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Abstract
In this study, we compare the forecasting ability of various volatility models through within-sample
and out-of-sample forecasting simulations. The models considered here are heterogeneous autore-
gression models (HAR), a 1/3 model where the weight coefficients are all set to 1/3 in the HAR
model (ES0), and an HAR model where the weight coefficients are determined by their empirical
similarity. We also test AR(1), ARCH/GARCH and their variants, and models incorporating the
realized quarticity (RQ), which are referred to as ARQ, HARQ, and ESQ. For stock data, we picked
six index series stocks that are listed on the Tokyo Stock Exchange as well as 24 individual stock
series. All these stocks had enough liquidity in the market from April 1, 1999, to December 30,
2013, for our investigation. Minute-by-minute data were created based on high-frequency data.
Forecasting evaluation depends on what kind of evaluation function we employ. We make use of
Patton’s error function. By changing the length of estimation period and the forecasting period
and the parameter of Patton’s error function, we attempt 27,000 forecasting simulations. We find
that ESQ and HARQ are almost comparative in within-sample forecasting, whereas ES0 differs in
out-of-sample forecasting experiments. We also tried a model comparison based on the pair-wise
testing procedure proposed by Hansen et al. We found similar results, but the details are different
between the index series and the individual stock series.
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1. Introduction

Making inferences based on analogy is one of the basic methods for predicting future events
based on experience (Gilboa et al. 2011). Hume (1748) is famous for discussing analogical
reasoning, including doubts about the logical validity of inductive reasoning, which is a way
to learn from the past about the future. Generally, in an uncertain situation where one has
imperfect information, a decision maker cannot evaluate the probability of a future condi-
tion, but it is possible to learn from the past about the future and think based on the similar-
ity. More contemporaneously, in the expected utility theory of von Neumann Morgenstern
in decision making under uncertainty, decision makers use the state space that enumerates
all possible states and their probability distribution. This is assumed to act to maximize
the calculated expected utility of analogous thinking. However, there are many situations
where it is impossible to assume that decision makers can fully grasp the state space. One
way of thinking about such decisions is that people will decide on the action based on anal-
ogy from past experiences. This is the case-based decision-making theory advocated by
Gilboa and Schmeidler (1995, 2001). Reasoning based on this similarity is widely applied
to decision making in medicine, law, business, politics, and artificial intelligence (Gilboa
and Schmeidler, 2001). This case-based decision-making theory assumes reasonable con-
sideration of decision makers to evaluate the current situation by considering similarities
with a past situation that was experienced (Gilboa and Schmeidler, 2001). Cases that are
similar to a current situation are given greater weight than cases that are not very simi-
lar. This is the concept of empirical similarity (ES), based on case-based decision-making
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theory (Gilboa et al., 2006 and Gilboa et al., 2011), and Gilboa and Schmeidler (2012)
provided an econometric framework to estimate similarity functions from data. This makes
it possible to measure the distance between cases (i.e., problems and situations) recognized
by decision makers. In this paper, we use the concept of ES proposed by Golosnoy et al.
(2014) to combine prediction values obtained from different models in a non-stochastic
way. In this setting, different predicted values obtained from competing models are eval-
uated by comparing them to the currently observed state or the realized value. A model
giving a more accurate predictor of the past is given a larger weight than models with less
accurate predictions. The core idea of Golosnoy et al. (2014) is to measure the empirical
distance between the currently observed value and the predicted value obtained from dif-
ferent models. With this similarity distance, we can determine the weight of the model for
the next period. Therefore, this model combination method, based on ES, uses information
on the immediate predictive power of different models to determine the weight of the com-
bination of prediction models. According to Golosnoy et al. (2014), the following three
points are possible advantages of using the model combination method based on this ES
over other probabilistic methods.

1. There is no need to calculate the posterior probability of the model and the mean
square error (MSE) of the predicted value.

2. We can associate weights of predictive models with the preferences of economic
agents.

3. We can clarify from the data how the decision maker evaluates the similarity between
the predicted value and the realized value.

In the empirical research for this paper, we analyzed the model combination method
based on ES as proposed by Golosnoy et al. (2014) by modeling the daily realized volatil-
ity process. For this purpose, we evaluated ES against the combination of HAR (hetero-
geneous autoregressive) models proposed by Corsi (2009), as in the previous work. The
HAR model can estimate results in different past investment periods in terms of volatility.
The data used for predictive power evaluation in this empirical study are the daily realized
volatility obtained from high-frequency data at 1-minute intervals. These data consist of six
stock indices over 15 years from January 1999 to December 2013 and 24 individuals listed
on the First Section of the Tokyo Stock Exchange. As for the sampling period of data, 225
estimation periods, including in-sample and out-of-sample simulations from 1999 to 2013,
are analyzed. These data include 120 in-sample combinations and 105 out-of-sample com-
binations. By predicting these in-sample and out-of-samples populations, the predictive
power of the model combination method based on this ES is compared with a plurality of
general volatility models. Regarding the comparison of predictive power, we use the model
confidence set (MCS) proposed by Hansen et al. (2011), to evaluate the predictive power
appropriately in the framework of statistical hypothesis tests of the error function values
of each model obtained in in-sample and out-of-sample simulations. The MCS enables the
best model selection at a given significance level without assuming a true model. Finally,
we perform a Mincer-Zarnowitz (MZ) regression, which is one of the general methods to
evaluate the predictive power proposed by Mincer and Zarnowitz (1969), on the predicted
values of each model. We then compare the obtained adjusted coefficient of determination.

The remainder of this paper is organized as follows. Section 2 explains statistical mod-
els of ES in detail, which is the theoretical background of this paper. In Section 3, after
explaining the data used for empirical analysis, we compare the predictive power of the
model by using an MCS and MZ regression. Section 4 summarizes the results of the em-
pirical analysis in this paper and suggests the direction for future research.
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2. Theoretical Background

Here, we explain the theoretical background of ES used in this paper based on Gilboa et al.
(2011) and Golosnoy et al. (2014).

2.1 ES

We evaluate the value of variable yt based on a database constituted by the value xt =
(x1t , . . . , x

d
t ) of the relevant variable. For example, let’s say that yt is the price of furniture

antiques. Here xt denotes characteristic values such as style, year of manufacture, size,
and so on. To properly evaluate yt, how should we join past observations xi and current
values? If we follow the idea of Hume (1748), we need an idea of similarity that shows
whether a past condition xi = (x1i , . . . , x

d
i ) is similar to xt or not. In predicting yt, we give

higher weight to observations obtained under more similar conditions than observations
obtained under less similar conditions. In the above example, it is reasonable to evaluate
the price of this antique by the price of similar antiques sold recently. Furthermore, if
historical observations are more similar to the current observations with respect to style,
year of manufacture, size, and time of sale, then we place higher weight on the observation
when evaluating the current situation.

Formally, we assume a similarity function s : Rd × Rd → R++ = (0,∞). Given a
database (xi, yi)i≤n and a new data point xt = (x1t , . . . , x

d
t ) ∈ Rd, a similarity predictor of

yt can be formulated as

yst =

∑
i<t s(xi, xt)yi∑
i<t s(xi, xt)

. (1)

Alternatively, if the order of data points in (xt, yt)t≤n is arbitrary, it can also be defined as

yst =

∑
i̸=t s(xi, xt)yi∑
i̸=t s(xi, xt)

. (2)

For the similarity function s, it can be expressed in an arbitrary functional form if several
weak assumptions are satisfied (Lieberman, 2010). For example, Billot et al. (2008) give
conditions on the similarity weighted average that is equivalent to the similarity function,
which has the form:

s(x, x′) = exp(−∥x− x′∥),

where ∥ · ∥ denotes a norm in Rd. Specifically, if focusing on a norm family defined by the
weighted Euclidean distance, then we have

sw
(
x, x′

)
= exp

(
−dw(x, x

′)
)
,

where w ∈ Rd
+ is the weighted vector of the distance between the two vectors x, x′ ∈ Rd

given by

dw
(
x, x′

)
=

d∑
j=1

wj

(
xj − x′j

)2
. (3)

Therefore, in this formulation, the similarity function is a d-dimensional vector of parame-
ters including each predictor.

To perform statistical inference and obtain qualitative results by using a hypothesis test,
we can incorporate (1) and (2) into the statistical model. That is, we consider the following
models as

yt =

∑
i<t sw(xi, xt)yi∑
i<t sw(xi, xt)

+ εt, (4)
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and

yt =

∑
i̸=t sw(xi, xt)yi∑
i̸=t sw(xi, xt)

+ εt, (5)

where {εt} follows iid
(
0, σ2

)
. Then, equation (4) can be interpreted as a certain causal

model. For example, we consider the price formation process by an economic agent. This
economic agent will determine the price of goods such as real estate and art, according to
their similarity with other products whose prices have already been determined. Therefore,
we can consider equation (4) as a model of the thought process that involves the economic
agent in determining the price. However, equation (5) cannot be interpreted directly in a
similar way. Since the distribution of each yt depends on all other yt, equation (5) cannot
explain the temporal evolution of the process. On the other hand, such interdependence
can be interpreted naturally in general geography, sociology, or political science data as an
application field of spatial statistics.

2.2 The Relationship Between ES and a Kernel Estimator

For simplicity of explanation, we consider the case where X exists as one dimension, that
is, as a variable of d = 1. In the nonparametric regression model, we normally assume the
following data generation process:

yi = m(xi) + εi, (i = 1, . . . , n), εi ∼ iid
(
0, σ2

)
,

where m : R → R is an unknown function relating x and y. The widely used nonparametric
estimator of m(·) is a Nadalaya-Watson estimator and is defined as follows:

m̂(xt) =

n∑
i=1

K

(
xi − xt

h

)
yi

n∑
i=1

K

(
xi − xt

h

) ,

where K(x) is a nonnegative function that satisfies
∫
K(z)dz = 1 as well as other kernel

functions (that is, other regular conditions) and h is a bandwidth parameter. For example,
if we choose the Gaussian kernel, then we have

1

h
K

(
xi − xt

h

)
= (2πh2)−1/2 exp

(
−(xi − xt)

2

2h2

)
. (6)

Since there is a trade-off relationship between variance and bias, selection of h is an im-
portant issue in nonparametric statistics. One of the most common criteria for choosing the
optimal bandwidth is to minimize the mean integral squared error. That is, the optimum h
satisfies

h∗ = arg min
h

Ef0

∫
(m̂(x)−m(x))2 dx,

where the expected value Ef0 means the expected value under f0 which is the true distri-
bution of y. If x is countable and we substitute m(x) with y, then we decide h∗ by the
criterion of minimizing the expected value of the sum of squared errors.

Now, we discuss the relationship between estimation based on the kernel and ES. As
explained above, the ES method proposes to predict yt by

yt =

n∑
i=1

sw(xi, xt)yi

n∑
i=1

sw(xi, xt)

,
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where

sw(xi, xt) = exp(−dw) = (π/w)1/2

[
1(

1/
√
2w

)K (
xi − xt

1/
√
2w

)]
,

Dw is defined in equation (3) and K is given in equaiton (6). Finally, we have

n∑
i=1

sw(xi, xt)yi

n∑
i=1

sw(xi, xt)

=

n∑
i=1

K

(
xi − xt

1/
√
2w

)
yi

n∑
i=1

K

(
xi − xt

1/
√
2w

) ,

and this setting results in h = 1/
√
2w.

2.3 ES for Model Combination

Here we assume that there is a finite set of forecasts xt = (x1t , . . . , x
d
t ) obtained from

distinct d models which could be combined to predict the variable of interest yt. According
to Bates and Granger (1969), predictive linear combination is given by

ŷt =
d∑

j=1

ajt−1x
j
t−1, (7)

where nonnegative ajt represents the ratio of the jth model satisfying
∑d

j=1 a
j
t ≡ 1. The

weight ajt in equation (7) can be interpreted in relation to the quantitative evaluation (such
as probability) of the likelihood of the model or the predicted value. In Elliott and Tim-
mermann (2004), the smallness of the MSE derived from the model corresponds to the
weighting factor. Several approaches have been proposed to properly select this weight ajt ,
but none of them can be considered a general method. Within this context, Golosnoy et al.
(2014) formulated the linear combination of prediction based on the ES concept by Gilboa
et al. (2006) as follows:

yt =

p∑
j=1

ϕ[yt−1, x
j
t−2]x

j
t−1 + εt, εt ∼ (0, σ2).

The feature of this formulation is that it is possible to measure the distance between the one
step ahead predicted value xjt−2, which is necessary to obtain the weight ϕ[yt−1, x

j
t−2], and

the corresponding realized value yt. The linear combination of the prediction, which is the
weighted sum of the predicted values xt = (x1t , . . . , x

d
t ), is then given by

ŷt =

d∑
j=1

ϕ[yt−1, x
j
t−2]x

j
t−1.

Furthermore, the weight ϕ[·, ·] depends on the past values of the observed data. The
distance between the proxy variable of the current realized value and the predicted value of
the jth model is calculated as

ϕ[yt, x
j
t−1] =

θ[yt, x
j
t−1]∑d

k=1 θ[yt, x
k
t−1]

.

The weight ϕ[yt, x
j
t−1] ∈ [0, 1] can be interpreted as a normalized relative ES having the

property of
∑d

k=1 ϕ[yt, x
k
t−1] ≡ 1. The θ[yt, x

j
t−1] on the right side denotes a similarity
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function, and if the distance between yt and xjt−1 is shorter, then the θ[yt, x
j
t−1] implies

higher similarity. In this paper, we use the exponential function according to Billot et al.
(2008) introduced in the previous section as a similarity function:

θ[yt, x
j
t−1] = exp

(
−ωj(yt − xjt−1)

2
)
, ωj ∈ R.

3. Empirical Analysis

The purpose of the empirical analysis is to evaluate the predictive power of the empirical
similarity model introduced in the previous section by using it to predict the daily volatility
of stock indices and individual stocks listed on the Tokyo Stock Exchange. For this purpose,
we use the ticker data of stock indices and individual stocks provided by Nikkei Media
Marketing Co., Ltd., as high-frequency data at 1-minute intervals. The sample period is 15
years from January 4, 1999, to December 30, 2013, and the stock indices and individual
stocks used are as follows: Regarding the stock price index, we use six series: Nikkei 225,
Nikkei 300, TOPIX, TOPIX Electric Appliances Index, TOPIX Transportation Equipment
Index, and TOPIX Banks Index. For individual issues, we use 24 stocks continuously
traded on the market from 1999 to 2013, which are among the stocks included in the TOPIX
Core 30 as of April 1, 2009. We exclude six stocks which were discontinuously traded,
including Seven & i HD (1999-2005), JFE-HD (1999-2002), Mitsubishi UFJ-FG (1999-
2001), Mitsui Sumitomo FG (1999-2002), Mizuho FG (1999-2003) and Tokio Marine HD
(1999-2002). Note that the parentheses indicate the period of deficiency for each series.
Table 1 summarizes the six stock indices and 24 individual stocks adopted for the empirical
analysis.

The daily time-series data used in the empirical analysis are the stock price, stocks’
logarithmic return, realized volatility (RV ), and realized quarticity (RQ). In addition, we
formulate and analyze the logarithm and square root of RV and RQ using the HAR model
described later. However, we cannot find any significant differences in predictive power, so
that we omit these results. Next, we discuss two realized measures of these, RV and RQ.

3.1 Realized Measures

Volatility, one of the most common risk indicators in financial markets, is defined as the
variance or standard deviation of the logarithmic return. So, far, many models have been
proposed to estimate volatility. However, these models are basically parametric and are
designed to estimate daily, weekly, and monthly volatilities, using data taken at the same
frequency. In recent years, intraday data of financial asset prices have become widely
available, and we can use very frequent data recorded every second or minute to calculate
the daily volatility ex post.

Here, we outline the estimation method of daily volatility using data that have a daily
frequency. Following Bollerslev et al. (2016), we consider the financial asset price process
Pt as determined by the stochastic differential equation

d log(Pt) = µtdt+ σtdWt,

where µt and σt represent drift and instantaneous volatility processes, respectively, and Wt

is the standard Brownian motion. It is assumed that the model here does not include jumps
or abrupt transitions to facilitate an easy understanding. The main objective of this paper is
to estimate and predict latent daily volatility, that is, integrated variance (IV ). Specifically,
the daily IV is formally defined by

IVt =

∫ t

t−1
σ2
sds.
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Table 1: Target issues (6 stock indices and 24 individual stocks)
Stock indices Individual stocks
TOPIX JAPAN TOBACCO INC.
Nikkei 225 Shin-Etsu Chemical Co.,Ltd.
Nikkei 300 Takeda Pharmaceutical Company
TOPIX Electric Appliances Index Astellas Pharma Inc.
TOPIX Transportation Equipment Index FUJIFILM Holdings Corporation
TOPIX Banks Index NIPPON STEEL CORPORATION

KOMATSU LTD.
Hitachi,Ltd.
Panasonic Corporation
SONY CORPORATION
NISSAN MOTOR CO.,LTD.
TOYOTA MOTOR CORPORATION
HONDA MOTOR CO.,LTD.
CANON INC.
Nintendo Co.,Ltd.
MITSUI & CO.,LTD.
Mitsubishi Corporation
Nomura Holdings, Inc.
Mitsubishi Estate Company,Limited
East Japan Railway Company
NTT CORPORATION
KDDI CORPORATION
NTT DoCoMo,Inc.
The Tokyo Electric Power Company

This IV cannot be observed directly in the financial market, but RV given by the following
formula can be calculated as the sum of squares of the intraday high frequent return. St,
rt = logSt − logSt−1 and RVt denote the stock price at time t = 1, 2, . . . , T , its logarith-
mic return, and realized volatility, respectively. For RV , it is defined as the sum of squares
of the intraday return sampled at 1-minute intervals as

RVt =

nt∑
i=1

r2t,i,

where rt,i is the ith observed logarithmic return on the t day and nt represents the number
of samples on day t (see, for example, Andersen et al., 2001). By considering the log-
valued price process as a continuous martingale part of a semi-martingale, we can regard
this RV as a proxy variable of IV . Also, it is known that RV is a consistent and unbiased
estimator of IV (McAleer and Medeiros, 2008). Consequently, the RV estimation requires
full high-frequency data over 24 hours as a daily volatility measure. However, the Japanese
stock market is divided into two sessions by a lunch break, that is, the morning session goes
from 09:00 to 11:00 (until 11:30 after 21 November 2011) and the afternoon session goes
from 12:30 to 15:00. Thus, we adopt the weighted RV proposed by Masuda and Morimoto
(2012), which is a modified version of Hansen and Lunde (2005) and which is adjusted to
the Japanese market. The weighted RV with estimated optimal weights λ1,λ2,λ3, and λ4

is defined by
RV weighted

t = λ1Y
2
t,1 + λ2RVt,2 + λ3Y

2
t,3 + λ4RVt,4,
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where Y 2
t,1, RVt,2, Y 2

t,3, and RVt,4 denote the square of the close-to-open return, the RV
in the morning session, the square of the lunch break return, and the RV in the afternoon
session, respectively, on the tth day. Hereafter, we denote the weighted realized volatility
RV weighted as RV for notational simplicity.

Furthermore, it is known that RV is influenced by an observational error caused by
the microstructure noise when using the intraday data sampled at high frequencies. As a
method for mitigating this bias, it is conceivable to use RV with a low-frequency interval
(see Andersen and Bollerslev, 1997 or Bandi and Russell, 2008), a subsample method (see
Zhang et al., 2005), and a kernel method. Among these, in this paper, we use the Newey-
West (NW) estimator using the Bartlett kernel following Hansen and Lunde (2005). It is
shown by Bamdorff-Nielsen et al. (2008) that this NW estimator is almost the same as the
above-described subsample method.

According to Bollerslev et al. (2016), the resulting estimation error in RV may be
characterized by the asymptotic (for ∆ → 0) distribution theory of Barndorff-Nielsen and
Shephard (2002),

RVt = IVt + ηt, ηt ∼ MN(0, 2∆IQt), (8)

where IQt ≡
∫ t
t−1 σ

4
sds denotes the integrated quarticity (IQ), and MN represents a

mixed normal distribution: that is, a normal distribution that is conditional on the realization
of IQt. In parallel, for the IV , the IQ may be consistently estimated by the RQ,

RQt ≡
M

3

M∑
i=1

r4t,i.

However, since the estimation of IQ includes the estimation of the 4th moment of the intra-
day return with many noises such as measurement errors, even if the magnitude of the jump
is small, the RQ estimator is inevitably unstable. Thus, for example, to reduce even the
influence of the jumps, Andersen et al. (2012) propose two robust estimates of IQ called
MinRQ and MedRQ which employ the minimum or median of each adjacent return. In
this paper, we use the NW estimator that uses the Bartlett kernel for RQ estimation in the
same way as for RV estimation to ease the calculation burden.

We select an index and individual stock prices from the above 30 issues and give an
overview of the characteristics of these time series because of limited space. Figures 1 and
2 show the stock price, logarithmic return, RV , and RQ for TOPIX and Hitachi over 15
years from January 1999 to December 2013. From these figures, we can see that there are
three major peaks in the latter half of the period. It is especially easy to capture the peaks
when focusing on the panel of realized volatility. These substantial fluctuations correspond
to the financial crisis of September 2008, the Tohoku district Pacific offshore earthquake
that occurred in March 2011, and the Nikkei Average major crash on May 23, 2013, re-
spectively.

In addition, Tables 2 and 3 provide the descriptive statistics of the stock price, logarith-
mic return, RV , and squared RQ, which range 15 years from January 1999 to December
2013 for TOPIX and Hitachi. From these tables, we can see that the kurtosis of the loga-
rithmic return rt is 3 or more, which is one of the stylized facts for the financial time series.
The skewness for both is negative, which is an interesting result, as the peaks of the return
distribution are biased to the right, that is, in the positive direction. But, both of the skews
are negative, which means that the peak of the return distribution is biased to the right, that
is, in the positive direction. This seems to be an interesting result. In both cases, the abso-
lute value of the maximum value and the minimum value exceeds 10%, and the averages
are almost equal to 0.
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Figure 1: Stock price, logarithmic return, RV and RQ (TOPIX)

3.2 Models

In this subsection, we introduce 17 time-series models used for empirical analysis. The
HAR model proposed by Corsi (2009) combines volatility measures sampled at different
frequencies in a simple linear regression framework. The standard HAR model for the daily
volatility process vt is given by

vt = α0 + ω1v
(d)
t−1 + ω2v

(w)
t−1 + ω3v

(m)
t−1 + εt, εt

iid∼ (0, σ2),

where v
(d)
t−1 = vt−1, v(w)

t−1 and v
(m)
t−1 are daily, weekly and monthly average volatility mea-

sures, respectively. These are defined as

v
(w)
t = 5−1

5∑
i=1

vt−i+1 and v
(m)
t = 22−1

22∑
i=1

vt−i+1.

By substituting unobservable vt by rvt, we can estimate the HAR model with the frame-
work of ordinary least squares (OLS) regression. According to Golosnoy et al. (2014), the
economic interpretation of volatility components relate the long-term component v(m) to
the fundamental macroeconomic uncertainty factors. The medium-term component v(w)

reflects the current market uncertainty concerning the processing of news, and the short-
term component v(d) accounts for the speculative momentum uncertainty.

Next, we introduce the model in which the constant term of the HAR model is 0 and
the other three parameters are fixed to the 1/3 value as follows:

vt =
1

3
v
(d)
t−1 +

1

3
v
(w)
t−1 +

1

3
v
(m)
t−1 + εt, εt

iid∼ (0, σ2),
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Figure 2: Stock price, logarithmic return, RV and RQ (Hitachi)

In this paper, we refer to this model as the ES0 model, whereas it is called the “1/3 model” in
Golosnoy et al. (2014). Although this ES0 model does not directly use empirical similarity,
we can regard this model as a special case of the ES1 model as described below. That is, if
we put the parameter of the ES1 model as θ[vt−1, vt−2] = θ[vt−1, v

(w)
t−2] = θ[vt−1, v

(m)
t−2 ] =

1/3, then the ES1 model is reduced to ES0. Since all the parameters of the ES0 model are
constantly 1/3 as described above, there is no need to estimate the parameter values from
the data. Then, the ES0 model appears only at the stage of predictive power evaluation
later.

The third model is the empirical similarity model ES1, which plays a central role in
this paper. The ES1 model was derived from the concept of empirical similarity estimates
for the weight for the predictors of volatility model components, based on the past data
observed directly. If the predictor of volatility obtained from model h belonging to the
model set H can be denoted by v

(h)
t , then the ES model for volatility prediction is given by

vt =
∑
h∈H

ϕ[vt−1, v
(h)
t−2] · v

(h)
t−1 + εt =

∑
h∈H θ[vt−1, v

(h)
t−2] · v

(h)
t−1∑

h∈H θ[vt−1, v
(h)
t−2]

+ εt, εt
iid∼ (0, σ2),

where
∑

h∈H ϕ
[
vt−1, v

(h)
t−2

]
≡ 1. The similarity function is defined by θ

[
vt, v

(h)
t−1

]
=

e
−wh

(
vt−v

(h)
t−1

)2

and the function measures the distance between the current volatility state
vt and the hth model’s predictor v

(h)
t . Thus, we can predict vt+1 by using the weight

ϕ
[
vt, v

(h)
t−1

]
∈ [0, 1] and the predictor v(h)t of the model.

As in Golosnoy et al. (2014), we use the HAR model as a benchmark in the study
so that we focus on combining the three components with ES models. Our objective is
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Table 2: Descriptive statistics (TOPIX) 1999-2013
St rt RVt

√
RQt

Mean 115815.4168 0.0001 0.0114 0.0008
Median 111634.0000 0.0003 0.0080 0.0005
Max. 181697.0000 0.1286 0.3255 0.0318
Min. 69551.0000 −0.1001 0.0012 0.0000
SD 30461.9413 0.0141 0.0155 0.0013
Ske. 0.4294 −0.3543 9.7217 8.9328
Kur. 1.9932 8.8653 144.9977 143.5033
Size 3685 3684 3664 3664

Table 3: Descriptive statistics (Hitachi) 1999-2013
St rt RVt

√
RQt

Mean 701.3720 0.0000 0.0884 0.0095
Median 683.0000 0.0000 0.0686 0.0051
Max. 1690.0000 0.1105 3.9003 3.6477
Min. 233.0000 −0.1827 0.0203 0.0015
SD 286.7948 0.0233 0.1249 0.0668
Ske. 0.7732 −0.1371 18.2170 45.8112
Kur. 3.3460 6.7904 481.5358 2424.5612
Size 3685 3684 3663 3663

to evaluate how the relative distance between the current volatility and the weighted sum
of volatility sampled at different time periods is determined from historical data. In other
words, we would like to analyze how the economic agents with different investment periods
evaluate the weights of these volatility processes using ES. The empirical similarity model
having the HAR component, represented hereafter as the ES1 model, is given as

vt =
θ[vt−1, vt−2]vt−1 + θ[vt−1, v

(w)
t−2]v

(w)
t−1 + θ[vt−1, v

(m)
t−2 ]v

(m)
t−1

θ[vt−1, vt−2] + θ[vt−1, v
(w)
t−2] + θ[vt−1, v

(m)
t−2 ]

+ ϵt, ϵt ∼ (0, σ2), (9)

where

θ[vt−1, vt−2] = exp
(
−ω1(vt−1 − vt−2)

2
)
,

θ[vt−1, v
(w)
t−2] = exp

(
−ω2(vt−1 − v

(w)
t−2)

2
)
,

θ[vt−1, v
(m)
t−2 ] = exp

(
−ω3(vt−1 − v

(m)
t−2)

2
)
.

The ES1 model can be interpreted as a combination of predictive models, assuming a
simple weighted average of volatilities sampled at different frequencies. Component vt−1

is a predictor obtained from the volatility on the previous day, whereas v
(w)
t−1 and v

(m)
t−1

are predictors of the moving average in the previous 1 week and 1 month, respectively.
Consequently, the daily volatility vt in the equation (9) is expressed as a weighted average
of past daily realized volatilities. As is apparent from the equation (9), the ES1 model
is characterized by having one parameter less than the HAR model; that is, there is no
constant term.

Next, we introduce three models that incorporate the RQ that introduced in the previous
section. Bollerslev et al. (2016) suppose that the dynamic dependencies in IV may be
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described by an autoregressive (AR) model of order 1,

IVt = ϕ0 + ϕ1IVt−1 + ut, ut ∼ iid(0, σ2
u).

Let ηt ∼ iid(0, σ2
η) be a measurement error of IVt. Thus, a simple AR (1) model for IVt

incorporating ηt is given by

IVt + ηt = β0 + β1(IVt−1 + ηt−1) + ut. (10)

The formal theoretic justification for applying the autoregressive model to RV is given by
Andersen et al. (2003). Andersen et al. (2004) also show that the predictive power of IV
can be significantly improved by using a simple discrete-time autoregressive model rather
than a continuous time-based model for RV . If we assume that ut and ηt are both i.i.d., so
that Cov(RVt, RVt−1) = ϕ1Var(IVt) and Var(RVt) = Var(IVt) + 2∆IQ, then, we have

β1 = ϕ1

(
1 +

2∆IQ

Var(IVt)

)−1

. (11)

Therefore, the coefficient β1 of RV is smaller than the coefficient ϕ1 of the IV , due to the
so-called attenuation bias. For details of the attenuation bias, for example, see Wooldridge
(2015). From equation (11), β1 varies depending on the variance 2∆IQ of the measure-
ment error. That is, if 2∆IQ = 0, then β1 = ϕ1, but if 2∆IQ is large, then β1 goes to
zero. In general, β1 in equation (11) assumes that the variance of the measurement error
is a constant. In practice, however, the variance with respect to an estimation error of RV
changes through time in practice. On days when IQ is small, RV has a higher predictive
power for IV , and conversely, RV has relatively weak predictive power for IV on days
with a large IQ. Therefore, it is more realistic to assume an autoregressive coefficient
that changes through time such as β1,t, rather than assuming that the coefficient of AR is
constant.

Equation (10) can be viewed as an AR(1) model for RV as RVt = β0 + β1RVt−1 + ut
from the relationship of RVt = IVt + ηt in equation (8). Bollerslev et al. (2016) imple-
ment a more flexible and robust specification that allows the time-varying AR parameter to
depend linearly on an estimate of IQ1/2 as

RVt = β0 + (β1 + β1QRQ
1/2
t−1)︸ ︷︷ ︸

β1,t

RVt−1 + ut.

The specification is called the ARQ model. The model can easily be estimated using the
standard OLS method, rendering both estimating and forecasting straightforward and fast.
Importantly, the value of the autoregressive β1,t parameter varies with the estimated mea-
surement error variance. If RQ is constant over time, the ARQ model reduces to a standard
AR(1) model; see Bollerslev et al. (2016) for a more detailed description of the ARQ
model.

Bollerslev et al. (2016) consider that the AR(1) model in equation (10) is too simplistic
to satisfactorily describe the long-run dependencies in most RV series. Instead, the hetero-
geneous autoregression (HAR) model of Corsi (2009) has arguably emerged as the most
popular model for daily RV based forecasting,

RVt = β0 + (β1 + β1QRQ
1/2
t−1)︸ ︷︷ ︸

β1,t

RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut.

The specification is called the HARQ model. Here, the coefficient of the daily RV only
changes through time as a function of RQ1/2. For models that include time varying coef-
ficients of weekly and monthly RV , see Bollerslev et al. (2016). Further, we can also add
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RQ
1/2
t−1|t−5, RQ

1/2
t−1|t−22 to the explanatory variable of the HARQ model above as a natural

extension. However, Bollerslev et al. (2016) report that the prediction power of the model
referred to as HARQ-Full does not improve unconditionally compared with the HARQ
model above, since it is practically difficult to accurately estimate weekly and monthly
variances of the measurement errors. Based on the results, we omit the analysis of HARQ-
Full model in the paper.

According to Golosnoy et al. (2014), the ES model can be used for any combination of
volatility predictors. Therefore, it is also possible to consider a new model combining the
past daily volatility vt−1, the HAR predictor v(har)t−1 , and the HARQ predictor v(harq)t−1 . We
call this model the “ESQ” model here. The specification of the model is given by

vt =
θ[vt−1, vt−2]vt−1 + θ[vt−1, v

(har)
t−2 ]v

(har)
t−1 + θ[vt−1, v

(harq)
t−2 ]v

(harq)
t−1

θ[vt−1, vt−2] + θ[vt−1, v
(har)
t−2 ] + θ[vt−1, v

(harq)
t−2 ]

+ϵt, ϵt ∼ (0, σ2),

and as previously defined, we have

θ[vt−1, vt−2] = exp
(
−ω1(vt−1 − vt−2)

2
)
,

θ[vt−1, v
(har)
t−2 ] = exp

(
−ω2(vt−1 − v

(har)
t−2 )2

)
,

θ[vt−1, v
(harq)
t−2 ] = exp

(
−ω3(vt−1 − v

(harq)
t−2 )2

)
.

In addition, we also analyze the following models from the viewpoint of consistency
in the model comparison. First, we introduce a model simply combining daily volatility vt
and the HAR predictor v(har)t ,

vt =
θ[vt−1, vt−2]vt−1 + θ[vt−1, v

(har)
t−2 ]v

(har)
t−1

θ[vt−1, vt−2] + θ[vt−1, v
(har)
t−2 ]

+ ϵt.

The second is a model that combines vt, v
(w)
t , v

(m)
t , qt = RQ

1/2
t RVt as it is without mod-

eling,

vt =
θ[vt−1, vt−2]vt−1 + θ[vt−1, v

(w)
t−2]v

(w)
t−1 + θ[vt−1, v

(m)
t−2 ]v

(m)
t−1 + θ[vt−1, qt−2]qt−1

θ[vt−1, vt−2] + θ[vt−1, v
(w)
t−2] + θ[vt−1, v

(m)
t−2 ] + θ[vt−1, qt−2]

+ ϵt,

where
θ[vt−1, qt−2] = exp

(
−ω4(vt−1 − qt−2)

2
)
.

We refer to these models as ES1a and ES1b, respectively.
We introduce a simple AR (1) model

vt = α0 + ω1vt−1 + εt, εt
iid∼ (0, σ2),

and eight types of GARCH models as benchmarks of predictive power, in addition to
the five models that are the center of the analysis, of which the GARCH models are
GARCH(1,1), GJR(1,1,1), EGARCH(1,1,1), IGARCH(1,1), AGARCH(1,1), NAGARCH(1,1),
APARCH(1,1,1), and ZARCH(1,1,1). However, the eight types of GARCH models are
overwhelmingly disadvantageous compared with other AR1, HAR, ES0, ES1, ES1a, ES1b,
ARQ, HARQ, and ESQ models in the predictive power comparison, since the GARCH
models estimate and predict volatility by not directly using RVt series. Therefore, we note
that comparison of predictive power within the GARCH models can be useful information,
but the results of comparative study between the eight types of GARCH models and the
other nine models are just for reference.
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3.3 Estimation

In this section, we estimate and predict volatility using stock price data for six stock indices
and 24 individual stocks introduced in the previous section. The sample period and indices
for these stocks range from January 4, 1999, to December 30, 2013. Table 4 shows the
periods used for estimation and prediction. As can be seen from the table, periods for
estimation and prediction sum up to 225 including in-sample and out-of-sample simulations
from 1999 to 2013. In the table, we omit the first two digits of year because of limited space.
The breakdown of the 225 combinations comprises 120 in-samples and 105 out-of-samples.
Furthermore, we divide the 120 estimation periods of in-samples into 15 for 1 year, 50 for
more than 2 years but less than 5 years, and 55 for more than 5 years but less than 15 years.
Likewise, we divide the 105 estimation periods of out-of-sample simulations into 14 for 1
year, 46 for more than 2 but less than 5 years and 45 for more than 5 years but less than
14 years. Note that the prediction period of the out-of-sample is set as the most recent one
year of the estimation period.

When outliers exist in the estimation period, nonlinear models such as ES1, ES1a,
ES1b, and ESQ are susceptible to the influence of the outliers. Therefore, we apply Cook’s
distance to the RV series to detect and exclude the outliers, so that we use data without
outliers when estimating the models. The rate of outlier detection is approximately 5%
(with a minimum value of 3.2% and a maximum value of 6.6%), although there exists
difference across series. For the definition of Cook’s distance, see, for example, Weisberg
(2014).

We use the Statistics and Machine Learning Toolbox of MATLAB for parameter esti-
mation of the ES1, ES1a, ES1b, HAR, AR1, ARQ, HARQ, and ESQ models and the MFE
Toolbox of Prof. Kevin Sheppard for the eight types of GARCH models.

3.4 Prediction

In this section, we compare and analyze the predictive power of empirical similarity models
and other time-series models in terms of volatility, which is the main contribution of the
paper. To do this, we estimate the parameters of 16 models, excluding the ES0 model,
using time-series data of 30 stocks in the estimation period shown in Table 4. Then, we
compare the predictive power between models using the error function described below in
the corresponding prediction period of Table 4. Note that we only list the model ranking by
MCS and the result of the MZ regression for the ES1a and ES1b models because of limited
space, and the MCS and MZ are described below.

With respect to the predictors of the out-of-sample, for example, when the estimation
and prediction periods are 99-99 and 00-00 respectively, we estimate parameters using the
data for 1999 and sequentially make predictions for 2000. However, we do not perform
so-called rolling window prediction, which estimates and predicts parameters daily. There
are two reasons for that:

1. First, the number of calculations is simply too large. The objective of the study is
to compare the predictive power of the models in terms of volatility against various
(i.e., 30) stocks and multiple models (i.e., 17) over long and short periods of time
(the estimation and prediction periods number 225). Therefore, it is not practical
to estimate parameters and execute 1-day ahead prediction day by day for 114,750
(30× 17× 225) combinations if we consider its calculation time.

2. Again, the objective of the study is not to compare the strict predictive power be-
tween models, but to rank models for a wide variety of data as well as estimation
and prediction periods. Therefore, when considering cost effectiveness, it is more
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Figure 3: RV and predictors obtained from models (Nikkei 225)

efficient to fix the parameter estimation and perform a 1-day ahead prediction than it
is to execute the rolling window prediction, which requires much calculation time.

Figures 3 and 4 show in-sample RV s for Nikkei 225 and KDDI as well as predictors
of volatility calculated from the ES0, ES1, HAR, HARQ, and ESQ models from February
1999 to December 2013. The reason that the plots begin in February 1999 is because we
exclude the predictors for the first 22 days because the HAR model requires the average
of the volatility over the latest 22 days to make a forecast. First, looking at Figure 3,
we can see that significant fluctuations are noticeable in the second half of 2008 due to
the financial crisis of 2007-2008. Comparing RV over the fluctuations with the predictor
calculated from each model, we can see that the ES0, ES1, HAR, HARQ and ESQ models
underestimate the volatility. Overall, we can see that the predictor from each model is lower
than RV even in periods other than the one during which the financial crisis occurred.
Second, looking at Figure 4, we can see that the behavior of volatility significantly differs
between the Nikkei 225 and KDDI. Especially, long-term volatility clustering for KDDI is
prominent from 1999 to 2000. This long-term volatility clustering coincides approximately
with the period from the formal announcement of the merger of KDD, DDI, and IDO in
December 1999 to the actual merger in October 2000. It is interesting that individual stocks
behave differently from the stock price indices as events specific to each stock affect their
movements. Comparing RV with the predictor calculated from each model, we can see
that the ES0, ES1, HAR, HARQ, and ESQ models underestimate the volatility as a whole
similar to the Nikkei 225 plot. Considering that the scale of the y axis of RV in the plot
of Nikkei 225 is up to 0.2, we can see that the volatility of individual stocks may very high
compared with the stock price indices.
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Figure 4: RV and predictors obtained from models (KDDI)

3.4.1 Descriptive Statistics of Error Functions

Which predictor has the highest predictive power among the predictor calculated for each
model? To answer the question, we use the class of error functions proposed by Patton
(2011) and compare the predictive power among the models. The error functions are robust
in the presence of noise in proxy variables of RV , and we can use it for ranking predictive
models. By parameterizing with a certain b ∈ R, the class of the error functions is defined
as

L(rv, v̂, b) =


1

(b+1)(b+2)(rv
b+2 − v̂b+2)− 1

b+1 v̂
b+1(rv − v̂) for b /∈ {−1,−2},

v̂ − rv + rv · log(rv/v̂) for b = −1,
rv
v̂ − log rv

v̂ − 1 for b = −2,

where rv is a volatility measure and v̂ is the corresponding predictor. The error functions
correspond to the quasi-likelihood (QLIKE) when b = −2, while corresponding to the
MSE measure when b = 0. According to Patton and Sheppard (2009), QLIKE, which is
a likelihood-based error function, is robust to noise, so that QLIKE is a preferable error
function for comparing the predictive power of volatility compared to MSE. For a large
positive value b, the error functions result from overestimation, whereas for a negative
value b, the error functions increase and underestimate true values (Patton, 2011).

In the study, we use four kinds of values: b ∈ {1, 0,−1,−2}. The number of empir-
ically calculated error functions is 27,000 (225 × 30 × 4), which is a combination of 30
stocks, 4 kinds of b, and 225 kinds of estimation and prediction periods in Table 4. Table 5
shows a part of the average errors calculated using the error function with b = −2, that is,
QLIKE. Looking at the table, we can see that the results change in different estimation and
prediction periods. It is also difficult to evaluate models by comparing the error functions
one by one based on the results extending 27,000.
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Therefore, we broadly classify the estimation and prediction periods into in-sample
and out-of-sample, and we examine descriptive statistics to grasp the characteristics of the
overall error functions. Tables 6 and 7 show the descriptive statistics of each error function
for in-sample and out-of-sample, respectively. Focusing on the average values, from Table
6, ES1 is the lowest when b = 1, and HARQ is the lowest when b = 0, −1, or − 2; in
contrast, ARQ is the highest when b = 0 and AR1 is the highest when b = 1, −1, or −
2. From the table, we can see that the average values of error functions for in-sample
simulations are ordered as HARQ < ES1 < HAR ≈ ESQ < ES0 < ARQ < AR1 as
the overall tendency. From Table 6, ES1 is the lowest when b = 0, and ES0 is the lowest
when b = 1, −1, and − 2; in contrast, ARQ is the highest when b = 1, and AR1 is the
highest when b = 0, −1, or −2. From the table, we can see that the average values of error
functions for out-of-sample simulations are ordered as ES0 < ES1 < HAR ≈ HARQ ≈
ESQ < ARQ < AR1 as the overall tendency. Next, focusing on the maximum values,
the results differ depending on b for both Tables 6 and 7. One thing we can say is that the
differences between the results of all models, including AR1, are not so large.

Finally, focusing on the standard deviations in Table 6, ARQ or AR1 is the highest for
all b, but there are not many differences among the results of the other ES0, ES1, HAR,
HARQ, and ESQ models. Meanwhile, from Table 6, for out-of-sample simulations, we
can recognize that ES0 has the lowest standard deviation in all b. As described above, ES0
is a model in which parameters other than constant terms of the HAR model are fixed to
1/3 without estimating parameters. Surprisingly, in out-of-sample simulations, ES0 is the
least dispersive and can more stably predict volatility than other models. It is consistent
with the results suggested in the previous study that ES0 exerts its power in out-of-sample
prediction. The fact that ES0, that is, the 1/3 weighting model shows good results in out-of-
sample simulations can be associated with the empirical finding that no models overcome
the 1/N weights method when deciding the optimal portfolio selection (DeMiguel Et al.,
2009). In other words, the result implies that uninformed decision makers tend to predict
volatility by equally weighting volatilities observed daily, weekly, and monthly.

3.4.2 Model Comparison Based on the MCS

We cannot perform model comparisons simply by looking at the descriptive statistics of er-
ror functions for in-sample and out-of-sample simulations seen above. To judge the results
of error functions appropriately in the framework of the statistical hypothesis tests and to
compare the predictive power of models, we introduce the MCS proposed by Hansen et al.
(2011). By using MCS, it is possible to select the best among the models at a given sig-
nificance level without premising on a specific statistical model. We explain the outline of
MCS following Hamid and Heiden (2015). First, we prepare a set M0 = {1, . . . ,m0} of
candidate models, where m0 = 17 in the study. Second, for all model pairs, we evaluate the
superiority of the models based on the differences of the error functions L, obtained from
each model. That is, for models i and j (i, j = 1, . . . ,m0) and for all time t = 1, . . . , T ,
we evaluate

dij,t = L(rvit, r̂vit)− L(rvjt, r̂vjt).

Finally, against the model set M ∈ M0, we test the null hypothesis

H0 : E[dij,t] = 0, ∀i, j ∈ M, i > j,

for each dij,t, where the initial value is set to M = M0. If the null hypothesis H0 is
rejected at a given significance level (e.g., 10%), then, the model with the lowest predictive
power is excluded from the model set. We continue the above method until H0 cannot be
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rejected. Following Hansen et al. (2011), for evaluating H0, we use range statistics such as

TR,k = max
i,j∈M

|tij | = max
i,j∈M

|d̄ij |√
v̂ar(dij)

,

where d̄ij = 1
T

∑T
t=1 dij and v̂ar(d̄ij) are obtained by using the block bootstrap method.

The model i∗ with the worst predictive power excluded from the model set M is chosen by
a criterion,

i∗ = argmax
i∈M

d̄i√
v̂ar(d̄i)

,

where d̄i =
1

m−1

∑
j∈M d̄ij and m is the number of models included in model set M. In

the study, we perform a block boot strap method of block length 17 with 10,000 iterations.
We set the significance level to 90% and use the MFE Toolbox mentioned above in our
empirical analysis.

Next, we investigate the results of our empirical analysis using MCS. Like with error
functions, we can execute MCS as many as 27, 000 ways, which is the number of combi-
nations of 30 stocks, four kinds of b, and estimation and prediction periods of 225. Then,
we excerpt a part of the results of MCS obtained from actual data and present it in Table
8. To ensure fairness, we present the results of the periods during which ES 0, ES 1, HAR,
HARQ, and ESQ are the best. Table 8 lists the ranking of predictive power of models by
MCS from 6th place to 1st place in the rightmost column. The parentheses under the model
names represent the P values. In other words, the model with the P = 1.00 is the best, and
after that, we rank predictive power of models depending on the P values.

Furthermore, Figures 5 to 7 show the cumulative frequencies of the models with the
best predictive power based on the MCS criterion; that is, the models with P = 1.00 in the
predictive power ranking obtained by MCS. Figure 5 shows the cumulative frequency of
the best MCS models for in-sample simulations with estimation periods of 1 year, less than
5 years and more than 5 years, where the left-hand panels are stock indices and the right-
hand panels are individual stocks. At first glance, in the left-side panels for stock indices,
ESQ has the highest frequency being the best model during the estimation period of 1 year,
and HARQ has the highest in the other periods. Either way we can see that HARQ and
ESQ are overwhelmingly more predictive than the other models. On the right-side panels
for individual stocks, we can see that ES1 is relatively good during the estimation period of
more than 5 years, although the overall trend is similar to the stock indices. Figure 6 shows
the cumulative frequency of the best MCS models for out-of-sample simulations with the
same settings as in Figure 5. The characteristic feature of the plot is that the frequency of
ES0 is the highest in all estimation periods of individual stocks in the out-of-sample simu-
lations, as suggested by the result of the error functions in Table 7. In the left-side panels
for stock indices, HAR has the highest frequency of the best model in the estimation period
of more than 5 years, and ESQ has the highest in the other periods. Figure 7 summarizes
Figures 5 and 6 and contains in-sample simulations, out-of-sample simulations, stock in-
dices, and individual stocks for all estimation periods. The left- and right-side panels show
cumulative frequencies for stock indices and individual stocks, respectively. The top and
bottom panels are for in-sample and out-of-sample simulations, respectively. From the left-
side panels for stock indices of the figure, we can see that HARQ has the highest frequency
of being the best model for in-sample simulations, and ESQ has the highest for out-of-
sample. From the right-side panels for individual stocks, we can see that HARQ again has
the highest frequency of the best model for in-sample simulations, and ES0 has the highest
for out-of-sample simulations. As described above, the eight types of GARCH models are
overwhelmingly worse compared with other AR1, HAR, ES0, ES1, ES1a, ES1b, ARQ,
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Figure 5: Cumulative frequencies of the best MCS models (in-sample)
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Figure 6: Cumulative frequencies of the best MCS models (out-of-sample)

HARQ, and ESQ models in a predictive power comparison since the GARCH models es-
timate and predict volatility by not directly using the RVt series. Hence, note that it is
not appropriate to directly compare the predictive power of the GARCH models with other
AR1, HAR, ES0, ES1, ES1a, ES1b, ARQ, HARQ, and ESQ models.

3.4.3 Model Comparison Based on the MZ Regression

Finally, we report the results of the MZ regression on predictors obtained from models.
According to Patton and Sheppard (2009), MZ regression is one of the general methods for
evaluating the predictive power of volatility, which is proposed by Mincer and Zarnowitz
(1969). The MZ regression is formulated by

σ̂2
t = α+ βht + et,

where σ̂2
t is a proxy variable for volatility, α and β are parameters, ht is a predictor obtained

from each model, and et is an error term. Regarding σ̂2
t , we consistently use RV as a proxy

variable for volatility in the study. We performed the MZ regression on the data set of stock
indices and individual stocks for in-sample and out-of-sample simulations. Table 9 shows
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Figure 7: Cumulative frequencies of the best MCS models (all estimation periods)

the result of the adjusted coefficient of determination, R2. Underlined values in the table
are the maximum R2 in each row. From the table of stock indices, we can see that ESQ
has the maximum R2 in all in-sample estimation periods, whereas ES0 has the maximum
R2 for 1 year and less than 5 years out-of-sample estimation period data. From the table of
individual stocks, we can see that ES1 has the maximum R2 for less than 5 and more than
5 years for in-sample estimation periods, whereas ES0 has the maximum R2 in all out-of-
sample estimation periods. In summary, ES0 has the highest R2 in almost all out-of-sample
estimation periods except for the more than 5 years estimation period of stock indices. This
is consistent with the previous results of error functions and MCS.

Based on the result of the MZ regression, the overall trend can be summarized as fol-
lows: for in-sample simulations, the model using the information on the fourth moment
of stock returns has better predictive power but such an effect is not observed in the out-
of-sample simulations. As we often observe volatility clustering in financial asset returns,
there are times when it is turbulent and times when it is calm. The various models ana-
lyzed in the study have no way to predict when large variability will come in the future,
although RQ can be an important explanatory element to account for such differences in
the in-sample period.

In situations where we perform an extrapolation type point prediction, there is no big
difference when fourth moments are incorporated into the models. Thus, we may enjoy
the benefit of assuming a fat-tailed distribution only when using low-frequency data. If the
predicted period is short, it happens that such an assumption is successful, and the level of
predictive power may increase. However, the longer the period becomes, the lower is the
predictive power. This may serve as an interpretation that ES0 dominates the average in
out-of-sample simulations.

4. Conclusions

In this paper, we focused on the framework of empirical similarity-based on case-based
decision-making theory (Gilboa and Schmeidler, 1995, 2001) advocated by Gilboa et al.
(2006). We conducted an empirical analysis of volatility prediction, using an empirical
similarity-based time-series model proposed by Golosnoy et al. (2014). Regarding the
predictive power comparison of models, we first ranked the predictive power of models in
multiple estimation and prediction periods by using MCS with four error functions. We
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then analyzed cumulative frequencies of the best predictive power models. Because of the
empirical analysis, HARQ for both stock indices and individual stocks in the in-sample had
the highest frequencies as best models. ESQ for stock indices and ES0 for individual stocks
had the highest frequencies in the out-of-sample simulations. Next, we performed the MZ
regression to compare the predictive power of models in estimation and prediction periods
of various combinations over multiple stocks. Looking at the result of the analysis based
on the adjusted coefficient of determination, R2, obtained from the MZ regression, ESQ for
stock indices and ES1 for individual stocks were the best models in the in-sample. ES0 was
the best model for both stock indices and individual stocks in the out-of-sample simulations.
In the results of the MCS and MZ regression, the tendency that the predictive power of ES0
in out-of-sample data was relatively high compared to other models is consistent with the
results of the previous work of Golosnoy et al. (2014). In addition, incorporating the
realized measure RQ, calculated from high-frequency data such as HARQ and ESQ, was
generally favorable in analyses of error functions, including the MCS and MZ regression.
We once again confirmed the abundance of information derived from the aggregation of
high-frequency financial data.

In this paper, we do not explicitly consider the asymmetry of volatility, although asym-
metry is a very important factor in predicting volatility, so that we leave this for our future
work.

Finally, as far as we know, we have applied ES models for volatility analyses in the
Japanese stock market. We have done this systematically, using volatility models incor-
porating the realized measures of RQ, such as HARQ and ESQ. Therefore, the study of
volatility models incorporating empirical similarity and the realized measure, RQ, has just
begun. We would like to further explore and develop this area of study.
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Table 4: All estimation and prediction periods for empirical analysis
Esti. Pred. Esti. Pred. Esti. Pred. Esti. Pred. Esti. Pred.

99-99 99-99 00-08 00-08 02-06 07-07 04-09 04-09 07-09 07-09
99-99 00-00 00-08 09-09 02-07 02-07 04-09 10-10 07-09 10-10
99-00 99-00 00-09 00-09 02-07 08-08 04-10 04-10 07-10 07-10
99-00 01-01 00-09 10-10 02-08 02-08 04-10 11-11 07-10 11-11
99-01 99-01 00-10 00-10 02-08 09-09 04-11 04-11 07-11 07-11
99-01 02-02 00-10 11-11 02-09 02-09 04-11 12-12 07-11 12-12
99-02 99-02 00-11 00-11 02-09 10-10 04-12 04-12 07-12 07-12
99-02 03-03 00-11 12-12 02-10 02-10 04-12 13-13 07-12 13-13
99-03 99-03 00-12 00-12 02-10 11-11 04-13 04-13 07-13 07-13
99-03 04-04 00-12 13-13 02-11 02-11 05-05 05-05 08-08 08-08
99-04 99-04 00-13 00-13 02-11 12-12 05-05 06-06 08-08 09-09
99-04 05-05 01-01 01-01 02-12 02-12 05-06 05-06 08-09 08-09
99-05 99-05 01-01 02-02 02-12 13-13 05-06 07-07 08-09 10-10
99-05 06-06 01-02 01-02 02-13 02-13 05-07 05-07 08-10 08-10
99-06 99-06 01-02 03-03 03-03 03-03 05-07 08-08 08-10 11-11
99-06 07-07 01-03 01-03 03-03 04-04 05-08 05-08 08-11 08-11
99-07 99-07 01-03 04-04 03-04 03-04 05-08 09-09 08-11 12-12
99-07 08-08 01-04 01-04 03-04 05-05 05-09 05-09 08-12 08-12
99-08 99-08 01-04 05-05 03-05 03-05 05-09 10-10 08-12 13-13
99-08 09-09 01-05 01-05 03-05 06-06 05-10 05-10 08-13 08-13
99-09 99-09 01-05 06-06 03-06 03-06 05-10 11-11 09-09 09-09
99-09 10-10 01-06 01-06 03-06 07-07 05-11 05-11 09-09 10-10
99-10 99-10 01-06 07-07 03-07 03-07 05-11 12-12 09-10 09-10
99-10 11-11 01-07 01-07 03-07 08-08 05-12 05-12 09-10 11-11
99-11 99-11 01-07 08-08 03-08 03-08 05-12 13-13 09-11 09-11
99-11 12-12 01-08 01-08 03-08 09-09 05-13 05-13 09-11 12-12
99-12 99-12 01-08 09-09 03-09 03-09 06-06 06-06 09-12 09-12
99-12 13-13 01-09 01-09 03-09 10-10 06-06 07-07 09-12 13-13
99-13 99-13 01-09 10-10 03-10 03-10 06-07 06-07 09-13 09-13
00-00 00-00 01-10 01-10 03-10 11-11 06-07 08-08 10-10 10-10
00-00 01-01 01-10 11-11 03-11 03-11 06-08 06-08 10-10 11-11
00-01 00-01 01-11 01-11 03-11 12-12 06-08 09-09 10-11 10-11
00-01 02-02 01-11 12-12 03-12 03-12 06-09 06-09 10-11 12-12
00-02 00-02 01-12 01-12 03-12 13-13 06-09 10-10 10-12 10-12
00-02 03-03 01-12 13-13 03-13 03-13 06-10 06-10 10-12 13-13
00-03 00-03 01-13 01-13 04-04 04-04 06-10 11-11 10-13 10-13
00-03 04-04 02-02 02-02 04-04 05-05 06-11 06-11 11-11 11-11
00-04 00-04 02-02 03-03 04-05 04-05 06-11 12-12 11-11 12-12
00-04 05-05 02-03 02-03 04-05 06-06 06-12 06-12 11-12 11-12
00-05 00-05 02-03 04-04 04-06 04-06 06-12 13-13 11-12 13-13
00-05 06-06 02-04 02-04 04-06 07-07 06-13 06-13 11-13 11-13
00-06 00-06 02-04 05-05 04-07 04-07 07-07 07-07 12-12 12-12
00-06 07-07 02-05 02-05 04-07 08-08 07-07 08-08 12-12 13-13
00-07 00-07 02-05 06-06 04-08 04-08 07-08 07-08 12-13 12-13
00-07 08-08 02-06 02-06 04-08 09-09 07-08 09-09 13-13 13-13
Esti. and Pred. denote estimation and prediction periods respectively.
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Table 5: Error functions for b = −2 (excerpt)
Nikkei 225 Esti. Pred. ES0 ES1 HAR AR1 ARQ HARQ ESQ

99-11 99-11 0.156 0.156 0.154 0.186 0.180 0.153 0.153
99-11 12-12 0.186 0.185 0.179 0.201 0.203 0.183 0.173
99-12 99-12 0.159 0.159 0.156 0.187 0.183 0.156 0.155
99-12 13-13 0.205 0.207 0.203 0.220 0.230 0.205 0.202
99-13 99-13 0.162 0.162 0.160 0.190 0.186 0.160 0.159

Astellas Esti. Pred. ES0 ES1 HAR AR1 ARQ HARQ ESQ
99-11 99-11 0.025 0.025 0.025 0.032 0.032 0.025 0.025
99-11 12-12 0.009 0.009 0.011 0.025 0.024 0.011 0.010
99-12 99-12 0.024 0.024 0.024 0.031 0.030 0.024 0.024
99-12 13-13 0.028 0.028 0.028 0.031 0.030 0.028 0.028
99-13 99-13 0.024 0.024 0.023 0.030 0.029 0.023 0.024

Komatsu Esti. Pred. ES0 ES1 HAR AR1 ARQ HARQ ESQ
99-11 99-11 0.176 0.175 0.173 0.223 0.211 0.171 0.171
99-11 12-12 0.107 0.107 0.116 0.212 0.182 0.114 0.107
99-12 99-12 0.174 0.173 0.170 0.219 0.208 0.168 0.169
99-12 13-13 0.240 0.246 0.263 0.373 0.335 0.257 0.255
99-13 99-13 0.180 0.179 0.177 0.227 0.214 0.175 0.176

Hitachi Esti. Pred. ES0 ES1 HAR AR1 ARQ HARQ ESQ
99-11 99-11 0.129 0.128 0.132 0.187 0.159 0.128 0.128
99-11 12-12 0.030 0.030 0.030 0.030 0.032 0.029 0.031
99-12 99-12 0.123 0.123 0.126 0.177 0.151 0.122 0.123
99-12 13-13 0.212 0.207 0.212 0.230 0.211 0.205 0.212
99-13 99-13 0.127 0.127 0.130 0.179 0.153 0.126 0.126

Toyota Esti. Pred. ES0 ES1 HAR AR1 ARQ HARQ ESQ
99-11 99-11 0.079 0.079 0.079 0.101 0.094 0.078 0.079
99-11 12-12 0.079 0.079 0.077 0.100 0.090 0.077 0.080
99-12 99-12 0.083 0.083 0.083 0.105 0.098 0.082 0.083
99-12 13-13 0.102 0.102 0.105 0.114 0.088 0.109 0.097
99-13 99-13 0.100 0.099 0.097 0.117 0.108 0.096 0.097

Esti. and Pred. denote estimation and prediction periods respectively.
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Table 6: Descriptive statistics of error functions (in-sample)
b = 1 ES0 ES1 HAR AR1 ARQ HARQ ESQ
Mean 0.0145 0.0142 0.0144 0.0162 0.0156 0.0147 0.0146
Median 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Max. 0.8704 0.9900 0.9717 0.9532 0.9082 0.9982 0.9041
SD 0.0743 0.0734 0.0747 0.0838 0.0801 0.0766 0.0758
Ske. 6.6617 6.9163 6.9393 6.7303 6.7412 7.0681 6.7948
Kur. 51.19 57.44 57.50 52.10 52.44 60.28 54.26
Size 3324 3324 3324 3324 3324 3324 3324

b = 0 ES0 ES1 HAR AR1 ARQ HARQ ESQ
Mean 0.0083 0.0080 0.0080 0.0092 0.0093 0.0079 0.0080
Median 0.0004 0.0004 0.0004 0.0005 0.0005 0.0004 0.0004
Max. 0.9818 0.9703 0.9486 0.6279 0.9609 0.9093 0.9434
SD 0.0397 0.0384 0.0381 0.0411 0.0434 0.0377 0.0384
Ske. 10.2256 10.4631 10.2925 7.6756 9.1738 9.9895 10.1998
Kur. 163.47 172.57 166.33 77.96 125.25 154.31 161.72
Size 3324 3324 3324 3324 3324 3324 3324

b = −1 ES0 ES1 HAR AR1 ARQ HARQ ESQ
Mean 0.0110 0.0107 0.0107 0.0129 0.0125 0.0106 0.0107
Median 0.0042 0.0041 0.0041 0.0050 0.0049 0.0041 0.0041
Max. 0.7353 0.7070 0.6926 0.7427 0.7270 0.6898 0.6713
SD 0.0272 0.0262 0.0261 0.0307 0.0303 0.0259 0.0261
Ske. 10.1021 10.0234 9.7591 8.4654 8.3573 9.7409 9.4669
Kur. 188.98 186.43 177.16 129.45 125.12 176.75 162.61
Size 3326 3326 3326 3326 3326 3326 3326

b = −2 ES0 ES1 HAR AR1 ARQ HARQ ESQ
Mean 0.1161 0.1153 0.1148 0.1375 0.1317 0.1138 0.1139
Median 0.1090 0.1082 0.1077 0.1287 0.1229 0.1082 0.1074
Max. 0.6328 0.6067 0.9892 0.9444 0.9738 0.9847 0.9598
SD 0.0747 0.0750 0.0757 0.0857 0.0839 0.0750 0.0739
Ske. 1.0967 1.1221 1.7024 0.9060 1.2516 1.7417 1.4951
Kur. 5.8412 5.9414 13.2327 5.9489 9.2506 13.8119 11.3362
Size 3326 3326 3326 3326 3326 3326 3326
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Table 7: Descriptive statistics of error functions (out-of-sample)
b = 1 ES0 ES1 HAR AR1 ARQ HARQ ESQ
Mean 0.0026 0.0028 0.0027 0.0035 0.0040 0.0029 0.0029
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Max. 0.4941 0.4660 0.5605 0.6676 0.9178 0.4867 0.5220
SD 0.0175 0.0179 0.0185 0.0228 0.0276 0.0190 0.0192
Ske. 14.1394 12.9544 15.3115 14.7657 17.6783 12.7591 13.4480
Kur. 286.85 232.25 349.62 322.32 472.63 223.54 256.69
Size 2840 2840 2840 2840 2840 2840 2840

b = 0 ES0 ES1 HAR AR1 ARQ HARQ ESQ
Mean 0.0050 0.0049 0.0056 0.0063 0.0058 0.0052 0.0054
Median 0.0002 0.0002 0.0002 0.0003 0.0003 0.0002 0.0002
Max. 0.5086 0.7682 0.8326 0.8262 0.8362 0.6840 0.8029
SD 0.0344 0.0363 0.0422 0.0432 0.0388 0.0375 0.0399
Ske. 12.3288 15.1551 13.2819 13.7566 15.3827 14.0863 13.9322
Kur. 166.77 264.39 193.23 212.51 272.53 220.87 218.47
Size 2840 2840 2840 2840 2840 2840 2840

b = −1 ES0 ES1 HAR AR1 ARQ HARQ ESQ
Mean 0.0091 0.0096 0.0098 0.0130 0.0129 0.0101 0.0098
Median 0.0035 0.0037 0.0039 0.0054 0.0051 0.0037 0.0037
Max. 0.3381 0.5879 0.4847 0.5723 0.9602 0.6940 0.5902
SD 0.0224 0.0286 0.0264 0.0318 0.0375 0.0302 0.0280
Ske. 10.0364 13.3357 10.7361 9.3700 12.9680 13.2420 11.8349
Kur. 131.31 225.72 147.35 118.62 239.53 238.43 181.30
Size 2841 2841 2841 2841 2841 2841 2841

b = −2 ES0 ES1 HAR AR1 ARQ HARQ ESQ
Mean 0.1225 0.1243 0.1275 0.1697 0.1624 0.1276 0.1245
Median 0.1003 0.1016 0.1035 0.1351 0.1291 0.1016 0.1016
Max. 0.5506 0.7121 0.5686 0.9904 0.9495 0.8868 0.7665
SD 0.1004 0.1028 0.1042 0.1415 0.1367 0.1071 0.1026
Ske. 1.2581 1.3651 1.2641 1.4917 1.5307 1.5091 1.3682
Kur. 4.4922 5.2335 4.4802 5.6011 6.0364 6.4795 5.3569
Size 2841 2841 2841 2841 2841 2841 2841
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Table 8: Model ranking by MCS (Nikkei 225, excerpt)
Estimation Prediction 1st 2nd 3rd 4th 5th 6th
1999-2004 2005-2005 ES0 ES1 ES1b ESQ ES1a HARQ

(1.000) (0.945) (0.572) (0.141) (0.053) (0.024)
2001-2004 2005-2005 ES0 ES1 ES1b ESQ ES1a HARQ

(1.000) (0.066) (0.047) (0.047) (0.047) (0.047)
2002-2003 2004-2004 ES0 ES1b ES1 ESQ ES1a HAR

(1.000) (0.226) (0.226) (0.203) (0.160) (0.057)
Estimation Prediction 1st 2nd 3rd 4th 5th 6th
2000-2004 2005-2005 ES1 ES0 ESQ ES1a ES1b HARQ

(1.000) (0.850) (0.142) (0.090) (0.090) (0.029)
2001-2002 2003-2003 ES1 ES1b ES0 ESQ ES1a HAR

(1.000) (0.179) (0.179) (0.179) (0.176) (0.097)
2008-2008 2009-2009 ES1 ES0 ES1b ESQ HAR ES1a

(1.000) (0.816) (0.313) (0.313) (0.003) (0.003)
Estimation Prediction 1st 2nd 3rd 4th 5th 6th
1999-2009 2010-2010 HAR ES1b ES1 ESQ ES0 HARQ

(1.000) (0.939) (0.250) (0.250) (0.225) (0.017)
2002-2009 2010-2010 HAR ESQ ES0 HARQ ES1b ES1

(1.000) (0.713) (0.672) (0.007) (0.007) (0.007)
2009-2011 2012-2012 HAR ESQ HARQ ES1b ES1 ES1a

(1.000) (0.498) (0.438) (0.438) (0.135) (0.135)
Estimation Prediction 1st 2nd 3rd 4th 5th 6th
1999-2006 2007-2007 HARQ ESQ HAR ES1 ES0 ES1a

(1.000) (0.924) (0.257) (0.104) (0.104) (0.104)
2001-2006 2007-2007 HARQ ESQ HAR ES1a ES1b ES1

(1.000) (0.835) (0.388) (0.388) (0.388) (0.388)
2001-2012 2013-2013 HARQ ESQ ES1a ARQ HAR ES1b

(1.000) (0.963) (0.963) (0.963) (0.555) (0.555)
Estimation Prediction 1st 2nd 3rd 4th 5th 6th
1999-2007 1999-2007 ESQ HARQ HAR ES1 ES0 ES1a

(1.000) (0.506) (0.391) (0.034) (0.028) (0.001)
2000-2007 2000-2007 ESQ HARQ HAR ES1 ES1a ES0

(1.000) (0.340) (0.288) (0.067) (0.004) (0.004)
2001-2004 2001-2004 ESQ HARQ HAR ES1a ES0 ES1b

(1.000) (0.692) (0.692) (0.044) (0.044) (0.044)
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Table 9: Adjusted coefficients of determination R2 obtained from MZ regression
Stock indices ES0 ES1 ES1a ES1b HAR AR1 ARQ HARQ ESQ
In-sample
1 year 0.293 0.320 0.323 0.313 0.312 0.250 0.269 0.322 0.330
less than 5 years 0.436 0.451 0.450 0.449 0.444 0.368 0.385 0.450 0.457
more than 5 years 0.547 0.554 0.554 0.552 0.552 0.468 0.485 0.557 0.560
Out-of-sample
1 year 0.302 0.254 0.270 0.259 0.291 0.258 0.191 0.247 0.263
less than 5 years 0.317 0.300 0.305 0.304 0.317 0.272 0.241 0.290 0.300
more than 5 years 0.324 0.308 0.326 0.312 0.325 0.294 0.277 0.316 0.325
Individual stocks ES0 ES1 ES1a ES1b HAR AR1 ARQ HARQ ESQ
In-sample
1 year 0.284 0.308 0.305 0.304 0.299 0.240 0.259 0.309 0.308
less than 5 years 0.432 0.447 0.438 0.444 0.440 0.364 0.385 0.446 0.443
more than 5 years 0.538 0.548 0.540 0.546 0.543 0.456 0.480 0.547 0.545
Out-of-sample
1 year 0.289 0.265 0.261 0.268 0.275 0.245 0.208 0.244 0.261
less than 5 years 0.295 0.280 0.282 0.284 0.289 0.252 0.231 0.273 0.280
more than 5 years 0.286 0.275 0.280 0.278 0.281 0.249 0.236 0.273 0.277
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