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Abstract 

 
Collecting information from sampled units over the Internet or by mail is much more cost-efficient 

than conducting interviews. These methods make self-enumeration an attractive data collection 

method for surveys and censuses. However, self-enumeration data collection can produce low 

response rates compared to interviews. To increase response rates, nonrespondents are subject to 

follow-up treatments, which influence the resulting probability of response. Because response 

occurrence is intrinsically conditional, we primarily record response occurrence in discrete 

intervals, and we characterize the probability of response by a discrete time hazard. This approach 

facilitates examining when a response is most likely to occur and how the probability of 

responding varies. Because response rates are presumed to be low, a widely used approach is to 

consider a second-phase of data collection, where only sub-sampled nonrespondents are followed-

up. However, in practice, data collection from self-enumeration and from follow-ups are done in 

parallel, which makes sub-sampling from nonrespondents difficult to apply. In this case, excluding 

late self-enumeration responses ‒ not obtained from the follow-up subsample after follow-up has 

been started ‒ is recommended in the literature to avoid a nonresponse bias. Finally, we study the 

estimator of the finite population total that use all observed responses. Simulation results on the 

performance of the proposed estimators are also presented. 

 
Key Words: Event history analysis, Mixed-mode surveys, Partially classified responses, Two-

phase data collection. 

 

1. Introduction 

 

Survey or census studies start with a collection of distinct units of interest known as the finite 

population. There are multiple random variables attached to each unit, as each unit holds their own 

individual characteristics and aptitudes. Each particular study targets a small subset of these 

random variables. Measurements on these variables of interest are intended to be collected during 

the data collection stage from each selected unit, and involve a questionnaire used to collect the 

data from the respondents. The methodology behind estimating finite population parameters, based 

on observation of randomly selected units, is well described by survey literature. See Cochran 

(1977), or, Särndal et al. (1992) as an example. Consider the estimation of 
kk yY   the total of a 
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characteristic of interest y  in a finite population P  of size N , which is a recurrent parameter of 

interest in survey sampling, where 
k  represents summation over the finite population of units, 

and T

Nyy ),...,( 1y  is the vector of values of y . Under complete response and for a general 

sampling design with known positive inclusion probabilities )|( Pk  , 
k  for short, a customary 

design unbiased estimator of the total Y  is given by the Horvitz-Thompson (HT) estimator  

 
kkkHT yd=Y )(ˆ  . (1.1) 

where )|(/)|(1)|()( PPPdd kkkk    denote the design weights associated with the random 

sample   selected from the finite population, )|(1)|(1 **  kkk
 is the set   membership 

indicator variable for unit k  given that unit k  belongs to the set * , )(1 condition  is the truth  

function, i.e., 1)(1 condition  if the condition is true, 0)(1 condition  if not,  

)}|(1{)|( **   kE kk  is the set   inclusion probability for unit k  given *k , and 
E  

denotes expectation with respect to the inclusion mechanism. 

 

Mixing modes of data collection offers the possibility of offsetting the disadvantages of one mode 

with the advantages of another. For example, recognizing that the Internet, unlike mail, offers the 

ability to move data capture and edit closer to the respondent, many statistical agencies are now 

offering electronic questionnaires as a voluntary option to: a) improve both response rates and 

quality of statistical processes; and, b) reduce survey costs. This potential increase in survey 

quality – in combination with the fact that collecting information from sampled units over the 

Internet or by mail is much more cost-effective than conducting interviews – makes mixed-mode 

self-enumeration an attractive data-collection method for surveys and censuses. Although there are 

benefits associated with mixed-mode self-enumeration surveys – in particular, Internet-based data 

collection – as well as an expected wider application of this approach in future, mixed-mode self-

enumeration surveys bring particular difficulties to surveys and censuses. Observed values of 

typical variable of interest y  might depend on the variable 
my  associated with mode m  of data 

collection, Mm ,...,1 , where M  is the number of modes of data collection under consideration 

for a given study. In principle, each unit k  of the finite population P  has all responses, i.e., a 

response kmy ;  that would have resulted if it had chosen mode m . Since each unit receives or 

chooses only one mode, only one response is observed. If the variable of interest is defined 

uniquely and independently from each mode, then kmy ;  represents the value the unit k  believes is 

the correct answer to y , resulting from the medium of mode m  in which the question is presented 

to the unit.  

One of the main objectives of the mixed-mode of data collection is to influence the unit to get its 

cooperation, regardless of its preference for data-collection mode. If the mixed-mode of data 
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collection can increase the overall response rates, we will be pleased to quantify and examine the 

contribution of each mode on the response probability. In reality, self-enumeration can produce 

low response rates in comparison to interviews. To gain non-respondents’ cooperation and 

therefore maximize survey quality, each non-respondent is assigned to a follow-up strategy, where 

each strategy consists of a mixed-mode of predefined follow-up treatments (Schouten et al. 2013). 

Different costs are associated with different follow-up treatments. For example, face-to-face 

follow-up is more expensive than telephone follow-up. Currently, in some business surveys, to 

reduce the global cost of data collection, follow-up for nonresponse is performed on only a portion 

of non-respondents. These units are often identified in a deterministic way; for example, based on 

their expected contribution to the estimate. In addition, since a significant number of units are 

never followed up for nonresponse, the final response rate can be very low. So given the presence 

of nonresponse in almost all studies, the HT estimator given by (1.1) is rarely used. Suppose that 

the response probability, )|( )(
I;I maxmax

PP r

kkk   , after maxI  time periods of data collection, is 

known for every unit in the population, where maxI  denotes the survey limited length of duration of 

data collection, and )(
Im ax

rP  is the subpopulation of respondents after maxI   time periods of data 

collection. In this case, a design-response unbiased estimator of the population total Y  is given by  

 
kkkkk yrdY )/)((  


, (1.2) 

where )|(1 )(
I;I maxmax

PPrr r

kkk   is the response indicator for unit k . Since the probability of response 

k  is unknown, estimated response probability 
k̂  is used to get  

 
kkkkk yrdY )ˆ/)((ˆ

ˆ 


 . (1.3) 

As noted by Rosenbaum (1987) and others, estimator 
̂

Ŷ  using the estimated response probability 

can be more efficient than estimator Y


 using the true response probability.   

 

The use of response probability to adjust for nonresponse supposes: a) a known relationship 

between the response mechanism and a set of auxiliary information; b) the availability of the 

auxiliary information; and, c) the response mechanism is missing at random given the available 

auxiliary information (Little and Rubin 2002). However, if the response mechanism is related to 

an unavailable information then the distribution of the variable of interest in the set of sampled 

respondents, after adjusting for both the sampling selection mechanism and the assumed response 

mechanism, do not reflect the distribution in the population, and this in turn may result in biased 

estimates. A population P  after I  time periods of data collection under self-enumeration (without 

follow-up) can be seen as composed of two subpopulations: the subpopulation )(
I|

r

selfP  of size )(
I|

r

selfN  

of respondents under self-enumeration, and the subpopulation )(
I|

m

selfP  of size )(
I|

m

selfN  of 
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nonrespondents under self-enumeration, so that )(
I|

)(
I|

m

self

r

self NNN  . A census of all N  units during I  

time periods of data collection under self-enumeration yields information on )(
I|

r

selfN  units, leaving 

)(
I|

m

selfN  units missing. Hansen and Hurwitz (1946) considered the problem of nonresponse in mail 

surveys, and proposed to take a subsample I|f  from )(
I|

m

self  to get estimate for )(
I|

m

selfP . Only sub-

sampled unit are followed-up extensively during IImax   time periods of data collection to get their 

cooperation and therefore optimize survey quality and cost. Primarily, an inconvenience for the 

Hansen and Hurwitz (1946) approach is that the set )(
I|

m

self  may vary from one time period to 

another. Another inconvenience is that there would not be enough time for the extra subsampling 

and follow-ups after I  time periods of data collection period, if both I  is large and the statistical 

figures need to be published (Swensson 2007). In reality, data collections from self-enumeration 

without follow-up and from follow-up in addition to self-enumeration are somehow done in 

parallel, which makes sub-sampling from self-enumeration nonrespondents difficult to apply in 

some applications. Hansen and Hurwitz (1946) recommended excluding late self-enumeration 

responses not obtained from the follow-up subsample after follow-up has been started to avoid a 

nonresponse bias. However, in practice, such observations are included in every study. Hansen and 

Hurwitz (1946) discussed the issue as follow:  

 

“All schedules arriving before the deadline constitute the mail response and the field follow-up 

sampling ratio must be applied to all on the mailing list that did not respond before that date. The 

relatively few schedules arriving after that date, unless they are designed for interview, must be 

excluded from the sample, in order to avoid a bias of nonresponse of the type which we are trying 

to eliminate. The cut-off date of course should be held off until the mail response is substantially 

completed in order to take full advantage of the economies of the mail questionnaire. However, 

once a sample is designed for field follow-up and the respondent is actually interviewed in the 

field, the mail questionnaires returned (other than designed for field follow-up) must be 

discarded”. 

 

Given the above issues, one question should first be of particular interest to statistical agencies: 

how should both the response probabilities, under mixed-mode of data collection and follow-ups, 

and the influence of the follow-up treatments on the resulting probability of response be modelled? 

Other relevant questions include the following: if one factor of the mixed-mode is improved, what 

will be the effect on the performance of the response mechanism? How can we estimate the 

response probability due to a particular mixed-mode factor of interest with the presence of the 

other mixed-mode factor? And finally, how do we extend the Hansen Hurwitz' approach to select 
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the follow-up subsample at any time period of data collection and to make full use of all observed 

responses?  

 

In an attempt to discuss these issues, our work below is organized as follows: in Section 2, the 

response probability is first characterized by a discrete-time hazard, followed with the use of 

regression analysis to investigate the effect of mixed-mode on the response probability, we extend 

the response model to cover more results such as refusal and ineligibility, and we present results of 

a small simulation study on the performances of the proposed estimators of the response model 

parameter and the finite population total under mixed-mode of data collection; and finally, in 

Section 3, two phases of data collection in the context of nonresponse is covered, and estimators of 

the response model parameter and the population total that use all observed values are derived. 

Simulation results on the proposed estimators are also presented. 

 

2. Modeling Response Indicators as Discrete-time Hazard 

 

In this Section, we give a brief account of the Demnati (2015, 2016) method for modeling 

response indicators as discrete-time survival. We first characterize the response probability by a 

discrete-time hazard, and investigate the effect of the mixed-mode on the response probability 

using regression analysis. Afterwards, we extend the response model to cover multiple results such 

as refusal and ineligible. Finally, we present simulation results on the performance of the 

estimators of the response model parameter and the population totals associated with mixed-mode 

surveys.  

 

2.1 Discrete-time Hazard 
 
Consider a homogeneous sample of units, each at risk of experiencing a single target event 

response. The target event is nonrepeatable. To record response occurrence in discrete intervals, 

we divided continuous time of the entire data collection period into a sequence of continuous time 

periods: 1, 2, and so on, and we let minI  denote the minimum length of data collection period to 

obtain full responses. Suppose the survey limited length of duration of data collection is made up 

of maxI  time periods, with minmax II  . Let t  represent the discrete random variable that indicates the 

time period i  when the response occurs for a randomly selected unit from the sample. We assume 

that every unit in the sample lives through each successive discrete time period until the unit 

responds or is censored by the end of data collection. Then each unit k  is observed until some 

period 
kI , with maxII k

. Observation of the unit could be discontinued for two reasons: 1) the unit 

response; or, 2) the survey data collection period ends. In the first case, 
kkt I . In the second case, 
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we only know that maxIkt . Units with maxIkt  are right-censored ‒ when they respond is 

unknown. Note that t  is defined only when the unit will eventually respond. Since censoring is 

planned and observation is terminated at the end of data collection, the censuring mechanism is 

noninformative (Lagakos 1979) in the sense that the act of censoring imparts no information about 

the response mechanism. Because response occurrence is intrinsically conditional, we characterize 

t  by its conditional probability function ‒ the distribution of the probability that a response will 

occur in each time period given that it has not already occurred in a previous time period ‒ known 

as the discrete-time hazard function. Discrete-time hazard ),( βxkikih , 
kih  for short, is defined as the 

conditional probability that unit k  will respond in time period i , given that the unit did not 

respond prior to i : 

 )|Pr( itith kkki  , 

where 
kix  refers to both time-invariant and time-varying explanatory variables and β  is the 

unknown 1rq  vector parameter to be estimated. For unit with itk  , the probability of obtaining 

a response at time period i  could be expressed in terms of the hazard as  

 )1()Pr( 1
1 kj

i

jkik hhit  

 . (2.1) 

For units with itk  , the probability of obtaining a response can be expressed as  

 )1()Pr( 1 kj

i

jk hit   . (2.2) 

We have  

 kk

kkkkk tttf
 


1)I>Pr()IPr()( , (2.3) 

where 1k  if unit k  is uncensored (responds) and 0k  if unit k  is censored. Substituting 

(2.1) and (2.2) into (2.3), yields 

 )1()}1/({)( I
1II kiikkk hhhtf kk

kk
 

 . (2.4) 

Expression (2.4) can be rewritten (Allison 1982) as 

 )1()}1/({)( I
1

I
1 kii

r

kikiik hhhtf kkik   , (2.5) 

where 
kir  is a sequence of response indicators defined for each unit k  whose values are defined as 

1kir  if the unit does respond in period i  and 0kir  if the unit does not respond in period i . 

Taking the first derivatives of )(log kk tf  yields the estimating equation (EE) 

 0sS  )()( ββ kk
, (2.6) 

where 1I
1 )}1(){(/)(log)( 

  kikikikikiikk hhhrtf k hββ s , and βh  /kiki h . For the logistic 

regression model βxT

kikiki hh  )1/(log( , )1( kikikiki hh  xh , )()( I
1 kikikiik hrk   xβs , and the matrix of 

second partial derivatives is 

 )()1()( I
1 βxx

β
β

βJS







T

kikikikiik

T

hhk . 
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Adjusting (2.6) for sampling unequal probabilities, we get the weighted EE  

 0sS  )()()(ˆ ββ kkk d . (2.7) 

Starting with a guessed value, 0β , then for ,...2,1b  updates are made using 

  )(ˆ)}(ˆ{ 1
1

11 



  bbbb ββββ β SJ ,  

where ββββ  /)(ˆ)(ˆ TSJ . The solution obtained by a Newton-Raphson-type iterative method 

gives the estimator β̂  of β .  

 

The marginal probability of obtaining a response after maxI  time periods is given by 

 )Pr()1(1 maxmax I
1

I
1 ith kikiik   . (2.8) 

It is easily seen from (2.8) that 
k  increases (or stays the same) as the level of effort increases, 

where the level of effort is seen in terms of follow-up treatments and data-collection period. This 

suggests that costs and benefits of increasing the level of effort should be explored given that, in 

some circumstances, there are a number of follow-up treatments made with a high percentage of 

cost, expanded to get values from a few non-respondents. 

 

2.2 Influence of Follow-up on Response Probability 
 
We expressed the inverse link function of the hazard rate as a function of explanatory variables 

kix  

and a vector parameter β  to be estimated. For units under self-enumeration data collection 

without follow-up, the inverse link form of the hazard-rate is expressed as 

 ),()( )0()0(-1 βxkikihg  , (2.9) 

for known function (.) , where )0(
kix  is the vector of explanatory variables for self-enumeration, 

)0(β  is the associated unknown vector parameter to be estimated, )0(
kiki xx  , )0(ββ   and (.)g  is a 

link function ‒ although the link function is generally used to transform (or to link) the conditional 

mean to the linear predictor βxT

ki . For example, aag )(  with βxβx T

kiki ),(  gives a linear 

regression model and )}exp(1/{)exp()( aaag   with βxβx T

kiki ),(  gives a logistic regression 

model for binary responses 
kir . 

 

Additional influences on response probability can be investigated by adding further predictors to 

the initial discrete-time hazard model. For instance, the following model differs from the model in 

(2.9) by the inclusion of the time-variant follow-up predictor )1()1(
kiki x , the influence of which is 

captured by the parameter )1(β :  

 ),;,()( )1()1()1()0()0(-1 βxβx kikikikihg  , (2.10) 
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where the value of )1((
ki  is set to 1 if the first follow-up treatment is started, or set to 0 if this is not 

the case, with TT

kiki

T

kiki ),( )1()1()0( xxx   and TTT ),( )1()0( βββ  . Note that (2.10) can be used to define 

different slopes and intercepts, in which case the parameter )1(β  reflects the changes in the 

intercepts and in the slopes associated with changing from self-enumeration only to self-

enumeration followed by the first follow-up treatment. For example, in the specification 
)1()1()0()0(),( βxβxβx T

ki

T

kiki  , I,...,1i , with )0(
1

)0(
0

)0()0(
ikii

T

ki x  βx  and )( )1(
1

)1(
0

)1()1()1(
ikiiki

T

ki x  βx , 

the regression parameters )0(
0i , )0(

1i  and the values 
kix  represent respectively the intercept, the 

slope and the predictor associated with self-enumeration data collection in time period i . We have 
T

kIkkIkki xxDD ),...,,,...,( )0()0(
1

)0()0(
1

)0( x  and T

II ),...,,,...,( )0(
1

)0(
11

)0(
0

)0(
01

)0( β , where 1)0( kiD , 
kiki xx )0( , 0)0( kjD  

and 0)0( kjx  for ij  . The vector predictor follow-up is given by T

kIkkIkki xxDD ),...,,,...,( )1()1(
1

)1()1(
1

)1( x  and 

the changes due to the follow-up in the intercepts and slopes are reflected by vector parameter 
T

II ),...,,,...,( )1(
1

)1(
11

)1(
0

)1(
01

)1( β , where 1)1( kiD , 
kiki xx )1( , 0)1( kjD  and 0)1( kjx  for ij  . To increase 

response rates, non-respondents are subject to intensive multiple follow-ups by telephone or other 

treatments to encourage them to participate. A follow-up treatment can take the form of mailed 

reminders, emailed reminders, telephone calls or in-person interviews. The follow-up process 

through treatments is conducted using data collection calendars with a specific strategy for each 

sampled unit. In the case of T1  follow-up treatment, the inverse link form of the hazard-rate can 

be expressed as ),()( βxkiki

-1 hg  , where TT

kiki

T

kiki

T

kiki ),...,,( )T()T()1()1()0( xxxx   and 

TTTT ),...,,( )T()1()0( ββββ  . 

 

Consider the simple example of 1T   as it is the case in business surveys, where 1T  consists of 

intensive follow up and 0T  consists of sending the questionnaire, and suppose for simplicity the 

case in which the response outcome is instant. After collecting the response from self-enumeration 

without follow-up respondents, follow-up is performed in a deterministic way ‒ non-respondents 

with 
uk cu   are assigned to treatment 1T , where 

uc  is a predetermined constant and u  is an 

auxiliary variable with values available for all sampled units. Suppose all units under 1T  

responded, while the other units have still not responded. We have 11)1( 11  kkk hh  for unit k  

with 
uk cu   and 111 0)1( kkkk hhh   for units with 

uk cu  . This highlights the significant effect 

of follow-up on the probabilities of response. 

 

2.3 Modeling Multiple Results as Discrete-time Hazards 
 
To distinguish different results during data collection such as refusal, ineligibility, and mode of 

data collection, we develop a discrete-time model for multiple kinds of results or events, by 
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extending the Bernoulli model to the multinomial model (see, for example, Prentice et al. 1978, 

Allison 1982, or Lancaster 1990).  Assume that there are E  specific results or events and the 
thE )1(   category of no results, where 1E . Define a vector of event indicator variables as 1)( e

kir  

if outcome e  occurs from unit k  at time period i , and 0)( e

kir  if not, where  },...,1{ Ee , 

)()( )( e

ki

e

kir hrE  , )1()( )()()( e

ki

e

ki

e

kir hhrVar  , and for 'ee    )'()()'()( ),( e

ki

e

ki

e

ki

e

kir hhrrCov  . The combined 

discrete-time hazard is 

  )|Pr()(
1 itithh kk

e

ki

E

eki  
. 

For units with itk  , the probability of obtaining result e  at time period i  could be expressed in 

terms of the hazard as  

 )1(1
1

)(1
1

)()( )1()1,Pr( 





  E

kj

i

j

e

kikj

i

j

e

ki

e

kik hhhhrit . (2.11) 

For units with itk  , the probability of obtaining a response can be expressed as  

 )1(
11 )1()Pr( 

  E

kj

i

jkj

i

jk hhit . (2.12) 

Substituting (2.11) and (2.12) into (2.3), and using the sequence of response indicators )(e

kir  yields 

 )}/{)( )1(I
1

)1()(
1

I
1

)(






  E

kii

rE

ki

e

ki

E

eik hhhtf k
e

kik . (2.13) 

which reduces to (2.4) when 1E . The marginal probability of obtaining result e  after maxI  time 

periods is given by 

 )1,Pr( )(I
1

)( max  

e

kiki

e

k rit . (2.14) 

 

We consider the thE )1(   category of no results as an omitted or reference category. For the 

multinomial logistic regression model, logits of the first E  events are constructed with the 

reference category in the denominator 

 e

T

ki

E

ki

e

ki hh βx )/log( )1()( , Ee ,...,1 , 

where 
kix  is the 1)1( q  vector of explanatory variables, 

eβ  is the 1)1( q  unknown vector of 

parameter associated with result e , and TT

E

T ),...,( 1 βββ  is the 1)1(  Eqqr  unknown vector 

parameter to be estimated. It follows that the 1E  conditional probabilities given the vector of 

explanatory variables are 

 1
1

)1( )}exp(1{ 



  e

T

ki

E

e

E

kih βx ,  

and for Ee ,...,1 , )exp()1()(
e

T

ki

E

ki

e

ki hh βx . 

 

Thus, the log likelihood function for multinomial logistic regression models is: 

 )}exp(1log{)(log)( 1
I

1
)(

1
I

1 e

T

ki

E

eike

T

ki

e

ki

E

eikkk
kk rtf βxβxβ   , 

where )( ktf  is given by (2.13). Taking the first derivatives, we get 

2446



 

 

 )()( β
β
β

ek

e

s


 , Ee ,...,1 , (2.16) 

where )()( )()(I
1

e

ki

e

kikiie hrk   xβs . Taking the second derivatives, we get the matrix of second partial 

derivatives for the multinomial logistic regression model 
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Adjusting (2.16) for sampling unequal probabilities, we get the weighted EE  

 0sS  )()()(ˆ ββ kkk d , (2.17) 

where TT

kE

T

kk ))(),...,(()( ;;1 βββ sss  . 

 

2.4 Simulation Study 

 

We conducted a small simulation study to illustrate the performances of the estimator of the a) 

response model parameter; as well as, b) finite population total related to the mixed-mode of data 

collection. To show the simulation results, we need to present first data generation model. Next we 

discuss steps required for design pre-specification such as sampling scheme, estimator used for 

design pre-specification and its associated variance, expected survey global cost, and resources 

allocation within stages of the survey design. Finally, we present each parameter of interest which 

leads us into simulation results. 

 

2.4.1 Finite Population Values 
 
We generate values for each unit k  of a finite population P  of size 5000N  independently from 

the model 
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
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
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
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
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u
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k

k
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u

y

;;

;;,~







, 

where y  is the variable of interest, u  is the auxiliary variable, 50 uy  , jijiji ;;   , 

10 uy  , and 8.; uy . Then we generated values of the variable kmy ;  associated with mode 

Mm  ( Mail ) and mode Im   ( Internet) of data collection from the conditional distributions 

  
ymymymkkm Nyy |;||; ,~|   for },{ IMm , 

with )(1
;;| ykyyymmym y    , myyyymmmymym ;

1
;;;|;|   , 47M , 55I , 10 IM  , 

3.),(;  yyMyM   and 7.),(;  yyIyI  .  

 

2.4.2 Sampling Scheme 
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We use Poisson sampling with selection probability parameterized as 

)}exp(1/{)}exp({ )(
;

)(
;







  λvλv T

k

T

kk ublb , where lb  and ub  are respectively the lower and upper 

bounds with 10  ublb . Unlike the customary probability of selection 
kkc np;  with 

kp  a 

measure of size, this expression for 
k  fulfill the two criterions: a) 10  ublb k ; and, b) 

ubk   when Nn , where n  denotes the expected sample size. We set )1,0(),( ublb , 

T

kk u ),1(; v , and T),( )(
1

)(
0

)(   λ . 

 

2.4.3 Response Model 
 
In this first simulation, it is assumed that in case of nonresponse each sampled unit is subject to the 

follow-up during data collection. We set 10Imax   and 3I  , and we generated the follow-up entry 

time period 
ke  for unit k  from the Discrete Uniform (DU) distribution,  ]1I1,[I~ max DUek

. 

Self-enumeration responses for sampled unit k  are generated using ),,,1(~ ;;;1 kiOkiIkiMEki hhhMr  , with 

2E , kiIkiMkiO hhh ;;; 1  , 4;3;2;1; 0 mmmkm

T

ki iux  β  for },{ IMm  and maxI,,...1i .  For unit 

k  under follow-up data collection in addition to self-enumeration we used 

4;3;2;1; )1( mkmmkm

T

ki eiiux  β  maxI,,...kei  . Table 2 displays values of the response model 

parameter β . 

 

2.4.4 Estimator for Design Pre-specification and Associated Variance 
 
For design pre-specification, we used 

kkkkk urdU )/)((  


 as estimator the known total 

kk uU  . We decomposed the variance of U


 as  

 
  VV)()()( rrr UEVarUVarEUVar 


. 

Under independent response mechanism, the first component )(V UVarE rr


  is given by 

 )/(/V 22
kkkkkkkr uu   . 

Under Poisson sampling, the second component )(V UEVar r


   is given by 

 kkkkk uu /V 22  . 

The sum VVr  constitutes the variance of U


, which may be written in the form 

 kkk vvUVar  /)( 0 


, 

where 2
0 kk uv  , and kkk uv /2 . 

 

2.4.5 Expected Survey Global Cost 
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We decompose the expected total survey cost as )()()( dcf CCCC   . The sampling component 
)(C  is given by )()(   kkk cC  , where )(

kc  denotes the sampling cost for unit k . The follow-up 

component )( fC  is given by  )(
;1

)()( )1( f

kke

self

kk

f cC
k

  , where )Pr( ;;1
)(

kkselfke

self et
k

 , selft  

represents the discrete random variable that indicates the time period i  when the response occurs 

under self-enumeration without follow-up of data collection, and )( f

kc  denotes the cost associate 

with follow-up for unit k . Finally, the data collection component )(dcC  is given by 
)(

;
)(

},{
)( dc

km

m

kIMmkk

dc cC   , where )(m

k  is given by (2.14) and )(
;

dc

kmc  denotes the data collection cost 

associated with mode m  for unit k . We may write the total survey expected cost as 

 kkk cC  , 

with )(
;

)(
},{

)(
;1

)()( )1( dc

km

m

kIMm

f

kke

self

kk cccc
k

 

  . 

We set 1)( 

kc , 10)( f

kc , 5)(
; dc

kMc , and 1)(
; dc

kIc . 

 

2.4.6 Resource Allocation within Stages of the Survey Design 
 
To create a design, we determine the sample selection probability parameter T),( )(

1
)(

0
)(   λ   by 

minimizing the expected cost subject to constraint on the coefficient of variation, 

05./)(  UUVar


. Here, the expected sample size is implicitly defined through the vector 

parameter )(λ .  Table 1 displays the expected coefficient of variation in percentage, the expected 

sample size, and the expected total cost. Table 1 also displays the expected cost ratios in 

percentage for sampling, follow-up and data collection. Finally for more information, Table 1 

displays the estimates of the sampling model parameter )(λ . 

 

2.4.7 Parameters of Interest and Simulation Results 
 
We maintained the population values ),,,,( ;; kkIkMkk eyyuy  fixed for Nk ,...,1 , and we selected 

1000A  Poisson samples from the generated population using T)0243,.724.3()( λ  obtained from 

the last two columns of Table 1.  Table 2 displays statistics on the realized sample size and number 

of respondents by mode of data collection. Our first vector parameter of interest is the response 

model parameter TT

I

T

M ),( βββ  , with T

mmmmm ),,,( 4;3;2;1; β  for },{ IMm . Let θ̂  denote an 

estimator of the parameter of interest θ . We calculated θ̂  from each repetition a ( Aa ,...,1 ), and 

its average 
a

A

aA θ̂θ̂ 1
1



  , where 
aθ̂  is the value of θ̂  for the tha  sample. The simulated bias and 

relative bias of θ̂  are calculated as )θθ̂()θ̂( B , and θ/)θ̂()θ̂( BRB  . We calculated θ̂  and )θ̂(B  

for response model parameters and those values are reported in Table 3. Table 3 clearly 
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demonstrates that the bias is small for each response model parameter. We also considered the 

estimation of the finite population total: T

kmkkk IMmyy }),{;,( ; θ . We used two sets of 

weights: the first set of weights uses estimated response model parameter, 
Tm

k

m

kkkkk IMmrdrd }),{);ˆ/)((),ˆ/)((( )()(   ; while the second set of weights uses the true response 

model parameter Tm

k

m

kkkkk IMmrdrd }),{);/)((),/)((( )()(   . The mean square error (MSE) of θ̂  is 

calculated as 2
1

1 )θθ̂()θ̂(  



a

A

aAMSE . We calculated )θ̂(RB  and MSE ratios for each estimator θ̂  

with 
kkkkk yrdY )ˆ/)()((ˆ

ˆ 


  and those values are reported in Table 4. Table 4 clearly indicates 

that all relative biases are small. The estimator using an estimated response model parameter is 

more efficient than an estimator using the true response model parameter. For comparison, Table 4 

also provides results for calibrated estimators to the population total 
kk uU   of the auxiliary 

variable, which indicate that calibration-to-population total is highly efficient. Here the calibration 

adjustment factors are respectively: 
kkkkkkkk uurdg  1})ˆ/)(({ˆ  ,  

kkk

m

k

m

kkkkm uurdg  1)()(
; })ˆ/)(({ˆ  , 

kkkkkkkk uurdg  1})/)(({  , and 

kkk

m

k

m

kkkkm uurdg  1)()(
; })/)(({   for },{ IMm . 

 

3. Two-phase Data Collection 

 

In this Section, we first define the ingredients associated with two-phase data collection for 

follow-up, and then we estimate the conditional probability that a unit belongs to the 

subpopulation of self-enumeration respondents given that the unit responded under follow-up in 

addition to self-enumeration. Secondly, we estimate the following domain sizes: the size of 

unidentified self-enumeration respondents and the size of extra respondents due to the follow-up 

activities. Next, we derive the proposed estimator of the population total that use all observed data. 

Finally, we present results of a small simulation study on the performance of the proposed 

estimator. 

 

3.1 Subsampling for Nonresponse Follow-up 
 
After subsampling from the set )(

I|
m

self  of nonrespondents at the thI  time period of data collection 

( maxII1  ), we have two subsamples, i.e., the follow-up subsample I|f , and its complement I|s  

with respect to )(
I|

m

self , so that I|I|
)(

I| sf

m

self   with  I|I| sf . The subsample I|s  permits 

estimation of the net probability of response from self-enumeration without follow-up during 

period ]I,1I[ max , while the subsample I|f  permits estimation of the crude probability of response 
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using follow-up in the presence of self-enumeration during period ]I,1I[ max . After completed maxI  

time periods of data collection, the set of all respondents is given by )(
I|

)(
I|

)(
I|

)( r

f

r

s

r

self

r   with 

 )(
I|

)(
I|

)(
I|

r

f

r

s

r

self , where )(
I|
r

s  is the set of respondents from I|s , and )(
I|

r

f  is the set of 

respondents from I|f . Let's define the subpopulation of self-enumeration respondents 

membership indicator )(Self

kl  for unit k  as 1)( Self

kl  if unit k  responds under self-enumeration 

without follow-up, and 0)( Self

kl  if not. When 0)( Self

kl , the unit is either a non-respondent or an 

extra-respondent due to the follow-up activity. For convenience, we set the follow-up entry time 

period 
ke  for unit k  under self-enumeration data collection without any follow-up (unit 

I|
)(

I| s

r

selfk  ) to 1Imax ke , while the follow-up entry time for units in the follow-up subsample 

(unit I|fk  ) is between maxII  ke . The indicator )(Self

kl  is equal to 1 for each unit in )(
I|

)(
I|

r

s

r

self   

since 1Imax ke ; i.e., the only random process involved is just self-enumeration without follow-

up. The indicator )(Self

kl  is also equal to 1 for respondent from )(
I|

r

f  with 
kk eI  (i.e., units that 

responded before follow-up has been started). However, respondents in the set )(
I|

r

f  with 
kk eI  

are arising from a mixture of two distributions: 1) late self-enumeration respondents; or, 2) extra-

respondents due to the follow-up activity. If )(
I|

r

fk   with 
kk eI , then )(Self

kl  is unknown. When 

)(Self

kl  is unknown we replace it by )ˆ,,|(ˆ )(
I

)(
max

βk

rr

selfkk P D , where )(r

selfP  is the set of self-

enumeration respondents, and 
k̂  is an estimate of 

k , the conditional expectation of )(Self

kl  given 

the observed data 
kD  and the response model parameter β . Note that when )(Self

kl  is known 

)(ˆ Self

kk l . The conditional probability that unit k  belong to the subpopulation of self-enumeration 

respondents given that the unit responded at period 
kI  with 

kk eI  is given by 

 
)IPr()IPr(

)IPr(

;
)(
)I(

)(
;

)(
)I(

)(
;

)(
)I(

)(

kkfself

rf

kkself

rUnSelf

kkself

rUnSelf

k
tNtN

tN

kk

k








 , 

where 
at  represents the discrete random variable that indicates the time period i  when the 

response occurs during time period ]I,1[ max  under random process a , with },{ fselfselfa  , 

)Pr( ; it ka   is given by (2.1) with t  replaced by 
at , )(

)(
)( r

i

UnSelf N  is the number of “Unidentified” self-

enumeration respondents at time period i , )(
)(

)( r

i

f N  is the number of “extra-respondents” due to the 

follow-up activities at time period i , with )(
)(

)()(
)(

)()(
)(

)( r

i

fSelfr

i

fr

i

Self NNN  , )(
)(

)()(
)(

)()(
)(

)( r

i

UnSelfr

i

IdSelfr

i

Self NNN  , 

and )(
)(

)( r

i

IdSelf N  is the number of “Identified” self-enumeration respondents at time period i . When 

)(Self

kl  is known, then the estimator of the conditional probability that unit k  belong to the 

subpopulation of self-enumeration respondents given the observed data is )(ˆ Self

kk l ; and when 

)(Self

kl  is unknown, our estimator is given by 
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)ˆ|IPr(ˆ)ˆ|IPr(ˆ

)ˆ|IPr(ˆ
ˆ

;
)(
)I(

)(
;

)(
)I(

)(

;
)(
)I(

)(

ββ

β

kkfself

rf

kkself

rUnSelf

kkself

rUnSelf

k

tNtN

tN

kk

k








 , (3.1) 

with )(
)(

)()(
)(

)()(
)(

)( ˆˆˆ r

i

selfr

i

fselfr

i

f NNN    and )(
)(

)()(
)(

)()(
)(

)( ˆˆˆ r

i

IdSelfr

i

selfr

i

UnSelf NNN  . It remains to derive estimates for 

)(
)I(

)( rUnSelf

k
N  and )(

)I(
)( rf

k
N . 

 

3.2 Derivation of Elementary Statistics 
 
From the follow-up subsample we can compute first )ˆ|()(ˆ

;
(*)

I|
)(

)(
)( βitPdN kselffkk

r

i

Self  , and 

)ˆ|()(ˆ
;

(*)
I|

)(
)(

)( βitPdN kfselffkk

r

i

fself  

  as estimators of  )(
)(

)( r

i

self N , and )(
)(

)( r

i

fself N  respectively, where 

)|()()|()( )(
I|I|I|I|

m

selffkkfkfk ddPdd   is the follow-up subsample design weight, 

)1()|( 1
1I;

(*)
kj

i

jkika hhitP  

β  for Ii , )(
)(

)()(
)(

)()(
)(

)( r

i

fr

i

Selfr

i

fSelf NNN   denotes the sum of )(
)(

)( r

i

Self N , the 

number of self-enumeration respondents, and )(
)(

)( r

i

f N , the number of extra-respondents due to the 

follow-up at time period i , maxI1,...,Ii . From both estimators, one may derive )(
)(

)( ˆ r

i

f N  using 

)(
)(

)()(
)(

)()(
)(

)( ˆˆˆ r

i

Selfr

i

fSelfr

i

f NNN   . Then, we can compute )ˆ|()(1)(ˆ
;

(*)
I|

)(
)(

)( βitPeidN kselfkfkk

r

i

IdSelf   as 

estimator of )(
)(

)( r

i

IdSelff N , where )(
)(

)( r

i

IdSelf N  denotes the number of identified self-enumeration 

respondents at time period i , maxI1,...,Ii . From )(
)(

)( ˆ r

i

Self N  and )(
)(

)( ˆ r

i

IdSelf N  we may derive ab 

estimator of )(
)(

)( r

i

UnSelf N , the number of unidentified self-enumeration respondents, using 

)(
)(

)()(
)(

)()(
)(

)( ˆˆˆ r

i

IdSelfr

i

Selfr

i

UnSelf NNN  . 

 

3.3 Constrained Least Squares Estimator 
 
The size N  of the finite population P  is assumed to be fixed during data collection period, while  

the vector size Tr

i

fr

i

UnSelfr

i

IdSelf

i NNN ),,( )(
)(

)()(
)(

)()(
)(

)(
)( θ  of the vector domain Tr

i

fr

i

UnSelfr

i

IdSelf PPP ),,( )(
)(

)()(
)(

)()(
)(

)(  may 

varies from one time period to another. Others elementary statistics can be derived using the 

follow-up subsample as well as the main sample. For example from the main sample, we may 

compute )ˆ|Pr()( ; βitd kselfkk   and )ˆ|Pr()( ; βitd kselfkk   as estimator of )(
)(

)( r

i

Self N  and )()( ˆ m

i

Self N  

respectively. In the linear regression with observed vector )(
ˆ

iθ  of elementary statistics, vector of 

regression parameters )(iθ , known design matrix )(iM  of 0’s and 1’s, and vector residual errors 

)(iε , we have )()()()(
ˆ

iiii ε θMθ . Let TmTT N ),,...,( )(
I)I()1( maxmax

θθθ   be the 1)1I3( max   vector parameter, 

TmTT N )ˆ,ˆ,...,ˆ(ˆ )(
)I()I()1( maxmax

θθθ   be the observed vector of elementary statistics, the known design matrix 

M  of 0’s and 1’s, and vector residual errors be ε . Then we have εMθθ̂ . By minimizing the 
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objective function )ˆ()ˆ()(O MθθMθθθ  T , it follows that the resulting least squares estimator 
lsθ̂  

is θMMMθ ˆ)(ˆ 1 TT

ls

 . The situation where exact information is available relative to 
lq  linear 

combinations of elements of the vector parameter θ  can be stated in the form of the linear equality 

restrictions: 

 lLθ , (3.2) 

where L  is a )1I3( max lq  known design matrix that expresses the structure of the information on 

the elements of the θ  vector, and  l  is a 1lq  vector of constants. For example if the population 

size N  is known, then 1lq , the )1I3(1 max   vector L is given by   T

1I3 max
11  1L   and the 

11  scalar value l  is given by Nl  , where 
p1  is the 1p  vector of 1’s. Under (3.2), we use 

instead a constrained least squares estimator of θ , which is basically the least squares with some 

components of θ  restricted to 
lq  combinations. It can be: a) constructed by minimizing )(O θ  

subject to the constraint given by (3.2); and, b) solved using the Lagrange multiplier procedure. 

The constrained least squares estimator θ
~  of θ  is given by 

 )ˆ(ˆ~
lsls θLAθθ  l , 

where 111 })({)(  TTTT LMMLLMMA . 

 

3.4 Estimator of the Population Total 
 
If )(Self

kl  is known for every sampled unit and all subsampled units respond, then an estimator of Y  

would be 

 
k

C

kkk

Self

kkfkkk

Self

kkkk

C ydylrdylrdY )()(
I|

)()( )1()()( 


, (3.3) 

with  )1()()( )(
I|

)()( Self

kkfk

Self

kkk

C

k lrdlrdd  , (3.4) 

where the superscript C  in )(CY


 and in )(C

kd  stands for complete response in the follow-up 

subsample. Given )(Self

kl , the first part of the right term of (3.3), 
k

Self

kkkk ylrd )()( , is design-

unbiased estimator of the total of the subpopulation of self-enumeration respondents, and the 

second part, k

Self

kkfkk ylrd )1()( )(
I|  , is design-unbiased estimator of the total of the rest of the 

population. Hence for any I , the estimator given by (3.3) is a conditional unbiased estimator of 

the total of the finite population: 

 HTkkk

C YydYE ˆ)()ˆ( )()1|2(  , 

or )()( )()1|2(  k

C

k ddE , 

where )1|2(
E  denotes expectation with respect to subsampling for nonresponse. We may write )(C

kd  

as 
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 )1()(})1({)( )(
I|

)()()()()()( Self

kkfk

Self

k

Self

k

IdSelf

k

Id

kk

C

k lrdlllrdd  , 

where 1)()( Self

k

Id l  if unit k  is identified as a self-enumeration respondent (i.e., )(
I|

)(
I|

r

s

r

selfk   or 

)(
I|

r

fk   with 
kk eI ), and 0)()( Self

k

Id l  if not. When 0)()( Self

k

Id l  unit k  might or might not be a self-

enumeration respondent. Note that )()()()()( Self

k

IdSelf

k

Self

k

Id lll  . 

Unfortunately neither )(Self

kl  is known for each respondent nor the complete response is likely to 

occur in the follow-up subsample. When )(Self

kl  is unknown we replace it by its estimate and the 

resulting weight under complete response in the follow-up subsample is given by  

 )ˆ1()(}ˆ)1({)(ˆ
I|

)()()()()(
kkfkk

Self

k

IdSelf

k

Id

kk

C

k rdllrdd   , (3.5) 

where k  might or might not be in the follow-up subsample.  

 

Because nonresponse is likely to occur in the follow-up subsample, our final weight is defined as  

 )(
;I|

)(
;

)()()()( ˆ)ˆ1()(}ˆˆ)1({)(ˆ r

kfkkfk

r

kfk

Self

k

IdSelf

k

Id

kkk drddllrdd   , (3.6) 

where )(
;

ˆ r

kfd  is an adjustment factor for nonresponse in the follow-up subsample. For example, one 

may use the following adjustment factor 

 
kf

kf

f

r

fk

r

kf

r
dd

;

;
I|

)(
I|

)(
; ˆ)|(ˆˆ


 , (3.7) 

where )I,|(1 I|
)(
I|; kkf

r

fkkf er   is the conditional response indicator for the thk  unit in the follow-

up subsample, )I,|( I|
)(
I|; kkf

r

fkkf e  is the conditional response probability in the follow-up 

subsample, and )ˆ(ˆ
;; βkfkf   . Substituting )(

;
ˆ r

kfd  given by (3.7) into 
kd̂  given by (3.6), we get 

 kfkfkfkkfkfk

Self

k

Id

k

Self

k

Id

kk rdrlrldd ;;I|;;
)()()()( ˆ/)ˆ1)((}ˆ/ˆ)1(){(ˆ   . (3.8) 

Noting that kfkfk rrr ;;  . So, our proposed estimator of 
kk yY   is 

 
kkk ydY ˆˆ  , (3.9) 

where 
kd̂  is given by (3.8).  

 

3.5. Simulation Study (continuation) 
 
We subsampled from each )(

I|
m

self , the set of nonrespondents at the thI time period, three Bernoulli 

subsamples for follow-up with different sampling fraction f : 25.f , 50.f , and 75.f . Note 

that I  has been set to 3I  . Table 6 gives statistics on the observed subsamples, and Table 7 gives 

statistics on the observed cost. Only subsampled nonrespondents are subject to the follow-up in 

this second simulation. Therefore for convenience, we set the entry time period 
ke  for non 

subsampled unit to 1Imax ke . 
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Our first vector parameter of interest is the response model parameter β . Table 8 displays values 

of the response model parameters. We calculated θ̂  and )θ̂(B  for response model parameters and 

those values are reported in Table 8. Table 8 clearly demonstrates that the bias is small for each 

regression parameter. The second vector parameter is the number of respondents by mode and by 

time period. We calculated θ̂  from the main sample for the number of respondents under self-

enumeration by time period and those values are reported in Table 9. Table 9 demonstrates that the 

bias is small for each parameter. Table 10, 11, and 12 display estimates of the number of 

respondents under self-enumeration, follow-up in addition to self-enumeration, and the number of 

extra-respondent due to the follow-up using the follow-up subsamples with sampling fraction .25, 

.50, and .75 respectively. Tables 10, 11 and 12 demonstrate that the bias is small for each 

parameter. The final parameter of interest is the population total 
kk yY  . For comparison, we 

also computed 
̂

Ŷ  given by (1.3) as estimator of the population total. We calculated )θ̂(RB  and 

MSE ratios for each estimator θ̂  with Ŷ  given by (3.9), and those values are reported in Table 13. 

Table 13 clearly indicates that all relative biases are small for all estimates. The estimator using 

estimated true response model parameter is efficient when the subsampling fraction is .25, while 

the proposed estimator is more efficient that the estimator using estimated true response model 

parameter when the subsampling fraction is .50 or .75. Table 10 also provides results for calibrated 

estimators to the population total 
kk uU   of the auxiliary variable, which indicate again that 

calibration-to-population total is highly efficient. Note that the calibration factor for the proposed 

estimator is given by 
kkkkk udug ˆ/ , where 

kd̂  is given by (3.6). 

 

Concluding Remarks 

 

We used discrete-time hazard to the analysis of response indicators in surveys and censuses. The 

proposed approach facilitates the examination of the shape of the hazard function. Since inspection 

of the shape of the hazard function indicates when a response is most likely to occur, and how the 

probability varies over both time and follow-up treatments, the description of the shapes of the 

hazard function have an important role to play in survey quality and cost. We used regression 

analysis to investigate the effect of mixed-mode on the response probability. Estimator of response 

model parameter as well as estimator of the finite population total associated with the mixed-mode 

of data collection is given. We also studied the situation where all sampled units are subject to 

self-enumeration without follow-up, while a random subsample of nonrespondents is subject to 

follow-up activities in addition to self-enumeration. Then, we extended the Hansen-Hurwitz' 

approach for nonresponse in sample survey to make full use of all observed responses in the 

estimation of the finite population total. Our approach permits flexibility regarding the time period 
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in the: a) selection of the follow-up subsample; and, b) entry time of each sub-sampled unit into 

the follow-up activity.  
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Table 1: Resource Allocation 

Expected Cost Ratio Sampling Model 
Parameter 

CV Sample size Cost Sampling Follow-up Data collection )(
0
  )(

1
  

.05 388 2635 .15 .42 .43 -3.724 .0243 
 

 
Table 2: Observed Statistics on the Sample Counts – Single-phase Data Collection 
  Mean Minimum Maximum 
Sample Size  388 325 444 
Number of respondents All 371 313 424 
 By Mail 194 140 239 
 By Internet 176 138 216 

 
 

Table 3: Observed Statistics on the Sample Cost – Single-phase Data Collection 
Cost of  Mean Minimum Maximum 

 Sampling 387 333 442 
 Follow-up 1102 770 1470 
 Data collection 1146 915 1382 
 By Mail 969 745 1210 
       By Internet 177 133 213 

 Total Cost 2635 2149 3217 
 
 
Table 4: Bias for Response Model Parameter Estimate – Single-phase Data Collection 
 Parameter θ  
 1;M  2;M  3;M  4;M  1;I  1;I  1;I  1;I  
Value -1.5 .003 -.2 .6 -2 .005 -.1 .5 
Estimate -1.5 .003 -.20 .61 -2.00 .005 -.01 .50 

)θ̂(B  -.0058 .0000 -.0008 .0066 -.0342 .0003 .0018 .0060 

 
 

Table 5: Relative Bias and Mean Square Error Ratios – Single-phase Data Collection 
 
Parameter of interest 

 
Weights 

Relative bias and (MSE ratios) 
Response Model parameter 

Estimated True 
kk yθ  Design-Response .0004 (1.00) .0002 (  1.05) 

Calibration* .00009 (  .02) .00008 (    .02) 
kMkM y ;θ   Design-Response .0007 (.97) .0013 (  1.91) 

Calibration* .00008 (  .11) .00041 (    .13) 
kIkI y ;θ   Design-Response .0008 (1.27) -.0004 (  2.86) 

Calibration* .00017 (  .08) .00017 (    .10) 
*Calibration to the population total 

kk uU  . 
 
 

Table 6: Observed Means – Two-phase Data Collection 
  25.f  5.f  75.f  
Subsample Size  42 84 125 
Number of Respondents All 337 348 359 
 By Mail 176 182 188 
 By Internet 161 166 171 
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Table 7: Observed Means on the Sample Cost – Two-phase Data Collection 

Cost of  25.f  5.f  75.f  
 Sampling 430 472 515 
 Follow-up 276 550 828 
 Data collection 1046 1082 1115 
 By Mail 884 915 944 
       By Internet 162 167 172 
          By Self 936 861 784 
         By Follow-

up 
110 221 330 

 Total Cost 1752 2104 2459 
 
 

Table 8:  Bias for Response Model Parameter Estimate – Two-phase Data Collection 
  Parameter θ  
  1;M  2;M  3;M  4;M  1;I  1;I  1;I  1;I  
 Value -1.5 .003 -.2 .6 -2 .005 -.1 .5 

25.f  Estimate -1.5 .003 -.20 .61 -1.98 .004 -.10 .51 
)θ̂(B  -.0126 .0002 .0007 .0147 .0128 -.0003 -.0002 .0159 

5.f  Estimate -1.52 .003 -.20 .6 -1.97 .004 -.10 .50 
)θ̂(B  -.0281 -.0003 -.0012 .0155 .0285 -.0000 -.0000 .0101 

75.f  Estimate -1.5 .003 -.2 .6 -1.99 .005 -.10 .50 
)θ̂(B  -.0046 -.0000 .0004 .0084 .0099 -.0003 -.0003 .0086 

 
 

Table 9: Number of Self-enumeration Respondents by Time Period -          
                 Estimation from the Main Sample 

Time Period Value Estimate 
1 1349 1350 
2 877 875 
3 591 590 
4 412 412 
5 296 296 
6 218 218 
7 164 165 
8 126 127 
9 98 100 

10 78 79 
 
 

Table 10: Number of Respondents by Time Period -          
                 Estimation from the Follow-up Subsample with f=.25 
 Self Self + Follow-up   Follow-up Only 

Time Period Value Estimate Value Estimate Identified Unidentified Value Estimate 
1 1349        
2 877        
3 591        
4 412 413 432 434 374 60 20 21 
5 296 297 355 359 209 149 59 62 
6 218 219 312 316 110 207 94 97 
7 164 165 276 280 50 230 112 114 
8 126 127 239 241 13 228 113 113 
9 98 100 196 196 0 196 97 96 

10 78 79 146 146 0 146 70 67 
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Table 11: Number of Respondents by Time Period -          
                 Estimation from the Follow-up Subsample with f=.50 
 Self Self + Follow-up   Follow-up Only 

Time Period Value Estimate Value Estimate Identified Unidentified Value Estimate 
1 1349        
2 877        
3 591        
4 412 412 432 433 374 59 20 21 
5 296 296 355 357 209 149 59 61 
6 218 219 312 315 109 206 94 97 
7 164 165 276 279 50 230 112 114 
8 126 127 239 241 13 228 113 114 
9 98 100 196 196 0 196 97 97 

10 78 79 146 146 0 148 70 68 
 
 
 

Table 12: Number of Respondents by Time Period -          
                 Estimation from the Follow-up Subsample with f=.75 
 Self Self + Follow-up   Follow-up Only 

Time Period Value Estimate Value Estimate Identified Unidentified Value Estimate 
1 1349        
2 877        
3 591        
4 412 413 432 433 375 59 20 20 
5 296 297 355 357 210 147 59 60 
6 218 219 312 314 109 205 94 95 
7 164 165 276 278 49 229 112 112 
8 126 127 239 240 13 227 113 112 
9 98 100 196 196 0 196 97 96 

10 78 80 148 147 0 147 70 68 
 
 

Table 13: Relative Bias and Mean Square Error Ratios for Finite Population Total 
kk yθ  

 
 

Subsampling Fraction 

 
 
Weights 

Relative bias and (MSE ratios) 
Type of Estimator 

Ŷ  
̂

Ŷ  

25.f  Design-Response -.0004 (1.00) .025 (  .79) 
Calibration* -.0004 (  .02) -.0002 (  .01) 

5.f  Design-Response .0005 (1.00) .0402 (1.54) 
Calibration* -.0003 (  .02) -.0001 ( .02) 

75.f  Design-Response .0004 (1.00) .0590 ( 2.46) 
Calibration* -.0003 (  .02) -.0001 (  .02) 

*Calibration to the population total 
kk uU  . 
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