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Abstract 

The Annual Survey of Local Government Finances (ALFIN) is conducted by the U.S. 
Census Bureau and provides statistics about the financial activities of state and local 
governments across the nation. The Economic Directorate makes thousands of estimates at 
the state and local levels based on ALFIN, and uses small area methods due to low 
estimation cell sizes. The presence of outliers in ALFIN data is a concern due to violation 
of model-based assumptions. In this paper, we evaluate the use of transformations in the 
small area mixed models to handle outliers. Our research uses a Monte Carlo simulation 
experiment with data from census years 2007 and 2012 to conduct the evaluation. 
 
Key words: robust estimation; small area; mixture models; outliers  

1. Introduction 

The Economic Directorate of the U.S. Census Bureau is responsible for conducting a 
census every five years of approximately 91,500 local government units to collect data on 
their financial activities. During the interim between two consecutive censuses (years 
ending with 2 and 7, e.g. 2007, 2012, and 2017) the Economic Directorate also directs the 
Annual Survey of Local Government Finances (ALFIN), a nationwide sample survey 
covering all local governments in the United States. Estimates published from the ALFIN 
are aggregated from the five local government types: counties, municipalities, townships, 
special districts, and school districts, in conjunction with data collected from the Annual 
Survey of School Finances. The Economic Directorate publishes local level aggregates 
from the ALFIN along with corresponding state level aggregates from the Annual Survey 
of State Government Finances. Statistics from these two surveys are used to estimate the 
government component of the Gross Domestic Product, allocate some federal grant funds, 
and provide information to assist in public policy research. More information about the 
ALFIN can be found at: http://www.census.gov/govs/local. 
 
___________________________ 

Disclaimer: Any views expressed are those of the authors and not necessarily 

those of the U.S. Census Bureau. 
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In non-census years, the Economic Directorate publishes hundreds of statistics for each 
state. The scale of ALFIN estimates, along with small estimation cell sizes, pose great 
challenges for traditional design-based estimators, such as Horvitz Thompson, which can 
become unstable in such conditions. To meet these challenges, we introduced small area 
estimation methods for ALFIN (Schilling et al, 2016), which can improve estimate 
reliability through the use of models and auxiliary data. 
 
Though small area methods can improve the reliability of estimates, the presence of outliers 
can challenge basic assumptions, because they suggest the finite population is not 
represented by the base model used to make estimates. This issue is particularly relevant 
to ALFIN, where some portions of its complex data structure can experience substantial 
volatility from one year to another. Because outliers can be highly influential and skew 
estimates, they can prompt difficult decisions. Though removal of outliers could lead to 
improvements in some estimates, it is also a drastic step, because outliers can contain 
important information that should not be discarded. Alternatively, bias correction terms 
can be applied to the base model of small area estimators, as done by Chambers and 
Tzavidis (2006), and Chambers et al (2009). 
 
In their ground breaking work, McLachlan and Basford (1988) described the effectiveness 
of mixture models, or the use of multiple distributions, as a means to expose any grouping 
that may underlie experimental data. This approach is promising in the context of outlier 
research, where outlying observations are assumed to be of a different nature than the other 
observations. Later, McLachlan et al (1997) explained how mixture models with 
multivariate normal distributions can be fitted to data through maximum likelihood via the 
expectation-maximization (EM) algorithm. 
 
Our approach for this research involves a modified form of the linear mixed model often 
used in small area estimation. As shown by Gershunkaya (2010) and then Trinh and Tran 
(2016), this approach assumes the underlying distribution is a mixture of two normal 
distributions, where outliers are assigned to the distribution with higher variance and 
“regular” observations are assigned to the other. Thus, the modified model can explain the 
activity of all unit observations, and produce estimates that account for outliers. 
 
 

2. Data 

ALFIN data are collected from local governments across the country. Financial activities 
reported by local governments are assigned to item codes, which can be grouped into four 
main categories: revenues, expenditures, assets and debts. Approximately four hundred 
ALFIN item codes are included in these four categories. Small area methods are currently 
used in the production environment to estimate statistics for expenditures and revenues 
only. For all other item codes, the Horvitz Thompson estimator is used. 

The ALFIN consists of a sample of local governments along with school district data 
provided by the Annual Survey of State Government Finances. Annual statistics from the 
ALFIN data are published in two products: the downloadable file and viewable file. The 
downloadable file includes estimates of the total for each item code, in all the states and 
for the nation at three different levels: local governments, state governments and combined 
state and local governments. In contrast, the viewable file provides aggregates of item code 
totals for the four main categories, as well as totals for notable detailed items. Statistics 
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from the viewable file are given for all the states and for the nation and published online in 
a nested table format. 
 
With the large number of item code estimates for each state in the downloadable file, the 
scale of ALFIN estimates can be challenging for any estimation strategy. During non-
census years, over 30,000 state-item code totals must be estimated for the annual 
downloadable file. The cell sizes are based on the number of local governments that 
contribute to the state item code estimates are often small (n<10), which can lead to 
instability in design-based estimators such as Horvitz-Thompson. But small area methods 
offer a more robust approach, as effective sample sizes can be increased by “borrowing 
strength” from similar domains using models and auxiliary data. 

Small area estimators are well suited to meet the challenges posed by ALFIN data. 
Auxiliary data from the CoG-F can be leveraged through models and small area methods 
to improve ALFIN estimates. Small area methods are especially applicable to ALFIN 
estimation because the cell sample sizes by domain (state by item code pairs) cannot be 
controlled and are often too small for reliable direct estimation. The sampled units in the 
ALFIN sample design are local governments, which can have different combinations of 
item codes. Thus, the ALFIN sample design is not a direct-element design, and can produce 
small cell sample sizes for estimation. In addition, the item codes associated with a local 
government can vary over time, and obscure item codes can be associated with small local 
governments, which can have low selection probabilities. 

 

3. Sample Design 

The ALFIN employs a two-phase sample design. The first phase designates a group of 
local governments as certainties (weight=1) and includes them in the sample, while 
selecting the remaining local governments using a stratified probability proportional-to-
size (πPS) design (Särndal et al, 1992). The second phase reduces the number of non-
contributory municipalities, townships, and special districts in the sample using a modified 
form of cutoff sampling (Dalenius & Hodges, 1959). Data from the 2012 CoG-F provides 
the auxiliary information for the size variable and helps identify certainty units on the 
frame. This sample design was originally implemented in 2014 and allows the Economic 
Directorate to reduce sample size and respondent burden for small cities, townships and 
special district governments, while maintaining estimate precision and data quality. 
 
The sample design for this research was implemented using a multi-step process. First, 
large governments were designated as initial certainty units. Next, strata were defined for 
the remaining units through a combination of state and government types. Four of the five 
local government types were sampled by this design: counties, municipalities, townships 
and special districts. Next, in the first stage of the design, a stratified πPS sample was 
selected, where the size variable was defined as the maximum of total expenditures and a 
second variable that could be total taxes, total revenues, or long-term debt, depending on 
the government type. Then, a cut-off point was calculated for the second stage of the design 
using the cumulative square root of the frequency method (Dalenius & Hodges, 1959), to 
distinguish between small and large government units in the municipal and special district 
strata. Finally, the strata with small-size government units were subsampled. For municipal 
strata, subsampling was carried out using a simple random sampling design; for special 
district strata, subsampling was accomplished through systematic sampling. 
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4. Estimation Methods 

4.1 Direct Estimator (Horvitz Thompson) 

A traditional design-based Horvitz-Thompson (HT) estimator for ALFIN data that 
estimates the total for area m is: 

�̂�𝑚 =  ∑ 𝑤𝑖𝑦𝑖

𝑖∈𝑠𝑚

                                           (1) 

Where the sampling weight 𝑤𝑖 =  
1

𝜋𝑖
  , and 𝜋𝑖 is the selection probability for unit i  in area 

m. Though the HT estimator is unbiased with respect to the sample design, it becomes 
unstable for small sample sizes, which are common in ALFIN estimates. 

4.2 EBLUP Estimator 

A model-based estimator for ALFIN data based on small area methods was developed 
earlier by Schilling et al (2016). This model is a form of the Empirical Best Linear 
Unbiased Predictor, or EBLUP. Consider an estimator of  𝑌𝑚, the total for small area m: 

�̂�𝑚 =  𝑁𝑚  [𝑓𝑚𝑦
𝑚

+ (1 − 𝑓𝑚) �̂�𝑚𝑟]                     (2) 

Where 𝑦𝑚𝑗 is the population of the 𝑗𝑡ℎunit within the 𝑚𝑡ℎ area. 

𝑦
𝑚

=  
𝑦𝑚

𝑛𝑚
=  

∑ 𝑦𝑚𝑗
𝑁𝑚
𝑗=1

𝑛𝑚
∶  the sampled population mean;   

𝑓𝑚 =  
𝑛𝑚

𝑁𝑚
: the sampling rate;  

�̂�𝑚𝑟 is the predictor of the mean of the non-sampled part of the 𝑚𝑡ℎ area. 

Simplifying (1) results in:  

�̂�𝑚 =  𝑦𝑚 + �̂�𝑚𝑟                                  (3) 

Where �̂�𝑚𝑟 is the predictor of the total of the non-sampled part of the 𝑚𝑡ℎ area. 

The predictor �̂�𝑚𝑟 is obtained for ALFIN estimator using a linear mixed model: 

𝑦𝑚𝑗 =  𝒙𝒎𝒋
𝑻  𝜷 + 𝑢𝑚 +  𝜀𝑚𝑗                     (4) 

for j = 1 …. 𝑛𝑚, m = 1 … M, and 

𝑢𝑚~𝑖𝑖𝑑   𝑁(0, 𝜏2)  and 𝜀𝑚𝑗~𝑖𝑖𝑑   𝑁(0, 𝜎2) 

2618



Where 𝒙𝒎𝒋 is a vector of auxiliary variables for an observation j in area m, β is the 
corresponding vector of regression parameters; 𝑢𝑚 are random effects, and 𝜀𝑚𝑗 are the 
errors in the independent observations. To account for the skewed nature of the data and 
reduce heteroscedasticity, the model in (4) is transformed to a log scale.  
 
 

𝑙𝑜𝑔(𝑌𝑚) =  𝛽0 + 𝛽1 𝑙𝑜𝑔(𝑋𝑚𝑗) + 𝑢𝑚 + 𝜀𝑚𝑗                 (5) 
 
 
After fitting the data using (5), the following model-based predictor is used for �̂�𝑚𝑗: 
 

�̂�𝑚𝑗
𝐸𝐵𝐿𝑈𝑃 =  �̂�0 +  �̂�1 𝑙𝑜𝑔(𝑋𝑚𝑗) + �̂�𝑚                                (6) 

Then, a total estimate for state-item code m can be derived as: 

�̂�𝑚
𝐸𝐵𝐿𝑈𝑃 =  �̂�𝑚 =  ∑ 𝑦𝑚𝑗

𝑗 ∈𝑆𝑚

+ ∑ �̂�𝑚𝑗
𝐸𝐵𝐿𝑈𝑃

   
                    (7)

𝑗 ∈𝑆𝑚
𝐶

 

Where �̂�𝑚𝑗
𝐸𝐵𝐿𝑈𝑃 is a model-dependent predictor of the non-sampled part (𝑆𝑚

𝐶 ) of the 
population 𝑈𝑚. 

Earlier research (Schilling et al, 2016) has shown that small area estimators with linear 
mixed models can outperform direct estimators for ALFIN data, particularly for state – 
item code combinations with small sample sizes. However, volatility, or large changes 
from one year to another, can degrade the performance of linear models in certain 
estimation cells. This research could lead to the development of modified forms of the 
model in (4) that can compensate for the effects of outliers. Ultimately, modified small area 
estimators that can account for outlier effects could lead to more reliable ALFIN estimates. 
 
 
4.3 N2 Estimator 

To account for the adverse effects of outliers, we developed an alternative form of the linear 
mixed model in (4).  As implemented by Gershunkaya (2010), and later by Trinh and Tran 
(2016), the estimator (denoted N2) is based on a scale mixture of two normal distributions, 
having a common mean and different variances. 

𝑦𝑚𝑗 =  𝒙𝒎𝒋
𝑻  𝜷 + 𝑢𝑚 +  𝜀𝑚𝑗                          (8) 

for j = 1 …. 𝑛𝑚, m = 1 … M, and 𝑢𝑚~𝑖𝑖𝑑   𝑁(0, 𝜏2) ,   

𝜀𝑚𝑗|𝑧𝑚𝑗  ~𝑖𝑖𝑑   (1 − 𝑧𝑚𝑗)𝑁(0, 𝜎1
2) + 𝑧𝑚𝑗𝑁(0, 𝜎2

2), 

and 𝑧𝑚𝑗|𝜋 ~  𝐵𝑖𝑛(1; 𝜋), 𝜎2 >  𝜎1 

where 𝑧𝑚𝑗|𝜋 = “Mixture part” indicator is a random binomial variable, with 
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π = Probability of belonging to part 2 of the mixture  

Though the N2 estimator appears to take the same form as the original linear mixed model 
in (4), its underlying distribution and assumptions are very different. With this approach, 
every observation is assigned a conditional probability of belonging to part 2 of the 
mixture, or the “outlier” (higher variance) distribution. Thus, estimates of β are robust to 
outliers, because outlying observations would have a greater probability of being assigned 
to the higher variance distribution in the mixture (Gershunkaya, 2010). 

The following procedure was used for the N2 estimator. 

Step 1: Estimating Model Parameters using the EM Algorithm 

We used the expectation-maximization (EM) algorithm to estimate the parameters in 
equation (8) above, with θ = (𝜎1, 𝜎2, 𝜏, 𝜋, 𝛽) denoting the set of model parameters.  
Consider 𝜃(𝑝) = (𝜎1

(𝑝)
, 𝜎2

(𝑝)
, 𝜏(𝑝), 𝜋(𝑝), 𝛽(𝑝)) as the set of model parameter values after 

the 𝑝𝑡ℎ iteration. Then at the (𝑝 + 1)𝑡ℎ iteration, compute: 
 

E (expectation) - step: 

𝑧𝑚𝑗
(𝑝+1)

=  

1 − 𝜋(𝑝)

√𝜎2
(𝑝)2

+ 𝜏(𝑝)2

exp [−
(𝑦𝑚𝑗 − 𝒙𝒎𝒋

𝑻  𝜷(𝒑))
2

2(𝜎1
(𝑝)2

+ 𝜏(𝑝)2)
]

𝜋(𝑝)

√𝜎1
(𝑝)2

+ 𝜏(𝑝)2

exp [−
(𝑦𝑚𝑗 − 𝒙𝒎𝒋

𝑻  𝜷(𝒑))
2

2 (𝜎1
(𝑝)2

+ 𝜏(𝑝)2)
] +

1 − 𝜋(𝑝)

√𝜎2
(𝑝)2

+ 𝜏(𝑝)2

exp [−
(𝑦𝑚𝑗 − 𝒙𝒎𝒋

𝑻 𝜷(𝒑))
2

2 (𝜎2
(𝑝)2 + 𝜏(𝑝)2)

]

 

𝑤𝑚𝑗
(𝑝+1)

=  
1− 𝑧𝑚𝑗

(𝑝+1)

𝜎1
2(𝑝) +  

𝑧𝑚𝑗
(𝑝+1)

𝜎2
2(𝑝)                                                  (8.1) 

�̅�𝑚
(𝑝+1)

=  (∑ 𝑤𝑚𝑗
(𝑝+1)𝑛𝑚

𝑗=1 𝑦𝑚𝑗) ∑ 𝑤𝑚𝑗
(𝑝+1)𝑛𝑚

𝑗=1⁄                        (8.2) 

�̅�𝒎
(𝒑+𝟏)

=  (∑ 𝑤𝑚𝑗
(𝑝+1)

𝑥𝑚𝑗
𝑛𝑚
𝑗=1 ) ∑ 𝑤𝑚𝑗

(𝑝+1)𝑛𝑚
𝑗=1⁄   

𝑉𝑚
(𝑝+1)

=  1 (∑ 𝑤𝑚𝑗
(𝑝+1)𝑛𝑚

𝑗=1 + 
1

𝜏(𝑝)2)⁄   

𝑢𝑚
(𝑝+1)

=  𝑉𝑚
(𝑝+1)

 (�̅�𝑚
(𝑝+1)

−  �̅�𝒎
𝑻(𝒑+𝟏)

𝜷(𝒑)) ∑ 𝑤𝑚𝑗
(𝑝+1)𝑛𝑚

𝑗=1               (8.3) 

M (maximization) - step: 

𝜋(𝑝+1) =  (∑ ∑ 𝑧𝑚𝑗
(𝑝+1)𝑛𝑚

𝑗=1
𝑀
𝑚=1 ) 𝑛⁄                                        (8.4) 

𝜎1
(𝑝+1)2

=  
∑ ∑ (1 − 𝑧𝑚𝑗

(𝑝+1)
)

𝑛𝑚
𝑗=1 [(𝑦𝑚𝑗 − 𝒙𝒎𝒋

𝑻 𝜷(𝒑) − 𝑢𝑚
(𝑝+1)

)
2

+  𝑉𝑚
(𝑝+1)

]𝑀
𝑚=1

∑ ∑ (1 − 𝑧𝑚𝑗
(𝑝+1)

)
𝑛𝑚
𝑗=1

𝑀
𝑚=1
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𝜎2
(𝑝+1)2

=  
∑ ∑ 𝑧𝑚𝑗

(𝑝+1)𝑛𝑚
𝑗=1 [(𝑦𝑚𝑗 − 𝒙𝒎𝒋

𝑻 𝜷(𝒑) − 𝑢𝑚
(𝑝+1)

)
2

+  𝑉𝑚
(𝑝+1)

]𝑀
𝑚=1

∑ ∑ 𝑧𝑚𝑗
(𝑝+1)𝑛𝑚

𝑗=1
𝑀
𝑚=1

 

𝜏(𝑝+1)2 =  ∑ (𝑢𝑚𝑗
(𝑝+1)

+  𝑉𝑚
(𝑝+1)

) 𝑀⁄𝑀
𝑚=1   

𝛽(𝑝+1) =  
∑ ∑ 𝑤𝑚𝑗

(𝑝+1)𝑛𝑚
𝑗=1 𝒙𝒎𝒋(𝑦𝑚𝑗− 𝑢𝑚

(𝑝+1)
)𝑀

𝑚=1

∑ ∑ 𝑤
𝑚𝑗
(𝑝+1)𝑛𝑚

𝑗=1
𝒙𝒎𝒋

𝑻 𝒙𝒎𝒋
𝑀
𝑚=1

                               (8.5) 

 

As shown in (8.1), when 𝑧𝑚𝑗 increases, the effects of the unit on (8.2) are down-weighted.  
In contrast to the original EBLUP estimator, the N2 estimator can offer robustness to 
outliers, because it can account for and adjust to their effects. 

Step 2:  After converging to the solution, we can find a predictor (𝒀𝒎𝒓) for the non-
sampled data: 

�̂�𝒎𝒓
𝑵𝟐 =  𝒙𝒎𝒓

𝑻  �̂�𝑁2 + (𝑁𝑚 − 𝑛𝑚)�̂�𝑚
𝑁2 

Where �̂�𝑁2, �̂�𝑁2 are computed from the EM algorithm and 𝑥𝑚𝑟
𝑇 =  ∑ 𝑥𝑚𝑗

𝑇𝑁𝑚
𝑗=𝑛𝑚+1  

Step 3:  The estimator of 𝑌𝑚 is then: 

�̂�𝒎
𝑵𝟐 =  𝑦𝑚 + �̂�𝒎𝒓

𝑵𝟐  

Similar to the original EBLUP estimator, the N2 estimator employs small area methods, 
because it incorporates information from multiple sources, including both sampled and 
non-sampled portions. The N2 estimator borrows strength by combining data from the area 
m, but also the non-sampled portions, which are taken from all areas. Unlike the original 
EBLUP estimator, the N2 estimator provides a means to adjust for the effects of outliers. 

Model Transformations: 

Both the original EBLUP estimator and N2 estimator have underlying unit-level, nested 
error models that assume errors are distributed normally. In practice, these assumptions are 
rarely satisfied and adjustments are often required before the estimators are used with 
production data. Issues with the normality assumption can often be addressed with 
transformations. As discussed by Schilling et al (2016), the log transformation helped 
address normality issues with the original EBLUP estimator. For the N2 estimator, we 
explored both the log and square root transformations. Though both transformations 
yielded similar results in terms of RRMSE, the square root transformation converged to 
solution much faster when estimating EM algorithm parameters, which was consistent with 
findings from Trinh and Tran (2016). Thus, the square root transformation was selected to 
address normality issues with the N2 estimator. 

The modified unit level model from (8) is: 
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√𝑦𝑚𝑗 =  𝛽0 + 𝛽1√𝑥𝑚𝑗 + 𝑢𝑚 + 𝜀𝑚𝑗                     (9) 

Then, we can predict 𝑦𝑚𝑗 with the inverse transformation: 

�̂�𝑚𝑗
𝑁2 =  (�̂�0

𝑁2 + �̂�1
𝑁2

√𝑥𝑚𝑗  +  �̂�𝑚
𝑁2)

2
                   (10) 

Finally, a total estimate for state-item code m can be derived as: 

�̂�𝑚
𝑁2 =  �̂�𝑚 =  ∑ 𝑦𝑚𝑗

𝑗 ∈𝑆𝑚

+  ∑ �̂�𝑚𝑗
𝑁2

 
                    (11)

𝑗 ∈𝑆𝑚
𝐶

 

Where �̂�𝑚𝑗
𝑁2 is a model-dependent predictor of the non-sampled part (𝑆𝑚

𝐶 ) of the population 
𝑈𝑚. 

 
5. Evaluation Design 

 
Our research includes data from the Finance components of the 2007 and 2012 Census of 
Governments. The universe is created from the intersection of 2007 data with 2012 data, 
and is restricted to only the units surveyed during both census years. For simplicity, the 
universe is further limited to include only non-zero values on the variables of interest, or 
the four main groups of item codes. The universe for this research consists of 
approximately 85,850 units. 
 
The 2007 CoG-F provides the auxiliary data, and also serves as the sampling frame. The 
production sampling design is applied to select 1000 replicated samples on the 2007 and 
2012 CoG-F data. For each sample replicate we estimate the 2012 state totals for both 
expenditure and revenue item codes using three estimators: HT, EBLUP, and N2. During 
the analysis, we computed the relative root mean squared error (RRMSE) for each 
estimator from the 1000 samples. Our analysis includes item code totals for two of the 
states with the greatest variety of ALFIN item code estimates: New York and California. 
 
Relative Root Mean Squared Error (RRMSE): 
 
Based on the Mean Squared Error (MSE), which incorporates both the variance of an 
estimator and its bias, the Relative Root Mean Squared Error (RRMSE) provides an 
important measure to compare estimator quality. The RRMSE is calculated as: 

                   𝑅𝑅𝑀𝑆𝐸̂ =  √
1

𝑛𝑟𝑒𝑝
∑ (

�̂�𝑚,𝑘 −  𝑌𝑚

𝑌𝑚
)

2

  
𝑛𝑟𝑒𝑝

𝑘=1
                    (12) 

Where 𝑛𝑟𝑒𝑝 is the number of sample replicates, �̂�𝑚,𝑘 is the estimated value of small area m 
for the 𝑘𝑡ℎ replicate, and 𝑌𝑚 is the true value for small area m, or the state-item code 
combination. 
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6. Results 

Figure 1 shows a distribution of residuals after applying a square root transformation from 
equation (7) above for California revenues over the entire set of 1000 replicates. As shown 
in Figure 1, the plot is both unimodal and symmetric, and the normality assumption in the 
unit level model for the N2 estimator is approximately satisfied. 

Figure 1: Normality of residuals for CA revenues 

 

Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Finance 
 
A comparison of the estimated RRMSE for the three estimators is provided in Table 1. 
These values denote the number of times one estimator outperforms the others for 𝑅𝑅𝑀𝑆𝐸̂ . 
The results in Table 1 are compiled from 1000 replicates, which produce state-item code 
estimates for two states: California and New York. A total of 330 state-item code estimates 
are calculated for each replicate. 
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Table 1: Number of times estimator outperforms others for RRMSE  
(cells = state by item code estimates)    
 

State HT EBLUP N2 
CA 3 51 88 
NY 10 42 82 

 

NOTE: Ties are not listed in Table 1; these can be attributed to 54 state - item code estimates 
that are from cells having only certainty units. 
Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Finance 

 
The state-item code estimates from cells having only certainty units are excluded from 
Table 1. In both states, the N2 estimator outperforms the other two in approximately 60% 
of the remaining cells. 
 
Table 2 provides a breakdown of the results from Table 1 relative to estimation cell size.  
The results in Table 2 are aggregated from both states (CA, NY) from Table 1. The Table 
2 categories are based on the median cell sizes calculated over the 1000 sample replicates 
for non-certainty (πPS) units only, or the units that are included in the model for a state-
item code estimate. In the last two categories, the median cell size can be zero, because 
some state-item code combinations are obscure, with only one or two contributing πPS 
units, which do not appear in every sample replicate. The last two categories of the obscure 
state-item code estimates indicate that some of the estimates can include contributing 
certainty units, while others are calculated from πPS units only. 
 
Table 2: Overall estimator performance for RRMSE by cell size 
(cells = state by item code estimates)   
 

Median Cell Size 
(πPS units only) 

Number of Times Estimator Outperformed 
HT EBLUP N2 

> 30 4 24 57 
21-30 3 5 20 
11-20 2 9 28 
6-10 2 13 20 
1-5 1 27 33 
0* 1 13 5 
0** 0 2 7 

 
* Includes other contributing certainty units in the estimates. 
** Estimates calculated only from πPS units (no certainty units). 
NOTE: Ties are not listed in Table 2; these can be attributed to 54 state - item code estimates 
that are from cells having only certainty units. 
Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Finance 
 

The results from Table 2 show that N2 outperforms the other two estimators in most of the 
size categories. One of the last two categories, which include obscure state-item code 
estimation cells, is an exception. In the first obscure state-item code category, which 
includes certainty units, EBLUP outperforms the other two estimators. In the second 
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obscure state-item code category, which include only πPS units, the N2 estimator 
outperforms the other two. 
 
A density plot comparing RRMSE values for the three estimators is given in Figure 2, 
which excludes values greater than one (mostly for the HT estimator) for clearer 
visualization. 
 
Figure 2: Estimator RRMSE for values<=1 
(cells = state by item code estimates) 

 

Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Finance 
 
Figure 2 has a sharp peak near zero for the N2 estimator, with another sharp peak by 
EBLUP and then a shallower peak for the HT estimator. Both the N2 and EBLUP 
estimators have relatively short tails following their sharp peaks. In contrast, Figure 2 
shows a broader, longer tail for the HT estimator. These results demonstrate a similar 
degree of high performance for 𝑅𝑅𝑀𝑆𝐸̂  in the N2 and EBLUP estimators versus lower 
performance for HT.  
 
To examine the findings from Tables 1 and 2 and Figure 2 more closely, we created two 
scatter plots of the lowest 𝑅𝑅𝑀𝑆𝐸̂  value of the three estimators versus median estimation 
cell size by state, which are given in Figures 3 and 4 below. Note that the median cell sizes 
in the scatter plots are for πPS units only. The low 𝑅𝑅𝑀𝑆𝐸̂  values for the three estimators 
are shown using different colors on the two scatter plots. 
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Figure 3: Lowest RRMSE vs. median cell size (CA πPS units only) 
(cells = state by item code estimates) 
 

 

Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Finance 

As expected, the data from Figure 3 show higher 𝑅𝑅𝑀𝑆𝐸̂  values for smaller median 
estimation cell sizes and falling 𝑅𝑅𝑀𝑆𝐸̂  values as the median cell size increases. The 
scatter plot also confirms values from Table 1 for California in that most of the data points 
represent either the EBLUP or N2 estimators, with few data points for HT. Though similar 
profiles can be observed on Figure 3 for the N2 and EBLUP estimators, the N2 data points 
tend to have lower values and be clustered closer to zero. In addition, more data points for 
the N2 estimator on Figure 3 confirms the results from Table 1, showing that it outperforms 
EBLUP in the number of instances it has the lowest 𝑅𝑅𝑀𝑆𝐸̂  value. 
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Figure 4: Lowest RRMSE vs. median cell size (NY πPS units only) 
(cells = state by item code estimates) 
 

 
 

Data Source: U.S. Census Bureau, 2007 and 2012 Census of Governments: Finance 
 
The data from Figure 4 also show that 𝑅𝑅𝑀𝑆𝐸̂  values fall as median estimation cell sizes 
increase. Based on the number of data points on the scatter plot, the relative performance 
of the three estimators can be ranked, with the N2 estimator outperforming the other two, 
followed by EBLUP and then HT. This ranking is consistent with the results in Table 1 for 
New York. In contrast with Figure 3, there is less overall scatter among the data points, 
with relatively few 𝑅𝑅𝑀𝑆𝐸̂  values above 0.1 and most data points clustered near the zero 
value. 
 

7. Conclusions 

Our evaluation shows that the N2 estimator clearly outperformed the EBLUP and HT 
estimators with respect to 𝑅𝑅𝑀𝑆𝐸̂ . Thus, ALFIN estimation gains are possible by adding 
outlier robustness to small area estimators. In the future, we plan to expand this research to 
other, less populated states, where the estimation challenges are greater. In addition, we 
plan to explore whether further improvements to the N2 estimator are possible using overall 
bias correction (Gershunkaya, 2010), which could potentially correct for biases in certain 
outlying estimation cells. 
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