
Robustness of Lognormal Confidence Regions for Means of Symmetric

Positive Matrices

Benoit Ahanda1, Daniel E. Osborne2, Leif Ellingson1

1 Texas Tech University, Department of Mathematics and Statistics
2 Florida Agricultural and Mechanical University, Department of Mathematics

Abstract

Symmetric positive definite (SPD) matrices arise in a wide range of applications including diffusion

tensor imaging (DTI), cosmic background radiation, and as covariance matrices. A complication

when working with such data is that the space of SPD matrices is a manifold, so traditional statis-

tical methods may not be directly applied. However, there are nonparametric procedures based on

resampling for statistical inference for such data, but these can be slow and computationally tedious.

Schwartzman (2015) introduced a lognormal distribution on the space of SPD matrices, providing a

convenient framework for parametric inference on this space. Our goal is to check how robust con-

fidence regions based on this distributional assumption are to a lack of lognormality. The methods

are illustrated in a simulation study by examining the coverage probability of various mixtures of

distributions.

1. Introduction

For statisticians, symmetric positive definite (SPD) matrices appear most commonly as co-

variance matrices for multivariate data. In such cases, researchers typically study these

matrices via properties of covariance and underlying properties of the underlying data.

However, for other areas in which they arise, researchers must take a different approach.

Some of these other applications include diffusion tensor imaging (DTI) and astronomy in

the form of cosmic background radiation. In these cases, researchers must instead consider

the SPD matrices as the data objects themselves, which is complicated by the fact that the

space of SPD matrices is a manifold.

The field of statistics on manifolds initially arose largely to study directional data but

has since been further developed for analyses on general manifolds. While many parametric

methods were developed for directional data analysis, the trend since the turn of the century

has been towards developing nonparametric procedures, starting with Hendriks and Lands-

man (1999) and Bhattacharya and Patrangenaru (2003), due to the fact that there exist no

general goodness of fit tests for data on manifolds. These nonparametric methods are typi-

cally based either on asymptotic results or resampling techniques such as the nonparametric

bootstrap. Since sample sizes are often relatively small compared to the dimensionality of

the data, bootstrapping is often necessary for inference. While this certainly works well in

many situations, bootstrapping on manifolds can often be quite computationally intensive,

as discussed in Bhattacharya et al (2012).

For the specific case of SPD matrices, Osborne et al (2013) and Ellingson et al (2016)

have developed nonparametric methods utilizing the bootstrap with illustrations of these

methods towards DTI data analysis. However, those papers consider only single diffusion

tensors while a typical diffusion tensor image will contain many thousands of tensors. As

such, Schwartzman (2015) introduced lognormal distributions for the space of SPD ma-

trices that allowed for the development of parametric inference procedures based on this
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distributional assumption. While these methods are computationally efficient compared to

the bootstrap methods, and thus more suitable for large-scale analyses, it remains to be seen

how well these procedures hold up to violations in the distributional assumptions.

As such, it is the goal of this paper to examine the robustness of these procedures via

simulation studies by examining effective coverage probabilities. More specifically, we will

begin exploring how coverage probabilities of lognormal confidence regions are affected

when the actual underlying probability distribution is a mixture of lognormal random ma-

trices with different means.

The remainder of this paper will be organized as follows. In Section 2, we will present

the relevant background on lognormal distributions and their associated confidence regions

for the population mean. Then, in Section 3, we will present the methodology we used to

perform simulations with the results of this preliminary study presented in Section 4. We

will then discuss these results in Section 5.

2. Lognormal Distributions and Inference for Means

Schwartzman (2015) introduced parametric methods for performing inference for means of

SPD matrices based on two types of lognormal distributions on this space, which consists of

all matrices having positive eigenvalues. Schwartzman arrived at these distributions using

different distances that can be utilized for analyzing SPD matrices. The Type I lognormal

distribution is defined with respect to what is known as the log-Euclidean distance. If A
and B are two p× p SPD matrices, then the log-Euclidean distance between them is

dLE(A,B) = ‖ log(A)− log(B)‖,

where log(A) = exp−1(A) and exp(A) =
∑

∞

k=0

1

k!
Ak.

Based on this, an SPD matrix X is said to follow a Type I lognormal distribution with

mean µ and covariance Σ if vecd(logX) ∼ Nq(log(µ),Σ), where q = p(p + 1)/2 and

vecd is a vectorizing operator such that the l2 norm of vecd(A) equals the Frobenius norm

of A.

The Type II lognormal distribution is defined similarly using what is known as the

canonical Riemannian distance on the space of p × p SPD matrices. For thew purposes

of this initial study, we will only consider the Type I lognormal distribution, though, for

computational and theoretical simplicity.

For the Type I lognormal distribution, the MLE for µ is

µ̂ = exp

(

1

n

n
∑

i=1

log(Xi)

)

.

The MLE of Σ is

Σ̂ =
1

n

n
∑

i=1

vecd(log(Xi)− log(µ̂))vecd(log(Xi)− log(µ̂))′.

Using Slutsky’s Theorem, Schwartzman (2015) defined an asymptotic 100(1 − α)%
confidence region for the mean SPD matrix µ to be

C1 = {µ : nvecd(log(µ̂)− log(µ))′Σ̂−1vecd(log(µ̂)− log(µ)) ≤ χ2
q(α)}. (1)
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Utilizing the Central Limit Theorem, this result will also apply for sufficiently large n even

when X does not follow a Type I lognormal distribution. However, motivated by the high

computational cost of using the nonparametric bootstrap for inference with small sample

sizes, we choose to instead focus on two exact confidence regions.

If Σ is known, then

C2 = {µ : nvecd(log(µ̂)− log(µ))′Σ−1vecd(log(µ̂)− log(µ)) ≤ χ2
q(α)}. (2)

is an exact 100(1 − α)% confidence region for µ.

In the more realistic scenario, Σ is unknown, as in C1. However, multivariate normal

distribution theory tells us that we can define another exact 100(1−α)% confidence region

for µ to be

C3 = {µ : nvecd(log(µ̂)− log(µ))′(Σ̂)−1vecd(log(µ̂)− log(µ)) ≤ p

n− p
F1−α,p,n−p}.

(3)

3. Methodology

To examine the robustness of parametric confidence regions for data arising from this dis-

tribution, we performed a simulation study to compare the effective confidence level to the

nominal confidence level under violations of the distributional assumption.

3.1 Simulation

More specifically, we decided to consider violations arising from the data coming from a

mixture of Type I lognormal distributions. That is, for a fixed sample size n and means µ1

and µ2, we considered mixtures of the form βLNI(µ1,Σ) + (1 − β)LNI(µ2,Σ), where

0 ≤ β ≤ 1 to analyze how the effective confidence level is altered as the level of mixing is

changed. We then repeated this for increasingly large deviations between µ1 and µ2 to gain

a better understanding of the impact of bimodality on the coverage probabilities. Finally,

we repeated all of these calculations for increasingly large values of n to explore how many

observations are needed for coverage probabilities to converge to the nominal levels even

under severe model violations.

To simplify the simulations and interpretations of the results, we worked with 2 × 2
symmetric matrices, resulting in the vectorized form being 3-dimensional. If we define the

the matrix

A =

[

a11 a12
a12 a22

]

,

then the vectorized form will be defined as

vecd(A) =





a11
a22√
2a12





so that, as described in the previous section, the Frobenius norm of A is equal to the l2 norm

of vecd(A).
For the purposes of this initial study, we simulated data using vectorized means of the

form µ1 = (δ, 0, b) and µ2 = (−δ, 0, b) for the following values of δ: 0.4, 0.6, 0.8, 1.0, 1.2,

1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 6.0, and 10 and a fixed value of b. This yielded the global mean
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µ0 = β ∗ µ1 + (1− β) ∗ µ2. We used 0.5, 0.6, 0.7, 0.8, 0.9, and 1 as the values for β with

the values less than 0.5 accounted for by the symmetry in the form of the mixture. Finally,

we considered the following sample sizes: 6, 20, 40, 80, and 500.

We simulated the data under two different scenarios involving the covariance matrix.

For Case 1, the covariance matrix for both distributions is:

Σ =





4 0 0
0 1 0
0 0 .01



 .

Then, for Case 2, the covariance matrix for both distributions is:

Σ =





1 0 0
0 4 0
0 0 .01





In Figure 1 are examples of how the densities are impacted (on the log-scale) when the

data are simulated as described in Case 1. As we can see from this, when δ = 0.04, the

deviation from lonormality is small, while it is quite large for δ = 4.
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(b) δ = 4

Figure 1: Densities of data (on the log-scale) simulated from Case 1

3.2 Evaluation

After simulating the data, our primary goal was to evaluate the robustness of the confidence

regions C2 and C3 at a fixed nominal confidence level, which we chose to be 95%. Rather

than just focusing on the true coverage probability, we also wanted to explore the impact of

the model violation on false coverage probabilities.

To do this, we repeatedly simulated data sets for each set of values of β, δ, and n for both

cases and recorded the proportion of times that a point µ was included in each confidence

region. We used µ of the form µ0+(υ, 0, 0) and µ0+(0, υ, 0) for the following values of υ:

-12,...,-4,-3,-2,-1,0,1,2,3,4,...,12. No changes were made in the third entry because so little

variability was present in that direction. For the purposes of evaluating the performance of

C3, we approximated the true value of Σ by calculating the sample covariance matrix of a

sample of 30,000 observations for the given mixture of distributions.
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4. Results

4.1 Case 1

Results of the simulations for Case 1 are shown in Figures 2, 3, 4, and 5. In all four

scenarios, the true coverage probabilities are close to the nominal level of 95%. The effects

of the mixtures on the coverage probabilities are not seen until false coverage probabilities

are considered. In all cases, the coverage probabilities converge quickly to 0 while traveling

along the y-axis because the lack of lognormality is not felt in that direction, even for the

larger values of δ.
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Figure 2: Case 1: n = 6, δ = 0.4

More interestingly, as shown in Figures 2 and 3, we see that the coverage probabilities

for the various mixtures are nearly identical to those of the lognormal data. This suggests

that the procedure is robust to minor violations of normality, even for small sample sizes.

However, as illustrated in Figures 4 and 5, the coverage probabilities along the x-axis for

the mixtures are impacted considerably more by larg deviations from lognormality when

the sample size is small, whereas they are not as highly impacted for larger sample sizes.

This, then, suggests that the performance of these confidence regions are moderately robust

for large deviations from lognormality along the primary direction of variability when the

sample size is small, but is considerably more robust for larger sample sizes.
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Figure 3: Case 1: n = 80, δ = 0.4

These patterns are heightened for the F confidence regions compared to the Chi-square

confidence regions. This is due to the fact the latter confidence regions are calculated using

the true covariance matrix for the data, whereas the former intervals are heavily impacted

by the estimation of the covariance matrix in addition to the violations of lognormality. This

result is intuitive based on the fact that the Chi-square regions are not plausible to use in

practice since the covariance matrix is so rarely known.

2516



0 5 10 15 20 25

µ
0
±υ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P
ro

b
a
b
ili

ty

β=.5

β=.6

β=.7

β=.8

β=.9

β=1

(a) χ2 coverage along the x-axis

0 5 10 15 20 25

µ
0
±υ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P
ro

b
a
b
ili

ty

β=.5

β=.6

β=.7

β=.8

β=.9

β=1

(b) F coverage along the x-axis

0 5 10 15 20 25

µ
0
±υ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P
ro

b
a
b
ili

ty

β=.5

β=.6

β=.7

β=.8

β=.9

β=1

(c) χ2 coverage along the y-axis

0 5 10 15 20 25

µ
0
±υ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P
ro

b
a
b
ili

ty

β=.5

β=.6

β=.7

β=.8

β=.9

β=1

(d) F coverage along the y-axis

Figure 4: Case 1: n = 6, δ = 4
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Figure 5: Case 1: n = 80, δ = 4

4.2 Case 2

For Case 2, we largely observed very similar behavior within each scenario as what we saw

with Case 1. As a result, we present only an illustration of how these results differ from

the former case. Notably, as shown in Figure 6, even the Chi-square coverage probabili-

ties are considerably more impacted by large deviations from lognormality occurring in a

direction orthogonal to the primary direction of variability when the sample size is small.

The F coverage probabilities for the mixtures are hugely impacted here, as well. Also, the

coverage probabilities along the y-axis for the F confidence regions are also impacted more

noticeably in this case. All of this suggests that these confidence regions are not robust to

moderate deviations in lognormality when the deviations occur in this manner.
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Figure 6: Case 2: n = 6, δ = 4

4.3 Synthesis of Results

While the above results help us understand how the performances of the confidence regions

are impacted by violations from the model assumptions, it is difficult to use those plots to

concretely specify the patterns in the relationships between deviations from lognormality

and coverage performance across different scenarios. To help us explore these relation-

ships, we decided to quantify the differences between both the densities and the coverage

probabilities.

More specifically, the L2 distance between the distributions is

Df =

(
∫∫

L

(f∗ − fβ)
2

)
1

2

where f∗ is the pdf of the nearest lognormal distribution to the mixture and fβ is the pdf

of the mixture when β = 0.5, 0.6, 0.7, 0.8, 0.9, 1. The L2 distance between the coverage

probabilities is

Dc =

(
∫∫

L

(C1 − Cβ)
2

)
1

2

where C1 is the F coverage probability at β = 1 of the mixture and Cβ is the F coverage

probability of the mixture when β = 0.5, 0.6, 0.7, 0.8, 0.9, 1
We plotted both distances for each case and we obtained the following figures. An im-

portant aspect of these plots is that every point represents a specific curve from our previous
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results. In Figure 7, for example, the point (J) represents the F coverage curve along the

x-axis when δ = 4 and n=6 at β = 0.5.
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Figure 7: Distance between pdf vs the coverage probabilities: Case 1
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Figure 8: Distance between the pdf vs the coverage probabilities: Case 2

In Case 1, the distance for the coverage probabilities are near zero for large sample sizes

and for small distances between the distributions. For Case 2, we observe similar behavior

for large sample sizes. Note that for Case 2, though, that we have the surprising result that

the greater distances between distributions are associated with lower distances in coverage

probabilities, seemingly indicating that the procedure is more robust to larger violations of

this type than small ones.
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5. Discussion

In this paper, we have investigated the robustness of parametric confidence regions based on

the Type I lognormal distribution for SPD matrices to mixtures of lognormal distributions

with different means. From our simulation study, we can arrive at the following conclu-

sions for the robustness of the Type I lognormal confidence regions to mixtures of the type

described earlier.

First, unsurprisingly, due to the central limit theorem applied to the log-transformed

data, true coverage probabilities are all near the nominal level for large sample sizes. Sec-

ondly, for similar reasons, for fixed δ and fixed β, false coverage probabilties decrease as n
increases. Also, for fixed n and fixed β, false coverage probabilities increase as δ increases.

Additionally, for fixed δ and fixed n, false coverage probabilities decrease as β increases.

Finally, for fixed small n and large enough δ, it appears that the procedure in Case 1 of the

first simulation is more robust than the one in Case 2, which appears, interestingly, to be

more robust to larger deviations from lognormality than to smaller deviations.

In general, it appears that the procedure is somewhat robust to moderate violations of

log-normality and for large sample size. However, more work remains to be done. For

instance, we need to further investigate the surprising behavior shown in Figure 8. Addi-

tionally, we will examine robustness to mixtures of lognormal distributions with identical

means but different covariance matrices because such mixtures violate the distributional

assumptions in a fundamentally different manner than those investigated here.
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