
Local Variable Selection in Sequential optimization

Munir Winkel, Jonathan W Stallings, and Brian J Reich

Department of Statistics, North Carolina State University

Abstract

Optimizing a function using a sequential design is challenging when the function is defined over

a high-dimensional design space. Expected improvement algorithms, which balance exploration

of the design space with honing in on a global maximum, struggle in high dimensions because

estimating the function and its maximum well require a large number of observations. Reducing

the dimension of the design space should improve estimation and lead to faster identification of the

maximum. However, current variable selection techniques are global; a variable is either in or out of

the design matrix. In this paper, we define a measure of local importance to identify which variables

are active around regions of local maxima, and we design a method to efficiently search the design

space and estimate a global maximum. We present simulation studies involving high-dimensional

data and compare the proposed global and local variable selection approach with other methods in

terms of their ability to estimate the global maximum. In the simulation study, we show that local

variable selection takes fewer steps to estimate a global maximum.

Keywords: Bayesian, Variable Selection, Computer Experiments, Expected Improvement

1. Introduction

Our work is motivated by a material science study where the objective is to find the com-

bination of atomic properties with the optimal tribological properties. Each experiment in

that study uses different types of nanoparticles, immersed in different liquids and placed

on different substrates on a quartz crystal microbalance (QCM). Varying the nanoparti-

cles, liquids, and substrates can be thought of as adjusting the levels of the corresponding

atomic properties; and the quantitative results from each experiment are estimates of the

tribological properties. Since each experiment is time-consuming and costly, it is critical to

carefully choose the levels of the atomic properties. To that end, we use a sequential design

that performs interim analyses and proposes the next experimental setting that maximizes

the expected information about the underlying tribological properties.

It is challenging to find the optimal settings for the next experiment, especially when

2590



the number of inputs (the atomic properties of the nanoparticles, substrates, and liquids)

is large. Variable selection to reduce the dimension of the design space is appealing both

statistically and operationally. We anticipate that a majority of the atomic properties will

have some effect on the underlying tribological properties across the entire design space,

but that our sequential design approach will eventually propose experimental settings in a

local neighborhood around the optimal value, where only a few atomic properties will be

influential. This leads to our statistical development of a sequential design algorithm that

optimizes a high-dimensional function using both global and local variable selection.

To formalize the problem mathematically, denote Y (x) as the scalar response obtained

from conducting an experiment at input x = (x1, ..., xp). We assume

Y (x) = f(x) + ε (1)

for some underlying response surface f(·) and errors ε iid∼ N(0, τ2). The objective is to find

the inputs x that maximize the response surface f(x).

In a sequential design, an initial set of experiments is conducted. Before conducting

experiment i, the data from the first i − 1 experiments are used to estimate the response

surface f and its uncertainty. This information guides which inputs are chosen for the next

experiment. For example, Jones [2001] suggests that the response surface can be estimated

using basis functions, cubic splines, or Gaussian process models. The experiment that is

chosen next maximize an optimality criteria, such as the expected improvement criterion,

which balances exploring the design space with honing in on regions near the observed

maxima (Močkus [1975], Jones et al. [1998]). See Brochu et al. [2010] for a discussion of

other utility functions, including probability of improvement.

Though these tools are powerful, optimizing a function remains challenging in higher

dimensions (Shan and Wang [2010]). There is extensive literature available on variable

selection. In higher dimensions, several variables can be “inactive,” in the sense that varying

their inputs does not affect the functional response. Most variable selection procedures are

global, where variables are declared to be inactive across the entire [0, 1]p space. Bai et al.

[2014] emphasize that in nonlinear settings, whether a variable is active or not is a “local

2591



concept.” Bai et al. [2014] allow for the set and size of locally active variables to vary

across the design space and propose two approaches for local variable selection. The first

approach assumes a local linear model and uses the magnitude of the partial derivatives

as a guide to variable selection. The second approach uses the change in prediction as a

measure of local importance, where predictions are made using locally-weighted kernels

and the closest design points in each dimension.

In this paper, we introduce a new measure of local importance and as well as a new

algorithm for reducing the dimension of the search space. In a simulation study, we show

how local variable selection, in conjunction with these other tools, allows scientists to more

effectively explore the design space and identify the best input to maximize the unknown

underlying function.

2. Gaussian Process Regression

Once data have been collected, surrogate models can be used to make predictions for any

arbitrary input. This will guide the choice of input for the next experiment. Following Sacks

et al. [1989], we use Gaussian process (GP) regression to build a surrogate model, since GP

regression can approximate highly non-linear functions well. We model f as a GP with

mean function E[f(x)] = µ(x) and covariance function Cov[f(x), f(x′)] = σ2K(x,x′).

While it is possible to specify polynomial mean functions, Welch et al. [1992] argues that a

constant mean function is sufficient for interpolating the response surface between observed

design points, so we set µ(x) ≡ µ for all x. The covariance function dictates how much

information to borrow across observations that are nearby. We assume that the true response

surface is smooth, and we select the infinitely-differentiable squared exponential covariance

function [Sacks et al., 1989]

K(x,x′) = exp

{
−

p∑
k=1

γk
(
xk − x′k

)2} (2)

where γ1, ..., γp ≥ 0 are the correlation range parameters. If γk = 0, then the kth input is

independent of the response (conditional on all other inputs remaining the same). If γk is

large then the response surface is sensitive to changes in the kth input variable, since only

2592



observations close by are correlated with each other.

In addition to the covariance of the response surface, we include the nugget term ε in (1)

to account for random experimental variation unrelated to the mean response f(x). Even

for deterministic functions where Y (x) = f(x), including a nugget effect with Var(ε) =

τ2 > 0 can be used to stabilize computations by avoiding computational issues involving

non-singular matrices [Gramacy and Lee, 2009]. By assuming an error process independent

of the underlying function, we have

Cov[Y (x), Y (x′)] = σ2K(x,x′) + τ21{x=x′} ≡ V (x,x′). (3)

The Gaussian process model can be used for prediction at a new input x given a sample

of n observations with inputs x1, ...,xn and corresponding outcomes Y (x1), ..., Y (xn). We

denote VX to be the n x n covariance matrix of the n observations y = [Y (x1), ..., Y (xn)]T

corresponding to the observed n x p matrix of inputs X = [xT1 , ...,x
T
n ]T . Denote v(x) ≡

[V (x1,x), ..., V (xn,x)]T as the covariance between input x and the observed inputs. For

any input x, it holds that Y (x) | y is a Gaussian process with prediction mean and variance

Ŷ (x) = µ+ v(x)TVX
−1(y − µ1n),

s2(x) = σ2 − v(x)TVX
−1v(x).

(4)

To complete the Bayesian model we specify priors for the parameters. For prior spec-

ification we reparameterize to the total precision (inverse variance), η = 1/(σ2 + τ2),

and proportion of variance from the response surface, r =
σ2

σ2 + τ2
. The priors are then

η ∼ Gamma(aη, bη), r ∼ Uniform(0, 1), and µ ∼ N(0, σ2µ), where the hyperparameters

aη, bη, and σ2µ are set to give uninformative priors. The priors for the correlation parameters

γ1, ..., γp are given in Section 3.1.

3. Sequential Optimization using Expected Improvement

Jones et al. [1998] introduced the efficient global optimization (EGO) algorithm which

balances exploring the unobserved design space to improve estimates of the response sur-

2593



face, with honing in on areas around an observed maximum. The EGO algorithm was

built for deterministic computer simulations, where experiments repeated at the same input

settings yield identical responses. As introduced by Močkus [1975], we define the im-

provement at any arbitrary input as I(x) ≡ max{Y (x) − Y (xopt), 0}, where Y (xopt) =

max{Y1, ..., Yn}. Since the exact improvement is unknown, the EGO algorithm instead

uses the surrogate model to compute the expected improvement (EI) EI(x) = E[I(x)],

which Jones et al. [1998] shows can be written as

EI(x) = s(x) {Z(x)Φ [Z(x)] + φ [Z(x)]} , (5)

where Z(x) ≡ Y (x)− Y (xopt)

s(x)
and Φ(·) and φ(·) are the CDF and PDF of a standard

normal distribution, respectively. The next input evaluated is the one that maximizes EI,

i.e., xn+1 ≡ arg maxxE[I(x)]. In the deterministic case, with τ = 0, a input already

selected will never be selected again, since its EI is exactly zero.

We will use the Augmented Expected Improvement (AEI) criterion [Huang et al., 2006],

which is more appropriate for non-deterministic functions. Using the parameterization in

(3) and given an interest in maximization, the AEI criterion is defined as

AEI(x) ≡ E
[
max{Y (x)− Ŷ (xopt), 0}

](
1− τ√

s2(x) + τ2

)
(6)

where xopt ≡ arg maxxi∈{x1,...,xn}{Ŷ (xi) − cs(xi)} for a given c ∈ R and predicted

values Ŷ (x1), ..., Ŷ (xn) given by (4). Huang et al. [2006] state that the xopt design point

is chosen to reflect the user’s degree of risk aversion, where c = 1 represents a “willingness

to trade 1 unit of predicted objective value for 1 unit of the standard deviation of prediction

uncertainty.” Because it assumes τ2 > 0, AEI could propose going to an input that has

already been observed. To prevent this from happening too often, the EI is multiplied by a

penalty term involving s2(·) and τ2. If enough replicates are conducted at the same design

point, say xi, then both s2(xi)→ 0 and AEI(xi)→ 0.

To maximize AEI , we use its gradient vector
∂EI(x)

∂x
. After several simplifying steps

2594



reproduced in Section 7, the gradient of EI is

∂EI(x)

∂x
= Φ[Z(x)]

{
Z(x)

∂s(x)

∂x
+ s(x)

∂Z(x)

∂x

}
+ φ [Z(x)]

∂s(x)

∂x

= Φ [Z(x)]
∂

∂x
µ(x) + φ [Z(x)]

∂s(x)

∂x
.

(7)

The gradient of the prediction standard error, which depends on the correlation function, is

∂s(x)

∂x
=

1

2s(x)

∂

∂x

[
−v(x)TVX

−1v(x)
]
. (8)

Under our parameterization, the kth component involves the scalar

∂v(x)TVX
−1v(x)

∂xk
= −4γkv(x)TVX

−1 [(xk − x1k)V (x1,x), ..., (xk − xnk)V (xn,x)]T .

(9)

Finally, the gradient of AEI is

∂AEI(x)

∂x
=

τ s(x) EI(x)

(s2(x) + τ2)3/2
∂s(x)

∂x
+

(
1− τ√

s2(x) + τ2

)
∂EI(x)

∂x
. (10)

3.1 Global Variable Selection

If γk = 0, we say that the kth input variable is “globally inactive,” since it does not affect

the response anywhere in the design space. Following Linkletter et al. [2006] we specify

a prior for the GP range parameters that places positive mass on each input variable being

independent of the response; specifically, γk = ukbk, where uk ∼ Gamma(au, bu) is inde-

pendent of bk ∼ Bernoulli(θ), and θ ∼ Beta(aθ, bθ) is the prior probability of any variable

being globally active. The decision to declare an input variable globally active is based on

the posterior probability b̄k = Prob(bk = 1 | y) = Prob(γk > 0 | y). We drop variable k if

b̂k < κ for a pre-specified κ ∈ (0, 1).

As described in the Appendix, we use MCMC to obtain M posterior draws from the

joint distribution of the parameters, Θ = {η, r, µ, b1, ..., bp, u1, ..., up}, denoted Θ1, ...,ΘM .

The samples are used to approximate the global variable importance measures b̄k as well as

the local variable important measures described in the next section.

2595



4. Local Variable Selection

4.1 Defining Local Importance

Even after performing global variable selection, it may be possible to further reduce the di-

mension of the search space around a neighborhood of the maximum and improve conver-

gence to the optimum. One approach to extend the global variable selection methodology in

Section 3.1 and perform local variable selection is to specify a prior on the response surface,

with the probability that the response surface is zero in certain subregions [e.g. Kang et al.,

2016]. However, this is likely too computationally intensive for sequential optimization.

Instead, we define a measure of local importance and develop an algorithm that uses local

variable selection to find a global maximum.

As a toy example, consider the two-dimensional function

f(x) = 5x21{x1≥0.5} −
√
x1 + x21{x1<0.5}.

Both x1 and x2 are needed to describe the function globally, but once we are in the local

region where x1 ≥ 0.5, we need only vary x2 for optimization.

The motivation for our local importance measure is that if the kth input is locally inac-

tive, then setting γk = 0 will not affect the fitted response surface around the maximum,

and vice versa. Denote the estimated optimal input as χ̂ = arg maxx∈[0,1]p Ŷ (x) and its

ε-neighborhood as N = {x; ||x − χ̂|| < ε}. Then the local importance measure is the

squared correlation

R2
k =

[∫
N {Ŷ (x)− µ}{Ŷ k(x)− µ}dx

]2
∫
N {Ŷ (x)− µ}2dx

∫
N {Ŷ k(x)− µ}2dx

(11)

where Ŷ are the baseline predictions and Ŷ k are the alternative predictions made under the

assumption that γk = 0. All the other estimated parameters are the same.

We can estimate (11) using m MCMC draws from the posterior Θ`, by construct-

ing vectors of baseline predictions and alternative predictions at q locations. For each

` ∈ {1, ...,m}, we take q` to be 900 points distributed as a truncated multivariate normal

2596



N(χ̂`, σεI) bounded by [0, 1]p and evaluate

R2
k` = Corr

(
Ŷ , Ŷ (k) | Θ`,X`,q`

)2
(12)

using only the nε < N design points X` that are within a radius ε of the local maximum χ̂`,

in order to ensure that predictions are not influenced by design points far away. To prevent

either too few or too many local design points from being considered, we can adjust ε such

that a ≤ nε ≤ b, for pre-specified a, b ∈ Z+.

An R2 of 1 indicates perfect correlation; if that occurs, we see that setting the spatial

range parameter to 0 makes no difference in predictions, suggesting that an input is not lo-

cally active. On the other extreme, anR2 value of 0 suggests that the alternative predictions

are very different from the original ones, offering evidence that an input is locally active.

Next, we average across all the m different posterior draws of the location of the maxi-

mum, and define the local importance Lk of input k as follows

Lk ≡ 1− 1

m

m∑
`=1

R2
k`, (13)

such that 0 indicates no importance and 1 indicates the greatest importance. We declare a

variable to be locally active if Lk ≥ ρ for some pre-specified number, 0 < ρ < 1.

Finally, denote A to be the set of locally active variables. It may appear troubling that

the L1, ..., Lp measures of “local” importance are based on locations of maxima χ` that

could be spread “globally” across the design space. This is intentional; if different local

regions have different sets of locally active variables, we want to optimize over all of them

to find a global maximum.

4.2 Selecting the Next Design Point

Since the expected improvement surface in p dimensions could be multi-modal and have

large regions where the surface is flat, it is not trivial to find the input x ∈ [0, 1]p with the

greatest expected improvement. To find a reasonable value, we first evaluate AEI over a

matrix of candidate points C.

2597



Denote C to be the maximinLHS withN2 candidate points in p dimensional space, with

N2 >> n. Let T be the “targeted” design that involves only the locally active variables:

maximinLHS(N2, |A|). Next, we replace the columns of C corresponding to the locally

active variables with T. By doing so, we hedge our bets. We construct a “better” space-

filling design in the dimensions we think are locally active, which could help us identify

a maximum faster. Not all is lost, however, if we misspecified the set of locally active

variables, since we are still varying all of the globally active variables in the matrix of

candidate points .

Then we choose the five candidate points with the greatest AEI and do local line

searches in the direction of the p-dimensional AEI gradient, g.

We place two restrictions on the local line search. First, we require that the line search

lie within a p-dimensional ball of radius ε centered at x∗, the starting point.

Second, we require the line searches stay within the p-dimensional hypercube, [0, 1]p.

Whenever the line search proposes a coordinate at or outside of the boundary, that coor-

dinate is set to equal the boundary value and the corresponding coordinate of the gradient

is set to zero. In two dimensions, if the g1 (horizontal) gradient hits the boundary, the

subsequent design points of that line search would either slide up or down the boundary,

depending if g2 > 0 or g2 < 0. This approach was inspired by the more rigorous approach

of Rosen [1960].

Once the line searches have been done from each of the 5 candidate design points that

had the largest AEI, we choose the one that has the maximum AEI. We repeat this process

until 20 new design points have been augmented to the design matrix X and evaluated using

the black-box function. We find that updating the parameter estimates each time a design

point is added leads to the best performance in finding a maximum. We summarize this

entire process in Algorithm 1.

4.3 Estimating the Optimum Location

To determine the estimated location of the optimum, we use information about the set of lo-

cally active variables, and we fix values for the locally inactive variables at the “best” input,

as defined as the χ̂` with the largest predicted value using the posterior median parameter

2598



estimates

χ̂ = arg max
`=1,...,m

Ŷ (χ̂` | Θ̄). (14)

5. Simulation Study

5.1 Design

We conduct a simulation study to evaluate the effects of global and local variable selection

on sequential optimization. Each simulated dataset begins with the same randomly gener-

ated maximin Latin Hypercube design [Joseph and Hung, 2008] with n0 observations and

p0 inputs, denoted maximinLHS(n0, p0), and we compare five sequential algorithms for

selecting the 20 additional design points:

1. None does not do any variable selection;

2. GVS conducts global variable selection only;

3. LVS does global and local variable selection and allows the set of locally active vari-

ables to change each time a new design point is added;

4. Both conducts global and local variable selection, but once a variable is declared

’locally inactive,’ it will never be considered again; and

5. Oracle knows which variables are globally active and uses these only these variables

throughout the sequential design.

For all methods we use uninformative priors au = 1 and bu = 20 so that E(uk) = 20 and

Var(uk) = 400, σµ = 100, aη = bη = 0.1 and aθ = bθ = 1. We update the posterior of the

parameters after each new design point is added to the dataset.

We compare results for several combinations of the initial sample size, n0, and the

number of input variables p0. For each combination of n0 and p0 we simulate 100 datasets

with response surface f set to the “Simba” function given in the Appendix and plotted in

Figure 1. We add error terms ε to each observation, such that ε ∼ N(0, τ2 = 0.05). In this

function, the first six inputs are globally active, while only the first three are locally-active

2599



Algorithm 1 Sequential Design using Global and Local Variable Selection
1: procedure SEQUENTIAL DESIGN

2: Create an initial maximinLHS(n, p) design, X
3: Evaluate y = f(X) + ε
4: Fit a Gaussian process and obtain Θ1, ...,ΘM draws from the joint posterior distri-

bution
5: for step i ∈ {1, ..., 20} do
6: Perform global variable selection, GVS(Θ)
7: Construct a set of locally active variables A using LVS(Θ, i)
8: Given A, construct a matrix of candidate points C using CANDIDATES(A,Θ)
9: Choose the design point x∗∗ that maximizes AEI using AEI(C, Θ̄)

10: Augment x∗∗ to X and Y (x∗∗) to Y
11: Update parameter estimates Θ1, ...,ΘM

12: Estimate the optimal input χ.

13: function GVS(Θ)
14: for variable k ∈ {1, ..., p} do
15: Keep Xk in the design matrix ⇐⇒ pr(γk > 0 | y, Θ̄) ≥ κ
16: function LVS(Θ, i)
17: Randomly sample m < M posterior draws of the optimal design point χ̂1, ..., χ̂m
18: for ` ∈ {1, ...,m} do
19: Make predictions Ŷ | Θ` at q points using nε local design points within radius

ε of χ̂`
20: for variable k ∈ {1, .., p} do
21: Set γk = 0 and make alternative predictions, Ŷ (k) at the same q points
22: Calculate the local importance, L`k ≡ 1− Corr(Ŷ , Ŷ (k) | Θ`)

2

23: Summarize across posterior draws and calculate Lk = mean(L1k, ..., Lmk) for k ∈
{1, ..., p}.

24: Let Ai = {k : Lk ≥ ρ | ρ ∈ (0, 1)} be the set of locally active variables at step i.
25: If no variables meet this criteria, set ρ = max{L1, ..., Lp} such that at least one

variable is considered locally active. return A

26: function CANDIDATES(A,Θ)
27: Construct C, a maximinLHS(N2, p) design
28: Fill the columns of C corresponding to A with a LHS(N2, |A|) design return C

29: function AEI(A,C, Θ̄)
30: Evaluate AEI at each of the candidate points C
31: Set x(i) = arg maxx∈CAEI(x)
32: for variable k ∈ {1, .., p} do
33: compute gk, the kth component of the gradient of AEI(x∗)
34: Choose the 5 design points with the largest AEI
35: For each of the 5 design points (WLOG: x(i)), do five line searches spanned by

x(i) + tg for different step multipliers, t ∈
[
0, ε(g21 + ...+ g2p)

−1/2
]
, where the bounds

keep the line searches within a radius ε of the starting point, and each subsequent line
search beings where the previous one ends. return x∗∗ ≡ arg maxtAEI(x(i) + tg)

2600



around the true optimum. The true maximum depends linearly on X1 in a local region

defined primarily by X2 and X3.

Figure 1: Holding X4 = X5 = X6 fixed at 0.28, and varying X3 ∈ {0, 0.33, 0.66, 0.99},
we see how the response surface changes. Additionally, the location and value of the local
maxima vary considerably. The white star represents the location of the maximum.

Since all methods begin with the same n0 observations, our performance metric is the

improvement

f(χ̂i | Θ̄i)− f(χ̂0 | Θ̄0) (15)

for sequential step i ∈ {1, ..., 20}, where the true function evaluated at the best input, based

on parameter estimates from the initial LHS design, is denoted as f(χ̂0 | Θ̄0). Algorithms

with large improvement are preferred.

5.2 Results

We present the improvement over iteration, averaged across all 100 simulated datasets, for

each setting and approach in Figure 2. As expected, the Oracle approach has the largest

improvement in all cases. The methods with the smallest improvement is often ”None” or

”Both,” where the former has to optimize more dimensions than necessary, and the latter is

often stuck in sub-optimal regions of the design space. LVS and GVS are often similar, but

2601



LVS has larger improvement than GVS in three of the four simulation settings.

Improvement over iteration is choppy, partially because this is a difficult test function

with noisy observations, and also because the approaches are re-estimating where the loca-

tion of the optimum xopt is each time a design point is added. While the average improve-

ment (Figure 2) is around 2, improvement for any given simulated dataset and iteration

could vary greatly, from -25 to 8. The large negative values often occur in the beginning of

the sequential design, when parameter estimates are based on a limited number of observa-

tions in high dimensional space.

We see in Figure 3 that our measure of local importance, defined in Section 4.1, can

accurately distinguish between variables that are locally active and locally inactive. The first

three truly locally-active inputs generally have the largest Lk values, where 0 ≤ Lk ≤ 1.

Figure 2: We evaluate the “Simba” test function across a range of initial design sizes n0
and dimensions p0, and calculate the change in estimated maximum as improvement(i) =
f(χ̂i | Θi) − f(χ̂0 | Θ0). Oracle (in red) performs the best across all settings, since it is
optimizing over only the six globally active variables.

2602



Figure 3: Variables X1, X2, X3 are truly locally active. Our measure of local importance
captures this information across a variety of simulation settings, where values closer to 1
indicate greater local importance.

6. Discussion

We proposed a new method for using global and local variable selection for finding the

maximum of an unknown function that takes in a large number of inputs. From our simula-

tion study, we observed that the approach that uses only the important inputs performed far

better than the approach that used all of the inputs. This leads us to conclude that combining

Augmented Expected Improvement with global variable selection leads to better estimation

of the optimal input. We also find that our measure of local variable importance effectively

identifies the correct subset of locally-active variables. Finally, we see some evidence that

using local variable information in creating a targeted search in a low-dimensional space

can lead to faster and greater improvement than doing global variable selection alone.

2603



Acknowledgements

This work was supported by National Science Foundation grants DGE-1633587 and DMR-

1535082.

7. Appendix

7.1 MCMC details

We use Metropolis-Hastings within Gibbs sampling to obtain posterior samples of Θ. Using

the parameterization in Section 2, let

V (x,x′) =
1

η

[
rK(x,x′) + (1− r)1{x=x′}

]
≡ 1

η
W (x,x′). (16)

Denote 1
ηWX as the n x n covariance matrix corresponding to X. The log likelihood is

logL (y | Θ,X) = −n
2

ln(2π)− 1

2
ln |1

η
WX| −

η

2
(y − µ1n)TW−1

X (y − µ1n). (17)

The full conditional distributions of µ, η, θ, and bk are conjugate, and so these parame-

ters are updated by sampling from their full conditional distributions

η | rest ∼ Gamma
(
n

2
+ aη , bη +

1

2

[
(y − µ1n)TWX

−1(y − µ1n)
])

(18)

µ | rest ∼ Normal

(
η1TnW−1

X y

σ−2µ + ηw
,

1

σ−2µ + ηw

)

θ | rest ∼ Beta

(
αθ +

p∑
k=1

bk , bθ + p−
p∑

k=1

bk

)

bk | rest ∼ Bernoulli
(

pk1
pk1 + pk0

)

where w = 1TnW−1
X 1n and pk` ≡ p(y | bk = `,Θ(−k))p(bk = ` | θ) for Θ(−k) =

Θk/{bk}.

We implement the Metropolis-Hastings algorithm [Hastings, 1970] to update r and

u1, ..., up. The variance ratio r is sampled using the Metropolis-Hastings algorithm with

a Beta(10, 1) proposal distribution. For each k ∈ {1, ..., p}, uk is updated from its prior if

2604



bk = 0 and if bk = 1 it is updated using a Metropolis-Hastings step with a uniform candidate

distribution (conditioned on the current value of uk) Uniform (max{0, uk − ε(uk)} , uk + ε(uk)),

where

ε(uk) ≡

 max{100, huk} uk ≥ 0.30

0.95 0 ≤ uk < 0.30
(19)

and h ∼ Unif(1/2, 2). This proposal distribution is used because ensures candidates are

positive and its candidate distribution’s variance increase with the current value of uk.

7.2 Simba test function

Below is the functional form of “Simba,” written in R code.

# upper bumps, involving all variables

Y = 3.14749 + sin( 2*pi*(x1ˆ2 - 2*x2*(1 + x3) ) )*

( pnorm( 30 *(x2 -.3)) + pnorm(30*(.8 - x2)) - 1 )*

2*sin( 4*pi*x1 + 3*pi*(1+x3) + 2*pi*(x4 + x5) + 3*pi*(1 + x6)) +

### Simba lion king when x3 near 0.2

( 4 + 6*(x1) )*

(( pnorm( 30*(x2 - .0)) + pnorm(30*(.2 - x2)) ) - 1 )*

(( pnorm( 30*(x1 - .0)) + pnorm(30*(.6 - x1)) ) - 1 )*

( pnorm( 10*(.2 - x3)) ) +

### other area below simba lion king

### Simba lion king when x3 near 0.2

( 1 - 8*(x1 + x2 - x4 - x5 - x6)ˆ2 )*

(( pnorm( 40*(x2 - .0)) + pnorm(40*(.2 - x2)) ) - 1 )*

(( pnorm( 40*(x1 - .6)) + pnorm(40*(1 - x1)) ) - 1 )*

( pnorm( 10*(.2 - x3)) ) +

2605



#### locally active region when x3 > .2

.5*( 1 - sin( 8*pi*x1 + 7*pi*x2*x3 - 4*pi*x4*x5*x6) )*

(( pnorm( 30*(x2 - .0)) + pnorm(30*(.3 - x2)) ) - 1 )*

( pnorm( 8*(x3 - .3)) ) +

#### deceptive maximum, when x2 > .8, x3 > .2, involving

#### all variables

( 5*cos( 2*(x2 + .5)*(-x4 + .5)*(-x5+.5)ˆ2 )*(-x6 - .5) -

.02*((1-x2)ˆ2 +

(1-x1)ˆ2 +

(1-x3 - .3*x4)ˆ2 +

(1-x5 + .5*x4)ˆ2 +

(.8-x6 - .4*x4)ˆ2 ) )*

( pnorm(5*(x2 - 1) + pnorm(10*(.5 - x3))))

7.3 Gradient of Expected Improvement

We show the derivation for the gradient of EI, using the concise notation ṡ ≡ ∂s(x)

∂x
and

ż ≡ ∂Z(x)

∂x
.

EI(x) = s {zΦ(z) + φ(z)}

∂EI(x)

∂x
= s

{
zΦ̇(z) + Φ(z)ż + φ̇(z)

}
+ ṡ {zΦ(z) + φ(z)}

= s
{
zφ̇(z)ż + Φ(z)ż − φ(z)zż

}
+ ṡ {zΦ(z) + φ(z)}

= Φ(z) {sż + ṡz}+ ṡ {φ(z)} .

(20)

References

Er-Wei Bai, Kang Li, Wen-Xiao Zhao, and Weiyu Xu. Kernel based ap-

proaches to local nonlinear non-parametric variable selection. Automat-

ica, 50(1):100–113, 2014. doi: 10.1016/j.automatica.2013.10.010. URL

http://dx.doi.org/10.1016/j.automatica.2013.10.010.

2606



Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization

of expensive cost functions, with application to active user modeling and hierarchical

reinforcement learning. 2010.

Robert B. Gramacy and Herbert K. H. Lee. Adaptive design and analysis of super-

computer experiments. Technometrics, 51(2):130–145, 2009. ISSN 00401706. URL

http://www.jstor.org/stable/40586591.

Wilfred Keith Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57:97–109, 1970.

D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Optimiza-

tion, 34(3):441–466, 2006. ISSN 1573-2916. doi: 10.1007/s10898-005-2454-3. URL

http://dx.doi.org/10.1007/s10898-005-2454-3.

Donald R. Jones. A taxonomy of global optimization methods based on response surfaces.

Journal of Global Optimization, 21:345–383, 2001.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization

of expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

V Roshan Joseph and Ying Hung. Orthogonal-maximin latin hypercube designs. Statistica

Sinica, pages 171–186, 2008.

Jian Kang, Brian J Reich, and Ana-Maria Staicu. Scalar-on-image regression via the soft-

thresholded gaussian process. arXiv preprint arXiv:1604.03192, 2016.

Crystal Linkletter, Derek Bingham, Nicolas W. Hengartner, David Higdon, and Kenny Q.

Ye. Variable selection for gaussian process models in computer experiments.

Technometrics, 48(4):478–490, 2006. doi: 10.1198/004017006000000228. URL

http://dx.doi.org/10.1198/004017006000000228.

J. Močkus. On bayesian methods for seeking the extremum. In G. I. Marchuk, editor,

Optimization Techniques IFIP Technical Conference Novosibirsk July 1–7, 1974, pages

2607



400–404. Springer Berlin Heidelberg, Berlin, Heidelberg, 1975. ISBN 978-3-540-37497-

8.

J. B. Rosen. The gradient projection method for nonlinear programming. part I. linear con-

straints. 8(1):181–217, March 1960. ISSN 0368-4245 (print), 1095-712X (electronic).

Jerome Sacks, Susannah B. Schiller, and William J. Welch. Designs for computer experi-

ments. TECHNOMETRICS, 31(1):41–47, February 1989.

Songqing Shan and G. Gary Wang. Survey of modeling and optimization strate-

gies to solve high-dimensional design problems with computationally-expensive

black-box functions. Structural and Multidisciplinary Optimization, 41(2):219–

241, 2010. ISSN 1615-1488. doi: 10.1007/s00158-009-0420-2. URL

http://dx.doi.org/10.1007/s00158-009-0420-2.

William J. Welch, Robert. J. Buck, Jerome Sacks, Henry P. Wynn, Toby J.

Mitchell, and Max D. Morris. Screening, predicting, and computer ex-

periments. Technometrics, 34(1):15–25, 1992. ISSN 00401706. URL

http://www.jstor.org/stable/1269548.

2608




