix 1. 

 
Statistical Method for heritability estimation 

 
We used the program GCTA  (Yang et al. 2011) [10] to estimate the proportion of phenotypic 
variance explained by genotyped SNPs. The GCTA analysis consists of two steps. First, all SNPs 
are used to calculate the genetic relationship matrix (GRM) among accessions. GCTA uses the 
accessions included in the analysis as the base population for defining relatedness, such that the 
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average relatedness between all ‘unrelated’ pairs of accessions (off-diagonals of GRM) is zero. 
The GRM is then used as a predictor in a mixed linear model with a trait as the response to 
estimate h2. The GCTA method estimates the proportion of additive genetic variance for a trait 
and thus narrow-sense heritability. Note that the top three principal components derived from the 
PCA outlined in as well as trial, age, gender, smoking status, and alcohol usage were included in 
all statistical models as fixed effects. 

 
 

Results and discussion 

 The estimations of heritability of data set 1 on whole genome are reported in table 1.  Population, 
sample size, number of SNPs,  heritability, standard error and non-zero test p-values are reported.  
Heritability of the whole genome (with 56,511 SNPs) is estimated in discovery (TRT arm, 
N=313), discovery (PLA arm, N=253) and validation (TRT, N=500) separately. The estimates 
are between 76.6 %(PLA) to 99.99 % (TRT) in both discovery and validation arms. 

 With values between 76.6% and 99.99%, it seems the estimations of the heritability on the drug 
response  in current study from the whole genome on 56,522 SNPs are over estimated. Kumar et 
al (2016), had quested GCTA’s estimates of heritability.  GWAS data are necessarily overfit by 
GCTA and produces high estimates of heritability [25]. In this study, the sample size from the 
clinical studies are within 500 and the statistical power of the estimation is limited which may 
explain the over estimated heritability from the whole genome.  

 Table 1. Heritability estimates from the whole genome on discovery and validation 

populations 

 

Population N Number of SNPs h2 %  SE(h2) % p-value 

Discovery (TRT) 313 56,511 99.99 71.9 0.0005 

Discovery (PLA) 253 56,511 76.60 124.2 0.29 

Validation (TRT) 500 56,511 99.99 57.8 0.014 

 

 

The estimations of the heritability on the 11 SNP signature are shown on the table 2. 
The SNPs were derived through a very complicated statistical procedure (appendix 1). 
The values are between 0.93% and 8.17% for the discovery cohorts and 1.28% in an 
independent validation cohort. The discovery cohorts were used to derive the 11 SNP 
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signature. According to Wray et al (2013),  the number one pitfall of predicting complex traits 
from SNPs is applying the incorrect validation procedure results in over-estimation of the 
accuracy of the prediction (or overfitting ) [3]. Our estimated heritability of 0.93%(PLA) and 
8.17%(TRT) from the discovery cohorts for the molecular signature are over estimated for this 
11 SNP signature. However, the estimate of 1.28 % from the TRT arm of the validation data set 
should be an independent one, although it is not statistically significant (p=0.13, table 2). This is 
likely the true phenotypic variance explained due to the genetic contribution from the 11 SNP 
signature.  

Table 2. Heritability estimates for an 11 SNP molecular signature on discovery and 

validation populations  

Population N Number of SNPs h2 %  SE(h2) % p-value 

Discovery(TRT) 313 11 8.17 4.92 0.002 

Discovery (PLA) 253 11 0.93 2.30 0.34 

Validation (TRT) 500 11 1.28 1.53 0.13 

 

  

On the other hand, the results show that the number of SNPs should be in the order of hundreds 
to thousands or even more to allow meaningful representation of the whole genome joint 
contribution of  a particular TRT effect  in the predictive model, instead of dozens of SNPs 
which is a extension of the single gene model from Mendelian genetics.  

 Results of this study has confirmed  findings Siebert et al (2016) [23]. Yang et al [5] found using 
the estimation of heritabilities on  human height are proportional to the percentages of genome 
covered in the data and concluded the  “most of the heritability is not missing but has not 
previously been detected because the individual effects are too small to pass stringent 
significance tests and remaining heritability is due to incomplete linkage disequilibrium between 
causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele 
frequency than the SNPs explored to date”.  
   

 Based on a 50K Illunina BovineSNP50 BeadChip  [27] or alike and combined with the 
information from traditional progeny test, genomic selection has doubled  the improved rate in 
Canadian  dairy cattle cows in LPI (lifetime Profit Index) [28] over a period of 2009-2016. The 
theory was based on an infinitesimal model, all 50K SNPs are used in the estimate of genomic 
EBV (estimated breeding value) without any hypothesis test  to reduce the dimensions and with 
the methodologies developed Meuwissen et al (2001) [29] and VanRaden (2008) [30]. Although 
pharmacogenomics may have a  different mechanism of action than dairy genetics, we can learn 
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something and borrow some ideas. If we believe the drug response for common disease is 
affected by hundreds even thousands of genomic variants with small effects, the current two-
stage predictive model approach such as the one used in the development of the 11 SNP model in 
this paper (appendix 1) may be too stringent to include most causal variants. Significant increase 
the number of SNPs in the models is recommended.   Higher density coverage of the genome, 
such as WGS with SNPs within disease related genes, drug metabolism genes and pathways 
should be considered.    

Conclusions 

In theory, we showed the variance explained by SNP markers  from molecular signature, genome 
wise significance and whole genome should  satisfy: h2

MS < h
2

GWS < h2
M ≤ h2  and within h2

MS, 
the variance explained by the placebo arm and the TRT arm should satisfy:  h2

PLA < h2
TRT. With 

actual data, we found that the heritability for the whole genome were between 76.6% and 
99.99% and believed to be over estimated. The heritabilities for an 11 SNP molecular signature 
were between 0.93% (PLA) and 8.17% (TRT) in discovery cohort and 1.28% in an independent 
validation cohort. Predictive drug response  modeling with SNP data may have limited power 
with lower heritability found from this 11 SNP signature. Further modeling work with higher 
SNP density, such as WGS, much more SNPs to cover the whole genome, and other genomic 
data, such as RNA –seq, and additional clinical information should  be explored to address the 
missing heritability and overall prediction power in predictive modeling on drug response. 
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