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Abstract 

Since a missing value resembles not only an unknown data of an unknown 
probability distribution but also their unknown characteristics, it is better to 
construct a basket of characteristics based on assumed missing values. The missing 
technique, as demonstrated by Sharna et al (2016), is a kind of check and balance 
method for estimating a missing value. In this paper we offer an extended version 
of the iterative estimation method for more than one missing value. This paper also 
demonstrates a resampling method for generating 1 or 2 correlated observations 
from the same distribution from where the original sample is drawn.  
 
Key Words: Average Log Likelihood Function ; Combination ; Dummy Missing 
Value ; Likelihood Rate ; Simple Random Sample. 
 
 

1. Introduction 

 
Missing data pattern describes which values are observed in the data matrix and which 
values are missing, and missing data mechanism addresses the relationship between 
missing value and the available values in the data matrix. Missing value estimation is a 
common problem in several statistical studies. The problem synchronized a lot when the 
sample size is very small and sensitive. Missing data mechanisms addresses the 
dependencies among the missing data and the available data. Rubin (1976) developed a 
device of treating the missing data indicators as random variables along with a distribution.  
 
The literature on analysis of partially missing data is inaugurated by Afifi and Elashoff 
(1966), Hartley and Hocking (1971), Orchard and Woodbury (1972), Dempster, Laird, and 
Rubin (1977), Litte and Rubin (1983 a), Little and Schenker (1994), and Little (1997) as 
addressed by the book written by Little. R. J. A and Rubin. D. B. (2002). Methods proposed 
by the aforesaid authors can be grouped into the following categories. The categories 
include Procedures Based on Completely Record Units, Weighting Procedures, 
Imputation-Based Procedures and Model-Based Procedures. Broadly there are two ways 
for estimating missing values. These are Missing Value Estimation in Experiment and 
Missing Value Estimation by Likelihood Based Method. Imputation Method, Weighted 
Methods by Complete Case and Available Case Analysis are from class one. And Inference 
based Likelihood method, Factored Likelihood Method, EM Algorithm , Large Sample 
Inference based Maximum Likelihood Method, Bayesian Iterative Simulation Method, 
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Robust Method, Partially Classified Contingency Table Method (ML Estimation, Bayes 
Estimation, Log-linear Model, Logistic Regression Method) etc. are from class two.  
 
Allan and Wishart’s (1930), Wilkinson’s (1958), Hartley’s (1956), Westmacott (1956), 
Pearce (1965, p.111;1971), Bartlett (1937) demonstrated some methods/modifications for 
estimating missing values. A variety of techniques are available in the literature to estimate 
missing values. These will be reviewed briefly later.  Sharna et al (2016) proposed a 
Missing technique to estimate one missing value. In this paper we extended the study of 
Sharna et al (2016) to develop a Missing Value Estimation Technique to estimate more 
than one missing values. 
 

2. Methodology 

 
Let there be (𝑛 − 2) observations and 2 missing observations. We want to estimate the 
missing paired observations. We know nothing about missing value or the distribution of 
observation from where the observations are drawn. So, we know nothing about the 
missing value, or the distribution of the observations or the parameters of the distribution 
or other characteristics like mean, median, mode, variance, skewness, kurtosis, and higher 
order moments of the distribution. In this situation we will estimate all the aforesaid 
characteristics and their volatility due to the change of sample size. We will also measure 
the deviation of the estimated characteristics from those of the missing values. So, we 
adjust our estimates of various characteristics due to the exact sample size and bandwidth 
of each of the characteristics. Later all the estimated characteristics will be used to find out 
several relation among themselves to predict the probability distribution. The parameters 
will also be estimated under the predicted probability distribution. Later on the deviation 
of the theoretically estimated characteristics and practically observed characteristics can 
be found to check how better the predicted distribution was by checking the equivalence 
of the theoretical and observed characteristics. Average Maximum Likelihood function and 
the consistent rate of the mean sum of squares of error can be found to confirm that the 
performance of the estimated missing values and the error conducted due to the estimated 
missing values is the least. 
 
2.1 Estimating First Missing Value from a Sample of Size n 

Let the observations  𝑥1,𝑥2,…, 𝑥𝑛−2 be non-missing and two observations be missing. Let 
the missing observation be y  and z. We want to estimate y and z. So out of (𝑛 − 2) non-
missing observations 𝑛 − 2𝐶𝑛−2−2

 samples each of size (𝑛 − 2 − 2) can be drawn 
assuming two observations for each sample are missing. Assuming two non-missing 
observation as tw missing ones we can generate 𝑛 − 2𝐶𝑛−4

 samples each of which is 
consisting of (𝑛 − 4) non-missing observations pretending the rest non-missing 
observations as the missing observation. So the 𝑛 − 2𝐶𝑛−4

  generated samples are as below: 
 

𝑛 − 2𝐶𝑛−4
 samples each of size (𝒏 − 𝟒)                 Assumed missing observation 

𝑥1,𝑥2, … , 𝑥𝑛−2    𝑥𝑛−1, 𝑥𝑛 
…    … 

𝑥1,𝑥3, … , 𝑥𝑛−1    𝑥2, 𝑥𝑛 
𝑥3, … , 𝑥𝑛    𝑥1, 𝑥2 

 
So we have calculated a class of characteristics (demonstrated in Table 1) to develop and 
observe several relationships among themselves (characteristics). For each of these 
characteristics, we will observe it’s deviation from the same characteristic with the 

2523



 
 

presence of two dummy missing observations. Let us at first explain the easiest 
characteristic say sample mean and its sample standard deviation from the assumed missing 
value as addressed in Table 2. 
 
Now,    𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−2; �̅�, 𝑆2) 
 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−2; �̅�, 𝑆2)] 
log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛−2; �̅�, 𝑆2)) 

∴
1

𝑛−2
log(𝐿) = 1

𝑛−2
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−2

𝑖=1  
which can be termed as the average expected log likelihood function or expected log  
likelihood rate. Now, we should generate short incremented (various) values for 𝑥 form the 
following range  
 

(
1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅ ̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅ ̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

,
1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 +   k

|𝑥1
̅̅ ̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅ ̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values could be as below 
 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅ ̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅ ̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

, 

 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅ ̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅ ̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

+ ℎ, 

 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅ ̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅ ̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

+ 2ℎ, 

 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 −  k

|𝑥1
̅̅ ̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅ ̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

+ 3ℎ, 

…………………………………………………, 

1

𝑛−2
∑ 𝑥𝑖

𝑛−2
𝑖=1 +  k

|𝑥1
̅̅ ̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅ ̅̅̅−𝑥2′̅̅ ̅̅̅|+⋯

+|𝑥𝑛−2𝐶𝑛−4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑥𝑛−2𝐶𝑛−4

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑛−2𝐶𝑛−4

. 
 
If we assume one of the aforesaid two missing observations as the estimate of the n-1th 
pretended missing observation, and (if we consider) the available original observations 
𝑥1,𝑥2, … , 𝑥𝑛−2 as the (𝑛 − 2) other non-missing observations then the consecutive 
Maximum Likelihood Function or Likelihood Rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …  𝑓(𝑥𝑛−2; �̅�, 𝑆2)𝑓(𝑥𝑛−1; �̅�, 𝑆2) 
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log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …   𝑓(𝑥𝑛−2; �̅�, 𝑆2)𝑓(𝑥𝑛−1; �̅�, 𝑆2)] 
 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛−1; �̅�, 𝑆2)) 
 

1

𝑛−1
log(𝐿′) = 1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1  
 
We will search the incremented value of the n-1th observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  
 

1

𝑛−2
log(𝐿) = 1

𝑛−2
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−2

𝑖=1 ≅
1

𝑛−1
log(𝐿′) = 

1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1 . 
 
The incremented value of the n-1th observation for which the likelihood functions are same, 
will be an efficiently-estimated value of the n-1th  missing observation. 
 
However, if we get more than two estimates of the missing observation, we can check for 
which estimate of the missing value the first two moments are close to those of the original  
(𝑛 − 2) observations. Hence, we will find the closer estimate of the missing value. 
Therefore, if we get more than two or three or more estimates of a missing observation, we 
can use all the estimates to estimate that missing value. Hence, we will estimate the (n-1)th 
missing observation which is the estimate of one missing value out of two missing value.     
 
So, we have described how 𝑛 − 2𝐶𝑛−2−2

 samples have been generated assuming two non-
missing observations as two missing ones in each case and calculated their sample averages 
to find out a bandwidth for the first missing value. Here the missing value has been 
determent adding the half of the bandwidth of the 1st missing value with the average of all 
of the available non-missing values. Similarly, several sample characteristics and their 
bandwidth can be calculated to find out different characteristics of the missing data as well 
as the distribution from which the sample (consisting of the 1st missing value and non-
missing value) has been drawn. So, sample variance, sample higher order moments, sample 
median, mode, skewness, kurtosis, tail behaviors, etc. can be found using their respective 
bandwidth. Several relationships can be explored from the aforesaid estimated 
characteristics to recognize the pattern of the distribution and its relevant features. The 
relevant features, estimated parameters and the predicted distribution are used to fit the 
observed sample data. So least square fitting or least deviation fitting or any sort of other 
goodness of fit can be used to check the performance of the predicted probabilistic model 
along-with the bandwidth based estimated parameters and the characteristics. After 
checking the fitting performance of the predicted model for the observed data, we can 
observe whether the average log-likelihood function for both the non-missing and the first 
missing value is equivalent that of the average log-likelihood rate for the all non-missing 
values.  
 
After estimating the first missing value, we will estimate the 2nd as well as the last missing 
value value based on the non-missing values and the estimated 1st missing value. Hence, 
we will repeat the previously developed method of estimating one missing value by Sharna 
et al (2016) as follows.  
 
2.2 Estimating Last Missing Value from a Sample of Size n using the Estimated 

Missing Value 
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Suppose there are 𝑛 observations out of which (𝑛 − 1) non-missing observations and one 
missing observation. We also suppose that observations 𝑥1,𝑥2,…, 𝑥𝑛−1 are non-missing 
and one observation 𝑥𝑛 is missing. We want to estimate 𝑥𝑛. So out of (𝑛 − 1) non-missing 
observations, (𝑛 − 1) samples each of which is of size (𝑛 − 2) can be drawn assuming 
each sample has one missing observation. Assuming one non-missing observation as a 
missing one we can generate (𝑛 − 1) samples each of which is consisting of (𝑛 − 2) non-
missing observations pretending the rest non-missing observations as the missing 
observation. So the (𝑛 − 1) generated samples are as below: 
 

(𝒏 − 𝟏) samples each of size (𝒏 − 𝟐)                Assumed missing observation 

𝑥1,𝑥2, … , 𝑥𝑛−2    𝑥𝑛−1 
𝑥1,𝑥2, … , 𝑥𝑛−1    𝑥𝑛−2 

…    … 
𝑥1,𝑥3, … , 𝑥𝑛−2    𝑥2 
𝑥2,𝑥3, … , 𝑥𝑛−1    𝑥1 

 
So, we have calculated a class of characteristics (demonstrated in Table 1) to develop and 
observe several relationships among themselves (characteristics). For each of these 
characteristics, we will observe it’s deviation from the same characteristic with the 
presence of dummy missing observation. Let us at first explain the easiest characteristic 
say sample mean and its deviation from the assumed missing value as addressed in Table 
2. 
 
Now,    𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−1; �̅�, 𝑆2) 
 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) … 𝑓(𝑥𝑛−1; �̅�, 𝑆2)] 
 

log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛−1; �̅�, 𝑆2)) 
∴

1

𝑛−1
log(𝐿) = 1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1  
 

which can be termed as the average expected log likelihood function or expected log  
likelihood rate. Now, we should generate short incremented (various) values for 𝑥 form the 
following range  
 

(
1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
,

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 +  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯
+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values could be as below 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
, 

 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ ℎ, 

 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ 2ℎ, 
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1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 −  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
+ 3ℎ, 

…………………………………………………, 

1

𝑛−1
∑ 𝑥𝑖

𝑛−1
𝑖=1 +  k

|𝑥1̅̅̅̅ −𝑥𝑛−1|+|𝑥2̅̅̅̅ −𝑥𝑛−2|+⋯

+|𝑥𝑛−2̅̅ ̅̅ ̅̅ ̅−𝑥2|+|𝑥𝑛−1̅̅ ̅̅ ̅̅ ̅−𝑥1|

𝑛−1
. 

 
If we assume any of the aforesaid observations as the estimate of the nth pretended missing 
observation, and (if we consider) the available original observations 𝑥1,𝑥2, … , 𝑥𝑛−1 as the 
(𝑛 − 1) other non-missing observations then the consecutive Maximum Likelihood 
Function or Likelihood Rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …  𝑓(𝑥𝑛; �̅�, 𝑆2) 
 

log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2) …  𝑓(𝑥𝑛; �̅�, 𝑆2)] 
 

log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2) + ⋯ + 𝑙𝑜𝑔(𝑓(𝑥𝑛; �̅�, 𝑆2)) 
1

𝑛
log(𝐿′) = 1

𝑛
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛

𝑖=1  
 
We will search the incremented value of the nth observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  
 

1

𝑛−1
log(𝐿) = 1

𝑛−1
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛−1

𝑖=1 ≅
1

𝑛
log(𝐿′) = 

1

𝑛
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))𝑛

𝑖=1 . 
 
The incremented value of the nth observation for which the likelihood functions are same, 
will be an efficiently-estimated value of the missing observations. 
 
However, if we get more than two estimates of the missing observation, we can check for 
which estimate of the missing value the first two moments are close to those of the original  
(𝑛 − 1) observations. Hence we will find the closer estimate of the missing value. 
Therefore, if we get more than two or three or more estimates of a missing observation, we 
can use all the estimates to estimate that missing value.     
 
So, we have described how (𝑛 − 1) samples have been generated assuming one non-
missing observation as a missing one in each case and calculated their sample averages to 
find out a bandwidth for the missing value. Here the missing value has been determint 
adding the half of the bandwidth of the missing value with the average of all of the available 
non-missing values. Similarly, several sample characteristics and their bandwidth can be 
calculated to find out different characteristics of the missing data as well as the distribution 
from which the sample (consisting of missing value and non-missing value) has been 
drawn. So, sample variance, sample higher order moments, sample median, mode, 
skewness, kurtosis, tail behaviors, etc. can be found using their respective bandwidth. 
Several relationships can be explored from the aforesaid estimated characteristics to 
recognize the pattern of the distribution and its relevant features. The relevant features, 
estimated parameters and the predicted distribution are used to fit the observed sample 
data. So least square fitting or least deviation fitting or any sort of other goodness of fit can 
be used to check the performance of the predicted probabilistic model along-with the 
bandwidth based estimated parameters and the characteristics. After checking the fitting 
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performance of the predicted model for the observed data, we can observe whether the 
average log-likelihood function for both the non-missing and missing values is equivalent 
that of the average log-likelihood rate for the all non-missing values.  
 
 

2.3 Estimating First Missing Value from a Sample of Size 6 

For more clarification let 𝑛 = 6. So there are 4 non-missing observations and 2 missing 
observations. The non-missing observations are 𝑥1,𝑥2,𝑥3, 𝑥4 and the missing observations 
are 𝑥6 and 𝑥5. Assuming two non-missing observations as missing ones we can generate 
6  samples each of which is consisting of 2 non-missing observations assuming the rest 
non-missing observations as the missing observations. So the 6 samples are as below: 
 

Samples of size 2                                                  Assumed missing observations 
𝑥1,𝑥2    𝑥3, 𝑥4 
𝑥1,𝑥3    𝑥2, 𝑥4 
𝑥1,𝑥4    𝑥2, 𝑥3 
𝑥2,𝑥3    𝑥1, 𝑥4 
𝑥2,𝑥4    𝑥1, 𝑥3 
𝑥3,𝑥4    𝑥1, 𝑥2 

 
Table 1: Sample means and sample variances for several samples. 

 

 Sample Mean 

 

Sample Variance 

 𝑥1̅̅ ̅ =
𝑥1+𝑥2

2
 𝑆1

2 =
(𝑥1 − 𝑥1̅̅ ̅)2 + (𝑥2 − 𝑥1̅̅ ̅)2

2 − 1
 

 𝑥2̅̅ ̅ =
𝑥1+𝑥3

2
 𝑆2

2 =
(𝑥1 − 𝑥2̅̅ ̅)2 + (𝑥3 − 𝑥2̅̅ ̅)2

2 − 1
 

 𝑥3̅̅ ̅ =
𝑥1+𝑥4

2
 𝑆3

2 =
(𝑥1 − 𝑥3̅̅ ̅)2 + (𝑥4 − 𝑥3̅̅ ̅)2

2 − 1
 

 𝑥4̅̅ ̅ =
𝑥2+𝑥3

2
 𝑆4

2 =
(𝑥2 − 𝑥4̅̅ ̅)2 + (𝑥3 − 𝑥4̅̅ ̅)2

2 − 1
 

 𝑥5̅̅ ̅ =
𝑥2+𝑥3

2
 𝑆5

2 =
(𝑥2 − 𝑥5̅̅ ̅)2 + (𝑥3 − 𝑥5̅̅ ̅)2

2 − 1
 

 𝑥6̅̅ ̅ =
𝑥3+𝑥4

2
 𝑆6

2 =
(𝑥3 − 𝑥6̅̅ ̅)2 + (𝑥4 − 𝑥6̅̅ ̅)2

2 − 1
 

Average �̅�

=
𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅ + 𝑥4 + 𝑥5̅̅ ̅ + 𝑥6̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

6
 

𝑆2 =
𝑆1

2 + 𝑆2
2 + 𝑆3

2 + 𝑆4
2 + 𝑆5

2 + 𝑆6
2

6
 

 
So we have calculated a class of characteristics to develop and observe some relationships 
among them (characteristics). For each of these characteristics we will observe it’s 
deviation from the same characteristic with the presence of assumed missing observation. 
Let us at first explain the easiest characteristics say sample mean and its deviation from the 
assumed missing value in the following table: 
 

Table 1: Sample mean difference for several samples. 
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Sample 

Mean of 

size 3 

Assumed 

Missing 

Values 

Difference |𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆| 

𝑥1̅̅ ̅

=
𝑥1+𝑥2

2
 

𝑥3, 𝑥4 𝑥1̅̅ ̅ −  𝑥3+𝑥4

2
 |𝑥1

̅̅ ̅̅ − 𝑥1′̅̅ ̅̅ | 

𝑥2̅̅ ̅

=
𝑥1+𝑥3

2
 

𝑥2, 𝑥4 𝑥2̅̅ ̅ −
𝑥2+𝑥4

2
 |𝑥2

̅̅ ̅̅ − 𝑥2′̅̅ ̅̅ | 

𝑥3̅̅ ̅

=
𝑥1+𝑥4

2
 

𝑥2, 𝑥3 𝑥3̅̅ ̅ −
𝑥2+𝑥3

2
 |𝑥3

̅̅ ̅̅ − 𝑥3′̅̅ ̅̅ | 

𝑥4̅̅ ̅

=
𝑥2+𝑥3

2
 

𝑥1, 𝑥4 𝑥4̅̅ ̅ −
𝑥1+𝑥4

2
 |𝑥4

̅̅ ̅̅ − 𝑥4′̅̅ ̅̅ | 

𝑥5̅̅ ̅

=
𝑥2+𝑥3

2
 

𝑥1, 𝑥3 𝑥5̅̅ ̅ −
𝑥1+𝑥3

2
 |𝑥5

̅̅ ̅̅ − 𝑥5′̅̅ ̅̅ | 

𝑥6̅̅ ̅

=
𝑥3+𝑥4

2
 

𝑥1, 𝑥2 𝑥6̅̅ ̅ −
𝑥1+𝑥2

2
 |𝑥6

̅̅ ̅̅ − 𝑥6′̅̅ ̅̅ | 

Total   |𝑥1
̅̅ ̅̅ − 𝑥1′̅̅ ̅̅ |+|𝑥2

̅̅ ̅̅ − 𝑥2′̅̅ ̅̅ | + |𝑥3
̅̅ ̅̅ − 𝑥3′̅̅ ̅̅ |+|𝑥4

̅̅ ̅̅ − 𝑥4′̅̅ ̅̅ |

+ |𝑥5
̅̅ ̅̅ − 𝑥5′̅̅ ̅̅ | + |𝑥6

̅̅ ̅̅ − 𝑥6′̅̅ ̅̅ | 
Average   |𝑥1

̅̅ ̅̅ − 𝑥1′̅̅ ̅̅ |+|𝑥2
̅̅ ̅̅ − 𝑥2′̅̅ ̅̅ | + |𝑥3

̅̅ ̅̅ − 𝑥3′̅̅ ̅̅ |+|𝑥4
̅̅ ̅̅ − 𝑥4′̅̅ ̅̅ |

+|𝑥5
̅̅ ̅̅ − 𝑥5′̅̅ ̅̅ | + |𝑥6

̅̅ ̅̅ − 𝑥6′̅̅ ̅̅ |

6
 

 
Now,  

𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2) 
 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)] 
 
log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)) 

1

4
log(𝐿) =1

4
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))4

𝑖=1  
 

which can termed as the average expected likelihood or expected likelihood rate.  
 
Now, we should generate short incremented various values form the range  
 

(

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+|𝑥3
̅̅̅̅̅−𝑥3′̅̅ ̅̅̅|+|𝑥4

̅̅̅̅̅−𝑥4′̅̅ ̅̅̅|+|𝑥5
̅̅̅̅̅−𝑥5′̅̅ ̅̅̅|+|𝑥6

̅̅̅̅̅−𝑥6′̅̅ ̅̅̅|

6
,

1

4
∑ 𝑥𝑖

4
𝑖=1 +

 k
|𝑥1
̅̅̅̅̅−𝑥1′̅̅ ̅̅̅|+|𝑥2

̅̅̅̅̅−𝑥2′̅̅ ̅̅̅|+|𝑥3
̅̅̅̅̅−𝑥3′̅̅ ̅̅̅|+|𝑥4

̅̅̅̅̅−𝑥4′̅̅ ̅̅̅|+|𝑥5
̅̅̅̅̅−𝑥5′̅̅ ̅̅̅|+|𝑥6

̅̅̅̅̅−𝑥6′̅̅ ̅̅̅|

6

). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values the values could be  
 

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
,  

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ ℎ, 
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1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ 2ℎ,  

1

4
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
+ 3ℎ, 

…………………………………………………,  
1

4
∑ 𝑥𝑖

4
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|

4
. 

 
If we assume any one of the two afore said observations as the 5th observation and the four 
other observations are the given original observations 𝑥1,𝑥2,𝑥3, 𝑥4; then the consecutive 
average observed likelihood or observed likelihood rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2) 𝑓(𝑥5; �̅�, 𝑆2) 𝑓(𝑥6; �̅�, 𝑆2) 
 
log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2)𝑓(𝑥6; �̅�, 𝑆2)] 

 
log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2))

+ 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥5; �̅�, 𝑆2) + 𝑙𝑜𝑔(𝑓(𝑥6; �̅�, 𝑆2)) 
1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))6

𝑖=1  
 
We will search the incremented value of the 5th observation for which the expected 
likelihood rate and the observed likelihood rate will be same i.e.  
 

1

4
log(𝐿) = 1

4
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))4

𝑖=1 ≅
1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))6

𝑖=1 . 
 

The incremented value of the 5th and 6th observations for which the likelihood functions 
are same, will be the estimated values of the first of the two missing observations. 
 
If we get more than two estimates of the missing observation (since we get two value of 
the 5th observation for whom the likelihood rates are same), we can check for which 
estimate of the missing value the first two moments are close to those of the original 4 
observations. Hence we will find the estimate of the missing values.  
 
If we get more than two or three or more estimates of each of the missing observations, we 
can have the corresponding averages all the estimates of the missing values and can assume 
that as the estimate of that missing value. Hence we have derived the 5th observation. We 
will now estimate the 6th (last) observation.    
 
2.4 Estimating Last Missing Value from a Sample of Size 6 using the Estimated 

Missing Value  
Now let 𝑛 = 6. So there are 4 non-missing observations and one missing observation. The 
non-missing observations are 𝑥1,𝑥2,𝑥3, 𝑥4, 𝑥5 and the missing observation is 𝑥6. So, 
assuming one non-missing observation as a missing one we can generate 5 samples each 
of which is consisting of 4 non-missing observations assuming the rest non-missing 
observations as the missing observation. So, the 5 samples are as below: 
 

Samples of size 𝟑                         Assumed missing observation 

𝑥1,𝑥2,𝑥3, 𝑥4    𝑥5 
𝑥1,𝑥2,𝑥3, 𝑥5    𝑥4 
𝑥1,𝑥2,𝑥4,𝑥5    𝑥3 
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𝑥1,𝑥3,𝑥4,𝑥5    𝑥2 
𝑥2,𝑥3,𝑥4,𝑥5    𝑥1 

 
So, we have calculated a class of characteristics (Table A3) to develop and observe some 
relationships among them (characteristics). For each of these characteristics we will 
observe it’s deviation from the same characteristic with the presence of assumed missing 
observation. Let us at first explain the easiest characteristics say sample mean and its 
deviation from the assumed missing value in the Table A4. 
 
Now,    𝐿 = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2) 
 

log (𝐿) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2)] 
 
log(𝐿) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)

+ 𝑙𝑜𝑔(𝑓(𝑥5; �̅�, 𝑆2)) 
 

1

5
log(𝐿) = 

1

5
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))5

𝑖=1  
 
which can termed as the average expected log likelihood or expected log likelihood rate. 
Now, we should generate short incremented various values form the range  
 

(

1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
,

1

5
∑ 𝑥𝑖

4
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅ ̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5

). 

 
Here k may be 0.50 or 1 or 2 or so on. The increment ℎ can take the value 0.01 or 0.05 or 
0.10 and so on. The values the values could be  
 

1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅ ̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
, 

 
1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
+ ℎ, 

 
1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
+ 2ℎ, 

 
1

5
∑ 𝑥𝑖

4
𝑖=1 −  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
+ 3ℎ, 

…………………………………………………, 
1

5
∑ 𝑥𝑖

4
𝑖=1 +  k

|𝑥1
̅̅̅̅̅−𝑥4|+|𝑥2

̅̅̅̅̅−𝑥3|+|𝑥3
̅̅ ̅̅̅−𝑥2|+|𝑥4

̅̅̅̅̅−𝑥1|+|𝑥5
̅̅̅̅̅−𝑥5|

5
. 

 
If we assume any of the afore said observations as the 6th observation and the four other 
observations are the given original observations 𝑥1,𝑥2,𝑥3, 𝑥4, 𝑥5; then the consecutive 
maximum likelihood function or observed likelihood rate will be  
 

𝐿′ = 𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2) 𝑓(𝑥5; �̅�, 𝑆2)𝑓(𝑥6; �̅�, 𝑆2) 
 
log (𝐿′) = 𝑙𝑜𝑔[𝑓(𝑥1; �̅�, 𝑆2)𝑓(𝑥2; �̅�, 𝑆2)𝑓(𝑥3; �̅�, 𝑆2)𝑓(𝑥4; �̅�, 𝑆2)𝑓(𝑥5; �̅�, 𝑆2)𝑓(𝑥6; �̅�, 𝑆2)] 
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log(𝐿′) = 𝑙𝑜𝑔(𝑓(𝑥1; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥2; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥3; �̅�, 𝑆2))
+ 𝑙𝑜𝑔(𝑓(𝑥4; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥5; �̅�, 𝑆2)) + 𝑙𝑜𝑔(𝑓(𝑥6; �̅�, 𝑆2))) 

 
1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))6

𝑖=1  
 
We will search the incremented value of the 6th observation for which the expected log 
likelihood rate and the observed log likelihood rate will be same i.e.  
 

1

5
log(𝐿) = 1

5
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))5

𝑖=1 ≅
1

6
log(𝐿′) =1

6
∑ log(𝑓(𝑥𝑖; �̅�, 𝑆2))6

𝑖=1 . 
 
The incremented value of the 5th observation for which the likelihood functions are same, 
will be the estimated value of the missing observations. If we get more than two estimates 
of the missing observation (since we get two value of the 5th observation for whom the 
likelihood rates are same), we can check for which estimate of the missing value the first 
two moments are close to those of the original 4 observations. Hence we will find the 
estimate of the missing value.  
 

 
3 Real Life Examples 

 
We like to simulate a couple of samples each of which is of size 𝑛 from a probability 
distribution with specified parameters. Later we will keep one observations a complete 
missing observation and pull it out from the original sample. Hence the original sample 
turns to a sample of size 𝑛 − 2. Out of 𝑛 − 2 available observations of the sample, we will 
draw  samples each of which is of size 𝑛 − 2. For each of the 𝑛𝐶𝑛−2

 samples of size 𝑛 − 2, 
we will assume the two absent observations as two dummy missing values of the sample. 
So, for each of the 𝑛𝐶𝑛−2

 samples, there are 𝑛 − 2 available observations and two dummy 
missing values. From each of the 𝑛𝐶𝑛−2

 samples, we will have one absolute dispersion 
between the average of 𝑛 − 2 available observations and the average of the two dummy 
missing observations. So, we will have 𝑛𝐶𝑛−2

 absolute between differences for 𝑛𝐶𝑛−2
 pairs 

of averages and dummy missing values. Averaging the 𝑛𝐶𝑛−2
  absolute differences, we will 

calculate average absolute difference. Based on the average absolute difference, we will 
generate a possible range of the original missing value. We will generate several values of 
that range starting from the lower limit and will get several valued for fixed increment upto 
to upper limit of that range. We will check whether the average likelihood of the 𝑛 −
2 original observations is similar for which 𝑛-1th 𝑛th observed missing values from the 
generating range and the 𝑛 − 2 observations. 
 
Let 𝑛 = 10. So there are 8 non-missing observations and two missing observations. The 
non-missing observations (from Normal with mean 5 and standard deviation 2) are 
1.729466, 3.547037, 3.6597, 5.814905, 3.817457, 6.333606, 4.05684, 3.748781, and the 
missing observations are 3.608116, 2.671239.  The average of these eight non-missing 
observations are 4.09. Now, assuming two non-missing observations as two missing ones 
we can generate 28 samples each of which is consisting of 6 non-missing observations 
assuming the rest two non-missing observations as two missing observations. So, the 28 
samples (as addressed in table 3) each consisting of 6 non-missing values are as below (the 
bold numbers in the last row are representing here the assumed missing value for each 
sample): 
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           Table 3: The 28 samples each consisting of 6 non-missing values. 
 

Sample    |Non-Missing Part                                                 |Missing Part 

         

1 1.73 3.55 3.66 5.81 3.82 6.33 4.06 3.75 

2 1.73 3.55 3.66 5.81 3.82 4.06 6.33 3.75 

3 1.73 3.55 3.66 5.81 4.06 6.33 3.82 3.75 

4 1.73 3.55 3.66 4.06 3.82 6.33 5.81 3.75 

5 1.73 3.55 4.06 5.81 3.82 6.33 3.66 3.75 

6 1.73 4.06 3.66 5.81 3.82 6.33 3.55 3.75 

7 4.06 3.55 3.66 5.81 3.82 6.33 1.73 3.75 

8 1.73 3.55 3.66 5.81 3.82 3.75 4.06 6.33 

9 1.73 3.55 3.66 5.81 3.75 6.33 4.06 3.82 

10 1.73 3.55 3.66 3.75 3.82 6.33 4.06 5.81 

11 1.73 3.55 3.75 5.81 3.82 6.33 4.06 3.66 

12 1.73 3.75 3.66 5.81 3.82 6.33 4.06 3.55 

13 3.75 3.55 3.66 5.81 3.82 6.33 4.06 1.73 

14 1.73 3.55 3.66 5.81 4.06 3.75 3.82 6.33 

15 1.73 3.55 3.66 4.06 3.82 3.75 5.81 6.33 

16 1.73 3.55 4.06 5.81 3.82 3.75 3.66 6.33 

17 1.73 4.06 3.66 5.81 3.82 3.75 3.55 6.33 

18 4.06 3.55 3.66 5.81 3.82 3.75 1.73 6.33 

19 1.73 3.55 3.66 4.06 3.75 6.33 5.81 3.82 

20 1.73 3.55 4.06 5.81 3.75 6.33 3.66 3.82 

21 1.73 4.06 3.66 5.81 3.75 6.33 3.55 3.82 

22 4.06 3.55 3.66 5.81 3.75 6.33 1.73 3.82 

23 1.73 3.55 4.06 3.75 3.82 6.33 3.66 5.81 

24 1.73 4.06 3.66 3.75 3.82 6.33 3.55 5.81 

25 4.06 3.55 3.66 3.75 3.82 6.33 1.73 5.81 

26 1.73 4.06 3.75 5.81 3.82 6.33 3.55 3.66 

27 4.06 3.55 3.75 5.81 3.82 6.33 1.73 3.66 

28 4.06 3.75 3.66 5.81 3.82 6.33 1.73 3.55 
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                        Table 4S: The Bandwidth for each of the 28 samples. 
 

Sample # Sample Mean First Missing 

Value 

Second 

Missing 

Value 

Absolute 

Difference 

or 

Bandwidth 

1 4.15 4.06 3.75 0.247551 
2 3.77 6.33 3.75 1.270293 
3 4.19 3.82 3.75 0.40714 
4 3.86 5.81 3.75 0.924492 
5 4.22 3.66 3.75 0.512311 
6 4.24 3.55 3.75 0.58742 
7 4.54 1.73 3.75 1.799134 
8 3.72 4.06 6.33 1.475665 
9 4.14 4.06 3.82 0.201767 
10 3.81 4.06 5.81 1.129865 
11 4.17 4.06 3.66 0.306939 
12 4.18 4.06 3.55 0.382047 
13 4.49 4.06 1.73 1.593761 
14 3.76 3.82 6.33 1.316077 
15 3.43 5.81 6.33 2.647709 
16 3.79 3.66 6.33 1.210905 
17 3.80 3.55 6.33 1.135797 
18 4.11 1.73 6.33 0.075917 
19 3.85 5.81 3.82 0.970276 
20 4.21 3.66 3.82 0.466527 
21 4.22 3.55 3.82 0.541636 
22 4.53 1.73 3.82 1.75335 
23 3.87 3.66 5.81 0.865105 
24 3.89 3.55 5.81 0.789996 
25 4.19 1.73 5.81 0.421718 
26 4.25 3.55 3.66 0.646807 
27 4.55 1.73 3.66 1.858521 
28 4.57 1.73 3.55 1.93363 

 

Average 

4.09 

   
0.981156 

 

         

The Expected Log Likelihood Rate for 9 observations (8 non-missing and one from the 
generating interval) is -0.743. By using the formula shown above, we get the range as 
(2.1262, 6.1262); where k=2. Let the increment, h=0.1. For each increment we will get 
average likelihood rate for 9 observations. And for the incremented value=2.726, we get 
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the same value for the Expected Average Likelihood and Observed Average Likelihood. 
So, our estimated value of the 1st missing observation is 2.726. 

 
Now depending on the 1st missing value and the missing value based or 9 observations 
based mean and variance, the likelihood function and likelihood rate for 10 observations 
have been found. The Expected Log Likelihood Rate is -0.741. By using the formula shown 
above, we get the range as (2.6188619, 5.2688619); where k=1.2. Let the increment, 
h=0.05. For each increment we will get average likelihood rate for 10 observations (8 non-
missing, one estimate of the 1st missing and one from the generating interval for the 2nd 
missing value). And for the incremented value=2.62, we get the same value for the 
Expected Average Likelihood and Observed Average Likelihood. So, our estimated value 
of the 2nd missing observation is 2.62. 

 
So, the estimates of the two missing values 3.608116, 2.671239 are 2.726 and 2.62. 
 

Conclusion 

 

The missing technique is a kind of check and balance method in estimating the missing 
value. In each step it checks the fluctuation due to sample size and balance it by capturing 
the dispersion of the estimate of the known data from the assumed unknown data which is 
really known. So, this method is trying to find the original rate of change of the deviation 
from the missing value for the exact size of the realized sample. So, from two directions, 
one direction from sample size and other direction for the deviation from the missing 
values, the missing technique has been aided to estimate the missing value efficiently 
maintaining a good performance through several goodness of fit tests. This paper also 
demonstrates a resampling method for generating 1 or 2 correlated observations from the 
same distribution from where the original sample is drawn. This paper can also be extended 
to get a resampling method for (n > 2) three or more correlated observations. 
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