
Error Distributions of Lossy Floating-Point Compressors

Peter Lindstrom∗

Abstract
With ever increasing volumes of data being generated in scientific simulations, experiments, and
observations, storage and bandwidth concerns are mounting. As a means of data reduction, lossless
data compression is largely ineffective when applied to such floating-point data, and consequently
much recent work has focused on lossy compression methods that only approximately reconstruct
the data by allowing for small errors. When such approximated data sets are used in data analysis,
it is important to understand how errors due to compression are distributed and how they propagate
to impact the accuracy of the analysis.

In this paper we perform an empirical study of the statistical distributions of compression-
induced errors in scientific data for a number of state-of-the-art data compressors. We find that
compression schemes based on scalar quantization tend to give uniformly distributed errors that are
weakly data-dependent, and that transform- and decomposition-based methods tend to give Laplace
or normally distributed errors. With the exception of the FPZIP compressor, we find the errors to
be unbiased with zero mean. We further analyze the error distribution of the ZFP compressor and
show using the central limit theorem that it tends to a normal distribution. We conclude with an
examination of correlation, both between the function being compressed and its errors and within
the error signal itself. Our results suggest that transform-based compression methods more reliably
reduce autocorrelation, especially at high compression ratios.
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1. Introduction

With a sustained exponential trend in compute power due to Moore’s law and increasing
levels of parallelism, large-scale scientific simulations routinely produce petabyte-sized
data sets. Similar increases are seen at experimental and observational facilities due to
advances in sensing technology. Not only do such large data sets rarely fit on fast persis-
tent storage such as spinning disk, but as simulations are increasingly run remotely due to
contention for scarce compute resources, data sets must frequently be transferred from the
supercomputer or experimental facility where they were generated to local storage. The
time needed to transfer a petabyte of data over the internet can be substantial.

One approach to mitigating this storage and bandwidth problem is to apply data com-
pression to reduce the data size. One often distinguishes between two forms of compres-
sion: lossless compression, which ensures that each and every bit of data is faithfully pre-
served, and lossy compression, where the numerical data is approximated, often to within
a user-specified error tolerance.

It is well-known that general-purpose lossless compressors like GZIP allow for only
modest reductions of floating-point data; usually on the order of a few percent reduction.
This is perhaps not surprising since such compressors are designed to exploit repeated
patterns that are often present in text documents, but which rarely appear in high-precision
numerical data. Even the best lossless compressors designed specifically for floating-point
data [1, 6, 13, 24] are able to reduce double-precision floating-point data only on the order
of 10% (see Fig. 1). This is due to the inherent randomness of the majority of mantissa bits
in a floating-point number, which for all practical intents exhibit no pattern and cannot be
compressed.
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Figure 1: The results of applying some of the best floating-point compressors to a fairly
smooth double-precision 3D viscocity field from a turbulence simulation. Even the most
effective compressor, FPZIP, reduces the data in size by only 11%.

As a result, most recent data compression work in the high-performance computing
community has focused on lossy compression [2, 5, 7, 14, 16, 17, 19, 21, 28, 30, 33]. In lossy
compression the numerical data is not exactly recovered, but is approximated. Usually
this is acceptable since the data itself tends to involve many error terms. For example, ex-
perimental and observational data is subject to finite precision measurements and intrinsic
measurement noise. Numerical simulation inevitably involves round-off, truncation, itera-
tion, and model errors, as well as initial conditions of limited accuracy. Hence it is often
acceptable to approximate a fairly large number of the floating-point bits, especially for
data analysis and visualization. The tradeoff of such an approximation is substantially im-
proved compression ratios. For instance, for visualization applications it is not uncommon
to see lossy compression ratios on the order of 100:1 with little or no loss in visual quality.

In statistical analysis, it is common to assume that the error (e.g. due to lossy compres-
sion and other sources) is i.i.d., which simplifies the analysis. For this assumption to hold,
the error, δ, in the function value, f , must be independent of f and exhibit no autocorre-
lation. In many cases, it is further preferable that the error conforms to Gaussian white
noise [31]. In other words, δ is normally distributed and has a uniform power spectrum.
The normality assumption helps in the analysis of error propagation, whereby normal errors
remain normal under addition and subtraction, e.g. in finite difference derivative estimates.

The issue of the distribution and dependence of compression-induced errors in floating-
point data has received relatively little attention. Baker et al. [3, 4] present metrics for
assessing the impact of compression errors on climate analysis. Wegener [34] describes
the APAX Profiler, a graphical tool that reports various error metrics for compressed data.
A more recent effort along these lines is the work by Tao et al. [31], who describe the Z-
CHECKER tool for error analysis. These papers focus primarily on the analyses supported
by these tools.

In this paper we perform an empirical study of ten lossy compressors and examine their
error distributions, correlations between fields and errors, and autocorrelation of errors. We
evaluate the error of each compressor in terms of its distribution, bias, correlation with
the function itself, and autocorrelation.
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We begin with some background material on compression and statistical measures, fol-
lowed by an examination of error distributions. As we have a particular interest in the
ZFP compressor, we provide an explanation for why it yields approximately normally dis-
tributed errors. We continue by examining the relationship between the function and its
errors, followed by a section on autocorrelation of errors. We conclude with a discussion
of the impact of errors in statistical analysis.

2. Preliminaries

Let f : Rd → R be a scalar function over a d-dimensional domain. In this paper, we
consider the case d = 3 and assume that f has been discretized onto a uniform Cartesian
grid. We will use “function,” “field,” and “data” synonymously to refer to f . Let f̃ be
the corresponding approximate field resulting from lossy compression and decompression.
The (signed) error field is given by δ = f̃ − f .

Most lossy compressors provide parameters to balance the tradeoff between error and
compressed size. Examples include tolerances on either the absolute error

δabs(x) = f̃(x)− f(x), (1)

or relative error

δrel (x) =
f̃(x)− f(x)
|f(x)|

. (2)

Other examples include bounds on the compressed size, or indirect size control by spec-
ifying, for instance, the number of codewords to use in scalar or vector quantization or a
threshold on wavelet coefficients.

The bit rate, r, is a measure of amortized storage size in bits per scalar value. Express-
ing the compressed size this way allows for straightforward comparison with uncompressed
data, e.g., r = 32 for single precision and r = 64 for double precision uncompressed
floating-point values.

The covariance between f and g is given by

cov(f , g) = E[(f − E[f ])(g − E[g])] (3)

and the correlation by

corr(f , g) =
cov(f , g)

σfσg
, (4)

where E denotes expectation and σ2 denotes variance.
The autocorrelation function, R(f), is given by the correlation of f with translations

of itself. In other words, R is given by the convolution

R(f) = f̂ ? f̂ ′, (5)

where

f̂ =
f − E[f ]

σf
(6)

has zero mean and unit variance, and where f̂ ′(x) = f̂(−x). We define the autocorrelation
coefficient as ‖R‖ =

√
E[R2].

Traditionally autocorrelation is given for functions of one variable, as is also assumed
by Z-CHECKER [31], which flattens multiple dimensions and reports only the autocorrela-
tion as a function of a delay in one dimension. However, in multiple dimensions, d, corre-
lations along each of the d dimensions are possible, and it is generally more informative to
view autocorrelation as a multidimensional function.
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A naive implementation of the autocorrelation function can be prohibitively expensive,
as it involves joint self-convolutions along multiple dimensions. To evaluate this function,
we take advantage of the Fourier convolution theorem, which allows us to reduce convolu-
tions in the time domain to multiplications in the Fourier domain. We first shift the function
and normalize it so that it has zero mean and unit variance. We then compute the discrete
Fourier transform, compute the square magnitude (this multiplication takes the place of
convolution in the time domain), and then apply the inverse Fourier transform, resulting in
the autocorrelation function R(x, y, z).

The Fourier transform assumes periodic domains; an assumption that generally does
not hold for scientific data. Hence, as is common, we pad the sampled function with zeros
along each dimension in the autocorrelation computation, doubling the size of the domain
in each dimension. Once R has been computed, this padding is removed.

3. Compressors

In this section we provide a brief summary of each of the compressors used in our study.
We focus in particular on how the compressors approximate the data with the goal of char-
acterizing the error.

3.1 FPZIP

FPZIP [24] is a predictive compressor for scalar fields defined on d-dimensional grids.
FPZIP uses the Lorenzo predictor [15] to predict the next “corner” value of a hypercube
from its previously encoded 2d − 1 hypercube neighbors. This predictor is exact [20] for
fields that satisfy ∂df

∂x1∂x2···∂xd = 0. FPZIP reduces data through efficient entropy coding of
the residuals between predictions and actual values.

FPZIP was originally designed for lossless compression. A lossy extension is based on
the idea of first truncating floating-point values by zeroing some number of least significant
mantissa bits, effectively rounding values toward zero. The remaining, truncated floating-
point values are then compressed losslessly.

FPZIP has gained popularity within the climate science community, where it has proven
to be resilient to the types of analyses commonly used in this science domain [4]. As
discussed in [3], however, FPZIP’s systematic rounding toward zero sometimes leads to
energy loss that may introduce bias in the analysis. This biasing of errors is also examined
and highlighted in this paper. We used FPZIP version 1.1.0 [22] in our study.

3.2 LZ4A, LZ4P

Kunkel et al. [17] propose two simple approaches to lossy compression that nevertheless
sometimes prove quite effective. The first one, abstol (here called LZ4A), performs uni-
form scalar quantization followed by general purpose LZ4 compression, which ensures a
bounded absolute error. The other, sigbits (here called LZ4P), truncates floating-point val-
ues by discarding least significant mantissa bits, thus bounding the relative error and ensur-
ing fixed precision. As with LZ4A, LZ4 compression is then applied. We re-implemented
these two schemes for our study. We slightly modified LZ4P by replacing the discarded
mantissa bits with 100 . . . 0 (i.e. we used a mid-riser quantizer) rather than simply zeroing
them, as is done in FPZIP, which as we shall see avoids FPZIP’s biased errors.
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3.3 SQ

The SQ adaptive scalar quantization compressor [16] reduces a field of n floating-point val-
ues to a discrete set ofm disjoint intervals, withm� n. Given an absolute error tolerance,
ε, SQ first sorts the data and then greedily grows sets Si of monotonically increasing values
such that maxSi−minSi ≤ ε. Each such set is represented by a prototype value, given by
ŝi = meanSi, which ensures minimal root-mean-square error. Each value f ∈ Si is then
represented by the set index i and is reconstructed as ŝi, where −ε ≤ ŝi − f ≤ +ε. Note
that ŝi can get arbitrarily close to either minSi or maxSi depending on the distribution of
values in Si. In practice, ŝi is near the middle of the range of Si such that the error is often
within ± ε

2 .
SQ stores the codebook of m scalar prototypes {ŝi}mi=1 and n set indices, i, and then

applies LZMA general purpose lossless compression to the codebook and indices to further
reduce data size. Due to its simplicity, we wrote our own implementation of SQ.

3.4 HVQ

The hierarchical vector quantizer by Schneider and Westermann [28] generates a two-level
hierarchy of blocks. The mean of each block of 4× 4× 4 values is subtracted from the fine
level and then used to construct the coarse level. Fine-level blocks are treated as vectors
of 43 = 64 values; coarse-level vectors are formed as 23 = 8 mean values. Two inde-
pendent codebooks with the same number of vector prototypes are then generated using an
optimization strategy. Each 23 and 43 block of values is quantized to the closest prototype
vector. We obtained the authors’ own implementation of HVQ [27].

3.5 SZ

The SZ compressor is based on polynomial prediction. Whereas the original algorithm [11]
uses constant, linear, and quadratic one-dimensional prediction, the more recent version [12,
30] used in this study employs multidimensional prediction that generalizes Lorenzo pre-
diction [15]. Given a user-specified absolute error tolerance, ε, SZ defines an interval of
size 2ε centered on the prediction, as well as 2m−1 − 1 similarly-sized non-overlapping
intervals in either direction (m is a parameter that can be chosen by the user). If the actual
value falls in one of these intervals, an m-bit index is sufficient to identify it, and the value
is approximated by the interval midpoint with absolute error at most ±ε. One m-bit code
is reserved to flag values that do not fall in one of the intervals, and such “mispredictions”
are explicitly corrected using a separate coding scheme. The resulting codestream is then
further compressed using a combination of Huffman coding and GZIP.

In effect, SZ employs uniform scalar quantization of prediction residuals rather than
original values, with a two-level coding scheme that employs m bits to encode small (in
magnitude) residuals and longer codes for large residuals. We used SZ version 1.4.9 [12] in
our study.

3.6 ISABELA

The ISABELA compressor [19] was primarily designed to compress data that, untrans-
formed, is challenging to compress, such as noisy signals that exhibit very little autocor-
relation (i.e. smoothness). To make uncorrelated data more correlated, ISABELA first sorts
the values within a small window of consecutive values. The resulting, much smoother
signal is then approximated using a few control points of a spline, and residuals to this
fit larger than a tolerance are corrected so as to bound the relative error. Although this
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spline is often a good fit that results in small residuals, there is a substantial cost associated
with encoding the permutation of sorted values. In practice, ISABELA is competitive only
when compressing functions that are virtually uncorrelated. For our study, we used version
0.2.1 [18].

3.7 VAPOR

VAPOR [9] is a visualization and data analysis tool developed at NCAR for climate and
weather data. VAPOR supports wavelet-based compression using the popular CDF 9/7
biorthogonal wavelets [10]. Lossy compression is achieved by discarding some number
of smallest wavelet coefficients. VAPOR stores a significance map that encodes the loca-
tions of remaining wavelet coefficients. This is a rather basic form of wavelet compression,
and more sophisticated coders like SPIHT [26], SPECK [25], and EBCOT [32] have been
developed for image compression. Surprisingly these more advanced wavelet coding tech-
niques have seen little use in the scientific computing community. For our study, we used
VAPOR version 2.4.2 [8].

3.8 TUCKER

The wavelet and discrete cosine transform (DCT) attempt to decorrelate a function using
bases in which the function is expected to be sparse. A sparse representation implies few
nonzero coefficients to encode, or many small coefficients that can be zeroed with little
impact on accuracy. For 2D data, the basis in which the function is sparsest is given by
the singular value decomposition (SVD). With maximal sparsity comes a cost, however:
the basis vectors are data-dependent and must be encoded explicitly, which introduces a
high overhead in relation to wavelets and DCT, for which the basis functions are already
known by the decoder. The Tucker tensor decomposition is a generalization of SVD to
three dimensions. Here the number of transform coefficients greatly outweighs the storage
needed for basis vectors, and hence compression based on tensor decomposition becomes
an attractive choice for d ≥ 3.

Although several tensor-based compression techniques exist, e.g. [2, 5, 29], we have
chosen the one proposed by Ballester-Ripoll and Pajarola [5]. This method uses rank re-
duction and non-uniform coefficient quantization coupled with Huffman based significance
coding. We obtained the authors’ own Matlab implementation of TUCKER.

3.9 ZFP

The ZFP compressor [21] was originally designed to be a compressed array primitive that
supports random access, but can be used also for streaming (sequential) compression. ZFP,
similar to HVQ, partitions d-dimensional arrays into blocks of 4d values. Each such block
is compressed independently using (1) a block-floating-point representation with a single
common exponent per block, (2) a decorrelating transform similar to the discrete cosine
transform, followed by (3) embedded encoding that bears some resemblance to SPIHT [26].
The embedded encoder transmits transform coefficients one “bit plane” at a time, from
most to least significant bit. As a consequence, the compressed bit stream for a block can
be truncated anywhere, for instance to ensure a fixed rate, which enables random access at
block granularity. By truncating at other points, ZFP also supports fixed accuracy (bounded
absolute error) and fixed precision via variable-rate blocks. We used ZFP version 0.5.1 [23]
in fixed-accuracy mode in our study.
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Application Physics Grid Precision
MIRANDA turbulence 384 × 384 × 256 double
S3D combustion 256 × 384 × 384 double
QMCPACK quantum mechanics 69 × 69 × 115 float
CESM climate 288 × 192 × 28 double
ISABEL weather 500 × 500 × 100 float

Table 1: Floating-point data sets used in our study.

4. Experimental Setup

We used several data sources in our experiments that span a variety of application domains,
as outlined in Table 1. All data sets are defined on Cartesian grids and consist of mul-
tiple floating-point fields, out of which we chose a representative subset. Several of our
experiments used the MIRANDA viscocity field (Fig. 1), which is signed and highly peaked
around zero, and thus spans many floating-point exponents that are well preserved by the
compressors that bound relative error.

To examine error distributions, we set a fixed absolute error tolerance and ensured that
each compressor met this tolerance. For some compressors, such as LZ4A, SQ, SZ, and
ZFP, this is achieved trivially by specifying the error tolerance as the key compression
parameter. For compressors that bound only the relative error, such as FPZIP, LZ4P, and
ISABELA, as well as compressors that provide only indirect error control, such as HVQ,
VAPOR, and TUCKER, we tested a range of compression parameters, starting at a low rate
and progressively increasing the rate until the error tolerance was met, e.g. by successively
doubling the codebook size in HVQ. We used a similar approach to producing rate plots,
e.g. by successively doubling the error tolerance.

5. Error Distributions

We begin by examining absolute error distributions for the various compressors. Fig. 2
shows for each compressor six different error distributions that correspond function values
that lie in three positive and three negative ranges of f . The purpose of showing several
distributions rather than just one is to ascertain whether the error, δ = f̃ − f , is dependent
on the magnitude of f , as we would expect for compressors that bound the relative error
(i.e. we should then see smaller errors and narrower distributions for smaller function val-
ues). Conversely, we expect the distribution to be largely independent of f for the other
compressors.

As is evident in Fig. 2, the three compressors that bound relative errors—FPZIP, LZ4P,
and ISABELA—show tighter absolute errors over ranges of smaller (in magnitude) function
values. A striking result is the bias in errors resulting from FPZIP, as previously conjectured,
with error distributions not being zero centered. This is a consequence of always truncating
values, rounding them toward zero, which results in negative errors for positive values, i.e.
0 ≤ f̃ ≤ f such that δ = f̃ − f ≤ 0, and vice versa. Our implementation of LZ4P rounds
to nearest rather than toward zero, and therefore gives similar but unbiased distributions. It
is also evident that these rounding errors are uniform, which supports the conjecture that
the lost least significant mantissa bis are essentially uniformly random.

The ISABELA compressor also bounds relative errors, but compresses residuals result-
ing from least-squares polynomial fits. These residuals tend to be more peaked around
zero (as one might expect from a good predictor), and follow distributions more similar to
Laplacian or Gaussian.
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Figure 2: Compression error distributions for the field shown in Fig. 1. Each plot shows
six distributions for six different ranges of function values, f : From top to bottom, [2, 4),
[1, 2), [12 , 1), (−1,−

1
2 ], (−2,−1], (−4,−2]. Compression settings were chosen to ensure

that max |δabs | < ε = 1
8 . FPZIP, LZ4P, and ISABELA bound the relative error, as is evident

from the error distribution dependence on f .
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The uniform scalar quantizers—SQ, LZ4A, and SZ—not surprisingly tend to exhibit
uniformly distributed errors. As is evident, the distribution of the original data has some
data-dependent influence on these distributions, with clear patterns emerging. SQ conser-
vatively assumes that the prototype could be either at the top or bottom of the range it is
assigned to, yet almost always is in the middle, which explains why its range of errors is
in practice narrower than for LZ4A and SZ. These latter two compressors both accept any
approximation within the tolerance, and therefore span the full [−δ, +δ] error range. Some
weak dependence on distribution of f can be observed, which is difficult to undo for these
compressors.

The HVQ plot exhibits a distribution quite different from those generated by the other
compressors. In fact, when 2 ≤ |f | < 4, some 90% of errors are within single precision
machine epsilon (the HVQ implementation converts the double precision input data to single
precision), and the HVQ error distribution resembles a sharp spike at zero. Zooming in on
the plot by a factor of 1,000,000 reveals a distribution similar in shape to Fig. 2(c). That
is, as f is halved, the floating-point resolution is doubled, resulting in smaller, uniformly
distributed errors.

HVQ required 216 bins to stay within the error tolerance, which is one ninth the number
of 43-sized blocks in this data set. In other words, a substantial fraction of blocks were
represented nearly losslessly, while the difficulty of generating such a large codebook still
causes occasional large errors, making HVQ unsuitable as a bounded-error compressor.

Vector quantization (VQ) can be fairly effective and efficient for low-precision data, and
VQ remains a popular choice for visualization applications due to its simplicity and speed
of decompression. However, for applications that demand high precision and accuracy, the
size codebooks needed and the difficulty of generating them make VQ computationally
impractical for precisions beyond 16 bits.

The transform-based methods, VAPOR, TUCKER, and ZFP, produce error distributions
that appear (close to) normal. An explanation for this phenomenon is discussed below. We
note that ZFP’s distribution is far wider than those of VAPOR and TUCKER, while still not
spanning the full range [−ε, ε]. In order to bound the absolute error, ZFP must conserva-
tively assume a worst-case (rapidly oscillating) input that in principle could reach the full
error tolerance, though in practice errors span only a fraction of the interval. The situa-
tion for VAPOR and TUCKER is different in that these methods do not provide theoretical
guarantees on the error. Providing tight error bounds for these two compressors is made
difficult by the complex interactions of many overlapping basis functions.

5.1 Normality of the ZFP Error Distribution

In this section we analyze the error distribution of the ZFP 0.5.x compressor. Although we
do not provide a rigorous proof, the purpose of this section is to give some intuition for
why ZFP compression errors tend toward normal.

Although the basic components of the algorithm have remained the same, ZFP has
evolved since the original publication [21]. The algorithm associated with the version used
in this paper is summarized in the software documentation [23]. From the standpoint of er-
ror distribution, the two salient points are ZFP’s negabinary representation of signed trans-
form coefficients and its inverse decorrelating transform. This separable linear transform,
which is applied once along x, y, and z, is given in matrix form by:

A−1 =
1

4


4 6 −4 −1
4 2 4 5
4 −2 4 −5
4 −6 −4 1

 (7)
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3) (in black) and the four Gaussian shaped dis-

tributions resulting from applying ZFP’s inverse transform (Eq. (7)) once to four uniformly
distributed coefficients.

By truncating (zeroing) transform coefficient bits smaller in place value than some binary
quantization threshold, 2q, the resulting normalized error δ̂ = 2−qδ in each transform
coefficient lies either in (−2

3 ,
1
3) or in (−1

3 ,
2
3), depending on whether q is odd or even.1

Regardless of how the coefficients themselves are distributed, we make the assumption
that the discarded bits trail a leading one bit, and that their distribution changes slowly
enough that those discarded bits can in practice be treated as uniformly random. As found
in [24], this tends to be true of Laplace distributed prediction residuals. Consequently, we
may treat the error in coefficients as uniform over the above intervals. We further assume
that transform coefficients are not correlated. Indeed, this is the primary purpose of a
decorrelating transform, and hence this is a reasonable assumption.

As a consequence of our assumptions, we seek to reconstruct a function from i.i.d.
coefficients via repeated application (once per dimension) of the inverse transform A−1

above. The result of this linear transform is a weighted sum of four uniformly distributed
random variables. As an aside, when this sum is not weighted, the resulting distributions
are given by convolutions of hat functions with themselves, which gives rise to B-spline
basis functions of increasing order. After one application, we obtain piecewise cubic B-
splines. In three dimensions, we eventually obtain degree-9 B-splines. In the limit, B-
splines converge to Gaussian functions. Moreover, even if the errors in our coefficients
were not uniformly distributed, repeated convolutions will by the central limit theorem
cause the transformed coefficients to approach normal.

Returning to the case of weighted combinations, the distributions resulting from appli-
cation of A−1 are also piecewise cubic, and very close to normal. These four distributions
as well as the uniform distribution U(−2

3 ,
1
3) are shown in Fig. 3. Clearly one application

of A−1 brings the uniformly distributed errors closer to normal. In 2D, we apply A−1 to
four identical copies of one of those four distributions; while in 3D we apply A−1 yet one
more time. This repeated “smoothing” of error distributions gives rise to the near-normal
distributions shown in Fig. 2(j).
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Figure 4: Correlation between the function and compression-induced errors in the function.
Note the non-linearity of the vertical axis. Because FPZIP truncates values, the errors are
strongly (negatively) correlated with the values themselves. Zero correlation is achieved
only once lossless compression is attained, above 56 bits/value. LZ4P achieves decorrelated
errors once both exponent and mantissa bits are retained, while SZ and ZFP both exhibit near
zero correlation.

6. Correlation of Function with Error

As stated earlier, one desirable characteristic of a lossy compressor is that its errors, δ,
are independently distributed. One way of testing this property is to examine whether δ is
correlated with the uncompressed function, f . We note that compressors like FPZIP, which
truncates values and rounds them toward zero, will always yield nonnegative errors for
negative function values and vice versa. Thus the sign of the error is inversely correlated
with the sign of the function, which implies at least weak correlation between FPZIP errors
and the data.

Fig. 4 plots the correlation corr(f , δ) as a function of rate for the MIRANDA viscocity
field. As just conjectured, FPZIP exhibits not only a weak anticorrelation between function
and error but a very strong one, with the Pearson correlation coefficient near negative one.
We see that LZ4P, which rounds to nearest rather than to zero, avoids this bias in sign and
yields far lower correlation. Although obvious in hindsight, the design of FPZIP would have
benefitted from such improved rounding.

We further see from this plot that the errors for both ZFP and SZ are nearly fully inde-
pendent (note the nonlinear scale of the vertical axis). We conjecture that the oscillating
pattern shown by ZFP is due to its use of a negabinary representation, where each subse-
quent point on the curve corresponds to alternatingly adding a bit plane of positively or
negatively valued bits.

7. Autocorrelation of Errors

Another desirable characteristic is the absence of autocorrelation in the error field. Whereas
Z-CHECKER provides correlograms by treating the multidimensional field as a linear time

1This is due to the alternating sign of bits in the negabinary representation.
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(a) ZFP
r = 0.34, ‖R‖ = 2.8e-4

(b) HVQ
r = 5.00, ‖R‖ = 3.1e-4

(c) TUCKER
r = 0.53, ‖R‖ = 4.6e-4

(d) VAPOR
r = 2.94, ‖R‖ = 5.3e-4

(e) SZ
r = 0.33, ‖R‖ = 4.6e-3

(f) SQ
r = 0.42, ‖R‖ = 4.7e-3

(g) FPZIP
r = 9.61, ‖R‖ = 2.2e-2

(h) LZ4A
r = 0.79, ‖R‖ = 1.4e-1

Figure 5: Autocorrelation plots for errors in the field shown in Fig. 1 and distributions
shown in Fig. 2. Only a 2D xy slice of the 3D autocorrelation function R(x, y, z) is here
shown, with a zero lag in the z direction. Gray indicates no correlation while saturated red
indicates maximal positive correlation. An ideal response is a Dirac delta, withR(0, 0, 0) =
1 and R(x, y, z) = 0 elsewhere. r represents the rate in bits/value (lower is better); ‖R‖ is
the root mean square autocorrelation value over the 3D domain (lower is better).

series, we note that correlations may occur along any and all dimensions. Indeed, the
autocorrelation function for a multidimensional field is most naturally expressed as another
field of the same dimensions.

Fig. 5 shows 2D slices of the 3D autocorrelation function, R(δ), of the compression
error, δ. Since any function is perfectly correlated with itself, while we desire a lack of
correlation between error values and their neighbors, the “ideal” R is a Dirac delta, with
R(0, 0, 0) = 1 and R(x) = 0 elsewhere. In these visualized slices of R(x, y, 0), which
also show contour lines, we would thus like to see a single spike in the middle of a uniform
gray background, representing zero correlation.

The figure shows the autocorrelation for the error distributions visualized in Fig. 3.
Because R(x) = R(−x), the slices exhibit symmetry. The figure also lists the rate and
autocorrelation coefficient ‖R‖ (lower is better for both). As is evident, the top row of this
figure shows autocorrelation functions that approximate Dirac deltas, while the compres-
sors in the bottom row do not fare as well. SZ, SQ, and—to a larger extent—LZ4A show
diamond-shaped contours, indicating substantial correlation even far away from the center.
ZFP gives both a low rate and autocorrelation, making it the preferred compressor in this
example.

Fig. 6 plots the autocorrelation coefficient as a function of rate for four different fields.
Although the plots differ somewhat from one field to another, we observe some consistent
trends. First, FPZIP, essentially retains the autocorrelation present in f , and gives a con-
sistently high ‖R‖. Interestingly, simply changing FPZIP’s rounding rule from downward
to nearest, as in LZ4P, reduces autocorrelation by two orders of magnitude. However, this
reduction occurs only for high enough rates, when a large enough number of mantissa bits
are kept.
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(a) MIRANDA viscocity (‖R‖ = 0.030)
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(b) S3D oxygen fraction (‖R‖ = 0.047)
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(c) CESM specific humidity (‖R‖ = 0.181)
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(d) QMCPACK atomic orbital (‖R‖ = 0.044)

Figure 6: Autocorrelation in compression error as a function of rate for various fields. The
captions list the autocorrelation coefficient of the function being compressed.

The two methods based on scalar quantization, SQ and SZ, give somewhat erratic and
unpredictable autocorrelation curves, where there seems to be no clear pattern between
‖R‖ and the rate. As with LZ4P, the autocorrelation is highest at low rates. Fig. 6(d) shows
how the rate surprisingly changes nonmonotonically for LZ4P and SZ with increasing error
tolerances, in addition to a reversal of the trend of decreasing autocorrelation. The two
transform-based methods, VAPOR and ZFP, on the other hand yield fairly stable autocorre-
lation curves that are either flat or slowly varying. Moreover, these two compressors differ
in that they give low autocorrelation also at low rates, where arguably compression is of
most utility. These results seem to partially contradict the findings from [31], although the
authors there report only one-dimensional autocorrelation and for a single rate. Finally, we
note that due to R(0) = 1, ‖R‖ is bounded from below by n−1/2, where n is the number
of grid points, effectively setting a floor on autocorrelation.

8. Conclusions

We have examined the error distributions of a number of state-of-the-art lossy compressors
for floating-point data defined on structured grids. Our study reveals that error distribu-
tions in practice falls in one of two camps: scalar quantizers give approximately uniform
distributions, while transform-based methods give distributions that are nearly normal. We
provided an explanation of this normality for the ZFP compressor. We further analyzed the
dependence of error distributions on the function being compressed, as well as within the
error field itself in terms of autocorrelation.
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As found also in [31], the extent to which compression errors show autocorrelation
varies by compressor from one data set to another. However, we observe a few general
trends. Due to systematic rounding, FPZIP tends to give predictable and consistently high
autocorrelation, which can partially be remedied by rounding to nearest quantized floating-
point value, as in LZ4P. ZFP and VAPOR exhibit less fluctuations in autocorrelation than
scalar quantizers like SQ and SZ as the rate is varied, while ZFP tends to give the lowest
autocorrelation among the compressors at low rates of a few bits/value.

This paper is concerned with statistical measures of compression-induced errors. Other
considerations not addressed here include the spectral properties of errors and the effect
compression has on spectral analysis, as examined further in [21, 31, 34]; the impact of
errors on visualization; as well as the impact that errors have on derived fields resulting,
for instance, from differential operators such as gradient, divergence, curl, Laplacian, etc.
Another area of concern is the impact that compression errors have on the physicality and
consistency of analysis, such as the potential for violating conservation laws or physical
relationships between fields. We leave these as interesting topics for future work.
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