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Abstract 

This paper discusses the relationship between the maximum entropy approach and 
Bayesian statistical inference, the Kullback-Leibler divergence, and Fisher’s information. 
Using an example from science it shows how the information gain in Bayesian updating 
can be measured using the Kullback-Leibler divergence or cross entropy, change in 
entropy, and Fisher’s information. This example discusses the relationship between these 
measurements. A numeric example is developed and detailed results are discussed under 
information theory and statistical point of views by comparing related quantities. 
Bayesian inference results and theory are interpreted using information concepts, entropy 
and statistical measurements, finally some conclusions are drawn regarding the 
information gain and relationships with other statistical procedures.   
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1. Basic Concepts in Estimation 

Frequentist statistics and Bayesian statistics have different approaches for model 
selection and parameter estimation. As it is well known, the classical approach to 
statistics is widely used and it has readily available software but the incorporation of prior 
information is not possible, the parameters of a distribution are considered fixed but 
unknown and the estimation methods such as maximum likelihood estimation, integrate 
over the data, even the unobserved data, and the interpretation of results is more difficult 
as it has to refer to the classical mantra “under repeated sampling…”. The popular 
maximum likelihood estimation can lead to results that are inconsistent with the 
likelihood principle and occasionally can lead to some non-sense results such as negative 
variances. 

On the other hand, Bayesian statistics overcomes some of the difficulties mentioned in 
the frequentist approach, as it can easily incorporate prior information and the 
interpretation of results is very straightforward as the parameter estimation can be 
expressed in terms of probabilities, without having to use the repeated sampling mantra. 
In Bayesian statistics, data are considered fixed and the estimation method integrates over 
the parameter space as the latter can be considered random variables with a probability 
distribution that is going to be determined. All these process is consistent with the 
probability laws. The estimation process is difficult and can only be done explicitly in 
very simple cases, but for more practical problems we have to use Markov chain Monte 
Carlo simulation to be able to estimate the posterior distribution. Critics of Bayesian 
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statistics argue that the prior estimation is subjective, mainly because using different 
priors can lead to different results, however, sometimes even that different priors can be 
used, a general pattern can emerge. In summary, the Bayesian philosophy is based on 
learning and information gain, and it depends on two things: the prior and the posterior. 
You can only say how much you learned if you know what your prior belief is. 

1.1 Frequentist Methods and Measures of Goodness of Fit 

This section summarizes the frequentist estimation methods that will be used in the 
following sections. 

1.1.1 Maximum Likelihood Estimation 
Given a random sample from a distribution  1 2, ...... n

n ix x x x X  and given the 

likelihood function as the joint distribution: 

 

For maximum likelihood estimation we choose the value of the parameter that maximizes 
the likelihood function: 

 

in practice we minimize the log-likelihood function as: 

 

Or we minimize the negative of the log likelihood function. ̂  is the maximum likelihood 
estimate (MLE). 

1.1.2 Likelihood Ratio Test 
A related criteria for testing hypothesis regarding the value of a parameter is the 
likelihood ratio test whose null and alternative hypothesis that can be expressed as 

0 0:H    and 1 0: CH   , then the likelihood ratio test can be expressed as : 

 

 

A large value is in favor of the null hypothesis, while a small value is in favor of the 
alternative hypothesis (Casella 1990). 

1.1.3 Fisher Information 
The information about θ in a random sample of size n is given by: 
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This expression also provides a bound of the variance of the best unbiased estimator of θ 
(Cramer-Rao Inequality) Freund (2014) 

The observed Fisher information that we can compute from our sample is: 

 

 

 

 

 

That expression can be interpreted geometrically as: 

 

 

 

Figure 1: Geometric interpretation of Fisher information. 
 

The ratio of curvature can be expressed as: 

 

 

And the curvature evaluated at the MLE, is known as the observed Fisher information 
(Huzurbazar, 1949) 

1.2 Bayesian Estimation 

Initially the parameters can be assigned a prior distribution that describe what we know 
about these parameters, and that combined with the new information from a sample it 
allows us to update our knowledge and obtain a posterior distribution using the Bayes 
rule: 
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Then we can use last expression to make a probability statement about the parameter θ. 

1.2.1 Bayes Factors 
Bayes factors allow us to compare two models (Bernardo, 1994) as follows: 

 

 

If instead of the Bayes factors integral the maximum likelihood estimators are used, the 
test becomes the likelihood ratio test. 

1.2.2 Deviance information Criteria 
Spiegelhalter, Best, Carlin and Van Der Linde (2001) developed a generalization of the 
Akaike information criteria (AIC), known as Deviance Information Criteria (DIC) and 
they showed that it is asymptotically equivalent to AIC. 

1.3 Entropy and Information Theory 

This section summarizes the basics concepts of entropy and information theory. 

1.3.1 Entropy 
Boltzmann (1872) quantifies the entropy of a thermodynamic system as: 

   S = K log W 

where, S = Entropy, K = Boltzmann constant, W = number of microstates in the system. 

1.3.2 Information Theory 
Shannon (1948) defines entropy of a discrete random variable and probability mass 
function: 

 

When the distribution is continuous, the sum is replaced with an integral:  

 

1.3.3 Principle of Maximum Entropy 
This principle was stated by Jaynes in 1957[1],[2], where he emphasized a natural 
correspondence between statistical mechanics and information theory. Statistical 
mechanics can be seen as an application of logical inference and information theory. 

Properties of Entropy: 

- Entropy is nonnegative (discrete case) 
- When the distribution is uniform entropy increases with the cardinality of support 
- If   1   for some θ, entropy vanishes. 

- The more “uniform”, the greater the entropy 
- Entropy is invariant with respect to permutations in the support of θ 
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- Entropy is a continuous function of     

Maximum Entropy Distribution: 

Suppose ϴ is discrete and P be all the probability distributions on ϴ.  
A distribution P   is a maximum entropy distribution if:  

   * supEn En


 


   

 
Restricted Maximum Entropy Distribution: 
Suppose ϴ is discrete and let π be a probability distributions on ϴ. Let gk be a function 
defined on ϴ such as E[gk(θ)] exists, for k =1,2,…n. Suppose we know that: 
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Where λ=(λ1, λ2,….. λm) is determined from: 
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1.3.4 Kullback-Leibler Divergence 
In information theory and probability the Kullback-Leibler divergence (KLD) is a 
measure of the difference between two probability distributions: 

 

For continuous random variables the KLD can be expressed with integrals as follows: 

 

 

Properties for the KLD: 
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It is a pseudo-distance : 

 

The asymmetry issue was addressed by Jeffreys as: 

 

 

2. Bayesian and Frequentist Models 

This section develops a numeric example and the corresponding inferences for frequentist 
and Bayesian estimation. 

2.1 Bayesian Example 

Suppose we want to determine the sex ratio θ for a certain kind of animal. Because we 
don’t have previous information we can start with a uniform distribution as a prior for θ. 
We are going to take 4 sets of 10 observations each and we update our prior after every 
10 samples, we repeat this process 4 times. 
 
 
 
 
Using the gamma distribution as the prior 
 
 
 
The likelihood is a binomial 
 

 

The posterior is the well-known result 

 

 

 

Table 1: Sequence of generated data and updated parameters 
 

Iteration  Sequence of generated data Updated parameter (mode) 
1st  0 1 0 0 1 1 0 0 1 0    p = 0.4 
2nd   0 0 0 1 0 1 1 0 0 0     p = 0.35  
3rd   1 0 1 0 1 1 0 0 0 0    p = 0.3667  
4th   0 0 1 0 0 0 0 0 0 0     p = 0.3 
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Figure 2: Sequence of Bayesian posteriors for four updates of 10 trials each. 
 

2.2 Bayesian Factors for Two Hypotheses 

In general the Bayesian factor for comparing two competing hypotheses can be written 
as: 

 

 

In particular, solving the integrals for two betas: 

 

 

Dissimilarity matrices can be computed for Bayes factors showing every possible 
combination for the posterior distributions for the four updates: 
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Computing the natural log of the previous matrix in order to be able to express these 
factors as a distance: 

 

 

 

 

 

 

Table 2: Jeffreys interpretation of Bayes factors 

 

2.3 Likelihood Ratio Test Results 

The likelihood ratio test for the sequence of updated posteriors can be computed in a 
similar manner that we did to compute the Bayes factors, and transforming to logarithms 
we can obtain the following dissimilarity matrix: 

 

 

 

 

 

2.4 Kullback-Leibler Divergence Between Two Betas 

From the general form for KLD is: 
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Solving the integrals for two betas (Schumitzky, 2014): 

 

 

 

where ψ is the digamma function: 

 

 

The Entropy and cross entropy for two Betas is as follows:   
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The relationship between them is: 
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The change in entropy due to Bayesian learning for four updates of 10 trials each is as 
follows: 

Table 3: Change in Entropy due to Bayesian learning, four updates of 10 trials at a time. 
 

 

Then, the numeric results for the dissimilarity matrix for KL divergence: 
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And the change in entropy, Kullback-Leibler divergence and cross entropy can be shown 
as follows: 

 

Figure 3: Relationship among KLD, Entropy and Cross Entropy for four updates of 10 
trials each. 
 
The Bayesian learning in the numeric discrete case that we are discussing can be 
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And the numeric results for the learning process can be summarized in the following 
table: 

Table 3: KLD, Entropy and Cross Entropy. 
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The Bayesian updates on the posterior can also be computed for a sequence of 120 
updates of 10 trails each, and the updated posterior can be shown as follows: 

 

Figure 4: Sequence of Bayesian posteriors for 120 updates of 10 trials each. 
 

 

Figure 5: Relationship among Entropy, Cross Entropy, and KLD for 120 updates of 10 
trials each. 
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2.5 Observed Fisher Information 

Following the same kind of pairwise comparison among the different posteriors we can 
compute a dissimilarity matrix for the observed Fisher’s information using the 
expression: 

 

 

Then, the corresponding dissimilarity matrix is: 

 

 

 

 

 

3. Relationships Among Measurements 

 

This section discusses the relationships among the most important measurements 
discussed before. 

3.1 Relationships between Kullback-Liebler Divergence and Akaike 

Information Criteria. 

Using the KLD between two distributions we can write the expression: 
 

 

Akaike (1974) observed that: 

 

 

that can be written as: 

 

Since the entropy is free of parameters it can be ignored, and the minimization of the 
second term provides a basis for model comparison, this is not a measure of goodness of 
fit. As n→∞ with probability approaching 1, the model with the minimum AIC score will 
possess the smallest Kullback-Leibler divergence (Schmidt, 2008).  
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3.2 Deviance Information Criteria 

Spiegelhalter, Best, Carlin and Van Der Linde (2001) developed a generalization of AIC 
known as Deviance Information Criteria (DIC) and showed that it is asymptotically 
equivalent to AIC. 

3.3 Cross Entropy, KLD and Entropy 

The AIC score is an asymptotically unbiased estimate of the cross-entropy (Schmidt, 
2008), where the Cross entropy = KL divergence +Entropy    (Murphy, 2012).  

3.5 Entropy and Bayesian Statistics 

- The maximum entropy principle (MEP) makes a claim of maximum ignorance, as the 
selected distribution is the one that makes the claim of least information. 
- For the Bayesian case sometimes it can be represented as a uniform prior probability 
density. 
-Jaynes claimed that Bayes theorem was a method to compute probabilities, while 
maximum entropy was a way to assign prior probability distributions (maximum entropy 
priors) 

4. Conclusions 

 

The conclusions of this study can be summarized as follows: 

- The Bayesian philosophy is based on learning and information gain, and it depends 
completely on the prior and the posterior. 
- Bayesian learning is proportional to the Kullback Leibler divergence (also called 
relative entropy) 
- The KLD is larger in the direction of decreasing entropy  
- The smaller steps for KLD in the direction of decreasing entropy, the closer we are to 
the correct model and the smaller learning that we have in every step 
- The computational effort for KLD is greater than for computing AIC or DIC 
- The entropy and cross entropy tend to be equal as Bayesian learning is achieved. 
- The KLD tends to zero for smaller steps when Bayesian learning is achieved 
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