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Abstract
The Logistic-Gaussian distribution is used in statistical applications to account for clustering among
binary outcomes. However, its extension and applicability to bivariate outcomes is limited. We
developed a model for correlated bivariate binary data that incorporated the Logistic-Gaussian dis-
tribution. A bivariate normally distributed variate is decomposed into a product of two univariate
normally distributed variate and applied to the development of a correlated bivariate logistic Gaus-
sian model. Bivariate response probabilities in terms of random effects models are formulated, and
maximum marginal likelihood estimation procedures based on Gauss-Hermite quadrature are used.
Application to the analysis of vision loss in diabetic retinopathy is discussed.

Key Words: Correlated Data; Logistic -Gaussian Distribution; Maximum Marginal Likelihood;
Bivariate Binary Outcomes; Gauss-Hermite quadrature.

1. Introduction

Bivariate outcomes involve the analysis of two response variables for the purpose of deter-
mining the empirical relationship between them.(Babie,2009). Clustered bivariate binary
outcome has its applications in various disciplines. In public health the bivariate outcome
of HIV and HCV could be assessed in a cluster of geographical regions (Del Fava et al.,
2011). In toxicology, a bivariate outcome of fetal weight (high or low) and a binary malfor-
mation status can be observed on offspring of mice clustered in litters (Catalan, 1997). In
economics, bivariate outcomes of economic recession and economic growth rate cycle can
be measured across various US states. In psychology, the bivariate outcome of social anxi-
ety and persecutory ideation can be assessed on a range of psychological factors (Freeman,
2008).

Although clustered bivariate outcomes are common, there are limited statistical ap-
proaches to evaluate data of such nature. Some of the traditional approaches include:
Dale’s model (Dale, 1986) which uses the proportional odds model on the distribution
of a bivariate-ordered response vector; alternating logistic regression. Carey (1993) which
models association among responses in terms of pairwise odds ratios and the Del Fava
model which uses generalized mixed model (Del Fava et al., 2014).

Bonney (2003) introduced the disposition model to account for correlation of binary
outcomes within clusters, taking explanatory variables into consideration. We will adopt
the disposition model for correlated outcomes and extend it to bivariate outcomes.
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2. Modelling Consideration

Suppose that data consist ofN clusters each of size ni, i = 1, ...N . Let Yi = (y1i..........yni)
be a vector of binary outcome on the ith cluster . Assume further that a pair of observed
response within the same cluster satisfy the following relation:

P (Yj = 1, Y ′j′ = 1)

P (Yj = 1)P (Yj′ = 1)
=

1

αi
, αi > 0, j 6= j′, j, j′ = 1, 2, ....n,

where αi is assumed common for all pairs. Clearly, αi = 1 implies independence of the
observations. Thus αi is a measure of departure from independence.

Let us further assume that

δj = P (Yj = 1|Yj′ = 1), j 6= j′, j, j′ = 1, 2, ....n

With the above definition, Bonney(2003) showed that the joint distribution of the ith clus-
ter Yi is given by

P (Yi) = P (Y1 = y1,......,Yn = yn) = (1− α)

n∏
j=1

(1− yj) + α

n∏
j=1

δyj (1− δj)1−yj . (1)

and parametrized δj in terms of covariates as

log it(δij) = βXij

whereXij is a set of covariates.
Kwagyan(2001,2016) reparametrized δij to include a random effect term to account for

excess heterogeneity across clusters as

logit(δij) = βX + ai , ai ∼ N(0, σ2)

and showed that the joint marginal distribution Yi for N clusters is

P (Yi|θ) =
N∏
i=1

(1− α)

ni∏
j=1

(1− yij) + α

∞∫
−∞

 ni∏
j=1

δ
yij
ij (1− δij)1−yijf(aiσ

2)

 dai


(2)
and the log likelihood, log L of (2) is approximated using the Gauss-Hermite quadrature as

l = LogL =

N∑
i=1

log

(1− α)

ni∏
j=1

(1− yij) +
α√
π

M∑
m=1

wm

 ni∏
j=1

δ
yij
ijm(1− δijm)1−yij )


where

δijm =
1

1 + exp[−(βXij +
√

2σvm ]

and (wn,vm) are quadrature weights and nodes, respectively,
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3. Extension to Correlated Bivariate Binary Outcomes

We extend the model discussed in section 2 to bivariate binary outcomes. Let (Y1,Y2)
such that Y1 = (y11i, y12i, ..., y1nii) , Y2 = (y21i, y22i, ..., y2nii) be a pair of bivariate
binary outcomes on the ith cluster with size ni, Let X = (X1, ..., Xp) be a set of covariates
measured on the ith cluster. Let δij1 = P (Yij1 = 1|Yij′1 = 1) and δij2 = P (Yij2 =
1|Yij′2 = 1), then δij1 and δij2 are modelled in terms of X and random effects as

logit(δij1|ai) = βX1 + ai, ai ∼ N(0, σa)

logit(δij2|bi) = βX2 + bi, bi ∼ N(0, σb)

Suppose Y1 and Y2 are correlated such that(
ai
bi

)
∼ BV N

[(
0
0

)
,Σ =

(
σ2a ρabσaσb

ρabσaσb σ2b

)]
The diagonal σ2a and σ2b , account for the within-cluster correlation for a particular outcome,
whereas the parameter ρab accounts for the association between the two outcomes.

If we let θ = {α, β, ρab, σa, σb} be the parameters to be estimated, then the conditional
distribution of Y =(Y1,Y2), given ai and bi is

P (Y1,Y2|ai,bi;θ) =
2∏

k=1

(1− αi)
ni∏
j=1

(1− yijk) +

ni∏
j=1

δ
yijk
ijk (1− δijk)1−yijk


The (marginal) distribution of Y for the ith cluster is found by integrating out of the

conditional distribution with respect to the unobserved variables ai and bi and is given by

P (Y1Y2|θ) =

∫ +∞

−∞

∫ +∞

−∞
{P (Y1Y2|ai, bi; θ)f((ai, bi; ρabσaσb)} daidbi

where

f(ai, bi; ρab,σa, σb) = C exp

{
− 1

1− ρ2ab

[(
ai√
2σa

)2

− 2ρab

(
ai√
2σa

)(
bi√
2σb

)
+

(
bi√
2σb

)2
]}

(4)
and

C =
1

2πσaσb

√
(1− ρ2ab)

−∞ < ai, bi <∞

Equation (3) can be written as

P (Y1,Y2|θ) =

∫ +∞

−∞

∫ +∞

−∞
{[L1i + αB(ai)] [L2i + αB(bi)] f((ai, bi; ρab,σa, σb)} daidbi

(5)

2538



L1i = (1− α)
∏ni
j=1(1− yij1), L2i = (1− α)

∏ni
j=1(1− yij2),

B(ai) =
∏ni
j=1 δ

yij1
ij1 (1− δij1)1−yij1 and B(bi) =

∏ni
j=1 δ

yij2
ij2 (1− δij2)1−yij2

The density function equation (4) can be written as

f(ai, bi; ρabσa, σb) = C exp−

[(
ai√
2σa

)2

+
1

1− ρ2ab

(
−ρab

ai√
2σa

+
bi√
2σb

)2
]

−∞ < ai, bi <∞

3.1 Transformation and Decomposition

We introduce the transformation (ai,bi)→ (Ti,Zi) such that

Ti = ai√
2σa

Zi = − ρab√
1− ρ2ab

T1 + 1√
1−ρ2ab

bi√
2σb

This implies

bi =
√

2σbρabTi +
√

2σb

√
1− ρ2abZi)

ai = Ti
√

2σa

The Jacobian of the transformation,J,

J =

[ √
2σa 0

√
2σbρab

√
2σb

√
1− ρ2ab

]
= 2σaσb

√
1− ρ2ab

And so in terms of the transformation variables Ti, Zi the density equation (4) is

f(Ti, Zi) = 1
πexp

{
−(T 2

i + Z2
i )
}

= 1√
π
exp

[
−T 2

i

]
· 1√

π
exp

[
−Z2

i

]
f(Ti, Zi) = fT (Ti) · fZ(Zi)

where
fT (Ti) = 1√

π
exp

[
−T 2

i

]
, −∞ < Ti <∞

fZ(Zi) = 1√
π
exp

[
−Z2

i

]
, −∞ < Zi <∞

replacing f((ai, bi; ρab,σa, σb) by the transformed form f(Ti) and f(Zi) in equation (5) as
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P (Y1,Y2|θ) =

∫ +∞

−∞

∫ +∞

−∞
{[L1i + αB(Ti)] [L2i + αB(Zi)] f((Ti)f(Z2)} dTidZi

which can be written as

P (Y1,Y2|θ) =

{
L1i + αi

∫ +∞

−∞
[B(Ti)f((Ti)] dTi

}{
L2i + αi

∫ +∞

−∞
[B(Zi)f(Zi)] dZi

}
(6)

When the dimension of the random effects is one or two, numerical integration tech-
niques can be implemented reasonably easily and will be used. Since the integrals are over
normal densities, Gaussian quadrature is used. Using an M-point Gaussian quadrature; an
integral of the form

∫
f(x)φ(x)dx , where φ(x) is the bivariate normal density is approxi-

mated by the weighted sum;

∫
e−x

2
f(x)dx ≈

M∑
m=1

wmf(xm)

where xm are the Gaussian quadrature points and Wm the associated weights. The
terms xm and wm are available from (Abramowitz and Stegun, 1972). Equation (6) be-
comes

P (Y1,Y2|θ) ≈

[
L1i +

αi√
π

M∑
m=1

wmB(Tm)

][
L2i +

αi√
π

M∑
n=1

wnB(Zn)

]
(7)

B(Tm) =
∏ni

j=1 δ
yij1

ij1m(1− δij1m)1−yij1 and B(Zn) =
∏ni

j=1 δ
yij2

ij2n(1− δij2n)
1−yij2

where
δij1m(β, σa) =

1

1 + exp[−(βX + Tm
√

2σa]

δij2n(β, σb) =
1

1 + exp[−(βX +
√

2σbρabTm +
√

2σb

√
1− ρ2abZn)]

For N clusters, equation (7) becomes

P (Y1,Y2|θ) ≈
N∏
i=1

{[
L1 +

αi√
π

M∑
m=1

wmB(Tm)

][
L2 +

αi√
π

M∑
n=1

wnB(Zn)

]}

taking log of the likelihood, l

l = logP (Y1,Y2|θ) ≈
N∑
i=1

log

{[
L1 +

αi√
π

M∑
m=1

wmB(Tm)

][
L2i +

αi√
π

M∑
n=1

wnB(Zn)

]}
(8)
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4. Application to Analysis of Vision Loss on Diabetic Retinopathy

Data was collected from 7151 participants with type 2 diabetes in the ACCORD EYE sub-
study. Participants were randomized to 8 treatment groups-[Intensive Glycemia/Lipid Fi-
brate],[Intensive Glycemia/Lipid Placebo],[Intensive Gylcemia/Intensive Blood Pressure],[Intensive
Gylcemia/Standard Blood Pressure],[ Standard Glycemia/Lipid Fibrate],[Standard Glycemia/Lipid
Placebo],[Standard Gylcemia/Intensive Blood Pressure] and [Standard Gylcemia/Standard
Blood Pressure](ACCORD Eye Study Group, 2010). In this analysis, we consider as a
cluster, the treatment group, and assess aggregation of the vision loss adjusting for mea-
sured risk factors. The participants within a treatment group has correlated outcomes which
are influenced part or wholly by the treatment as well as the variables on the individual re-
spondents. The following covariates are available: Smoking Status, LSmoker is coded 1
if smoked more than 100 cigarettes during lifetime and 0 otherwise. Years of diabetes,
(Ydiab), number of years participants has been suffering from diabetes. Neuropathy is
coded 1, if participant had nerve pains and 0 otherwise. The bivariate outcome variables
are vision loss in the Left, YL, or Right, YR and coded 1 for vision loss and 0 otherwise. The
set of possible outcomes are (YL, YR) = {(0, 0) , (0, 1) , (1, 0) , (1, 1)} . Assuming a single
random effect model the general model for predicting an individual bivariate response to
the Left and Right vision loss, accounting for potential treatment to treatment heterogeneity
while adjusting covariates effects is given as

logit(δijL|ai) = β0L + β1L ∗ (LSmo ker)L + β2L ∗ (Neuropathy)L + β3L ∗ (Y diab)L + ai
logit(δijR|bi) = β0R + β1R ∗ (LSmo ker)R + β2R ∗ (Neuropathy)R + β3R ∗ (Y diab)R + bi
0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ ρab ≤ 1

Suppose YL and YR are correlated such that(
ai
bi

)
∼ BV N

[(
0
0

)
,Σ =

(
σ2a ρabσaσb

ρabσaσb σ2b

)]
The following describes specific fitted models
1. Model I assumes, no correlation within treatment, no correlation among treatments

and no association between Left vision loss and Right vision loss. Thus if α1 = α2 = 1,
σa = σb = 0 and ρab = 0, then

logit(δij1|ai) = β0L + β1L ∗ (LSmo ker)L + β2L ∗ (Neuro)L + β3L ∗ (Y diab)L
logit(δij2|bi) = β0R + β1R ∗ (LSmo ker)R + β2R ∗ (Neuro)R + β3R ∗ (Y diab)R

2. Model II assumes, correlation among treatment, no correlation within treatment and
no association between Left vision loss and Right vision loss. Thus if α1 = α2 = 1,
σa = σb = free and ρab = 0, then

logit(δijL|ai) = β0L + β1L ∗ (LSmo ker)L + β2L ∗ (Neuropathy)L + β3L ∗ (Y diab)L + ai
logit(δijR|bi) = β0R + β1R ∗ (LSmo ker)R + β2R ∗ (Neuropathy)R + β3R ∗ (Y diab)R + bi
ai ∼ N(0, σa), bi ∼ N(0, σb)

3. Model III assumes, correlation among treatment, correlation within treatment and
no association between Left vision loss and Right vision loss. Thus if α1 = α2 = 1,
σa = σb = free and ρab = 0, then
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logit(δijL|ai) = β0L + β1L ∗ (LSmo ker)L + β2L ∗ (Neuropathy)L + β3L ∗ (Y diab)L + ai
logit(δijR|bi) = β0R + β1R ∗ (LSmo ker)R + β2R ∗ (Neuropathy)R + β3R ∗ (Y diab)R + bi
ai ∼ N(0, σa), bi ∼ N(0, σb)

4. Model IV: assumes, correlation among treatment, correlation within treatment and
association between Left vision loss and Right vision loss. Thus if α1 = α2 = 1, σa =
σb = free and ρab = free, then

logit(δijL|ai) = β0L + β1L ∗ (LSmo ker)L + β2L ∗ (Neuropathy)L + β3L ∗ (Y diab)L + ai
logit(δijR|bi) = β0R + β1R ∗ (LSmo ker)R + β2R ∗ (Neuropathy)R + β3R ∗ (Y diab)R + bi(

ai
bi

)
∼ BV N

[(
0
0

)
,Σ =

(
σ2a ρabσaσb

ρabσaσb σ2b

)]
Table1, shows the results from the four different submodel. Computations of the pro-

posed models II-IV were performed using computer programs we developed which was
linked with likelihood optimization routines using the R-package (Version 3.2.5). For our
proposed models, we run the analyses using quadrature points M=8, 9, 10 and 11. The
results did not change much for quadrature points, M > 9 and so for computations, M =
9 was employed to complete the analysis. In all of the models we have considered, the
algorithm converged in less than 38 iterations.

The odds of a positive response for a Life time smokers to be vision loss is estimated
to be exp(0.439) = 1.551 times higher for vision to be loss than non-life smokers in all
models. Neuropathy was not significant in all the models. With respect to the participants
years of diabetes, it was significant for all three models, indicating that individuals with
more years of diabetes are more likely to experience a vision loss. The approach seems to
under estimated the parameters in the dependent model. This may be due to the fact that
the data were not randomly sampled from the population but from treatment groups where
there is a high risk of aggregation of the occurrence of vision loss.Within treatment group
dependence is described by the magnitude of the relative dependence parameters, α1,α2

and excess treatment heterogeneity by the magnitude of, σa, σb the variance component
parameters.

The significance of the individual estimates is judged by t tests based on the standard
errors. Dependence is described by the magnitude of the relative disposition α1, α2. In
addition the degree of heterogeneity is measured by the magnitude of σ2a,σ2b the variance of
the random effect distribution.

Model III and Model IV seems to fits the data better than model II. The deviance (-
2Log) obtained from the independent model (Model II) was 1725.607, the deviance under
the partial correlated bivariate model 1715.921 and the deviance under the dependence
model is 1715.921. For this model, the maximum likelihood estimate of the relative depen-
dence parameter, α1, = α2 was exp(0.121)=0.887 and a computed standard error ( 0.086)
for both the partial dependence and the dependence model . This suggests that the data was
sampled from a population where the aggregation of the treatment group is higher than that
from the general population. Similarly, the estimate of σa = σb, the variance component
parameters is 0.681 with standard error of 0.086 for model III and Model IV. Thus the data
further suggests some degree of heterogeneity of outcomes across treatment groups.

The odds of a positive response for a Life time smokers to vision loss is estimated to be
exp(0.439) = 1.551 times higher for vision to be loss than non-life smokers in all models.
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Neuropathy was not significant in all the models. With respect to the participants years
of diabetes, it was significant for all three models, indicating that individuals with more
years of diabetes are more likely to experience a vision loss. The approach seems to under
estimated the parameters in the dependent model. This may be due to the fact that the data
were not randomly sampled from the population but from treatment groups where there is
a high risk of aggregation of the occurrence of vision loss. In summary, we conclude that
vision loss aggregates in the treatment group sampled

5. Conclusions and Future Work

This paper has been concerned with development of a likelihood formulation for clustered
bivariate binary data. The development, albeit being straight forward and based on sim-
ple analytic formulation, is novel and well suited for areas of application including public
health and biomedical research. We demonstrated that the proposed logistic-Gaussian ran-
dom effects model provides a useful tool for analysing clustered bivariate binary data. The
advantage of the proposed model is that, it accounts for within cluster (treatment) depen-
dence, provides a good portrayal of cluster (treatment ) differences. In many applications,
the use of regressor variables is inevitable. Regression parametrization of the response
probability is modelled in terms of random effects. The choice of a particular model, for
a given dataset should be guided by the purpose of the analysis. For example the partial
correlated bivariate binary model provides a good portrayal of cluster differences while
controlling for within cluster aggregation. We have also shown that the parameters in the
models can be estimated by maximum likelihood methods. Iterative procedures to produce
estimates are derived from maximum likelihood methods (ML). Numerical approximation
methods based on Gaussian quadratures was utilized for estimation in the random effect
models where closed form results are intractable. Other approaches such as the Gibbs
sampling method, Monte Carlo techniques can be considered in future studies.
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Parameter Estimates S.E Estimates S.E Estimates S.E Estimates S.E

0.773 0.075* 0.681 0.085* 0.681 0.121*

0.121 0.086* 0.121 0.086*

1.000 0.251*

Constant -4.090 0.142* -3.017 0.214* -2.919 0.218* -2.919 0.226*

Lifetime Smoker 0.466 0.126* 0.439 0.184* 0.437 0.184* 0.437 0.184*

Neuropathy 0.154 0.140 0.169 0.203 0.165 0.203 0.165 0.203

Years of Diabetes 0.047 0.008* 0.046 0.011* 0.045 0.011* 0.045 0.011*

Constant -4.090 0.142* -3.017 0.216* -2.919 0.217* -2.919 0.227*

Lifetime Smoker 0.466 0.126* 0.439 0.184* 0.437 0.184* 0.437 0.183*

Neuropathy 0.154 0.140 0.169 0.203 0.165 0.203 0.165 0.203

Years of Diabetes 0.047 0.008* 0.046 0.011* 0.045 0.011* 0.045 0.011*

-2*Log(Likelihood) 907.36014 1725.607 1715.921 1715.921

 Model IV: Correlation among treatment, correlation within treatment and  association between Left vision loss and Right vision loss

Table 1: Estimates and Standard Errors of the Regression Analysis  of Left and Right Vision Loss (ACCORD EYE Data)

Model I Model II Model III  Model IV

LEFT VISION LOSS

RIGHT VISION LOSS

*indicates statistical significance. Original data was modified to illustrate  Model II-IV

 Model I: No correlation within  treatment, no correlation among treatments and no association between Left vision loss and Right vision 

loss.

Model II: Correlation among treatment, no correlation within treatment  and no association between Left vision loss and Right vision loss

 Model III: Correlation among treatment, correlation within treatment and no association between Left vision loss and Right vision loss

𝜎௔ = 𝜎௕ 𝛼ଵ = 𝛼ଶ 𝜌௔௕ 
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