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Abstract
Respiratory disease is common in cetaceans both in the wild and under human care. Diagnosing
lung disease is complicated, and recent development of spirometry in dolphins may provide an al-
ternative minimally invasive, cheap and logistically feasible method to assess lung disease. Data
from dolphins under managed care are used to measure baseline respiratory lung function under
stress-free conditions. Because of new features in the data, new statistical methods are required for
the breath data analysis. In this paper, we investigate one potential method for analyzing breath
data. We consider an entire breath cycle to be one unit of observation. Starting and ending points of
breath cycles can be difficult to determine, and cause a large amount of variation in size and shape
of breath curves. To reduce cycle to cycle variability, we apply curve registration to synchronize a
set of breath cycles. Breath cycles are described using magnitude information and geometric shape
information. We propose three shape models, namely, simple oval model, quadratic spline model,
and piecewise linear model. Furthermore, principal component analysis is applied to the magni-
tude/shape descriptors to obtain main features of breath cycles. Criteria for disease diagnosis are
developed by identifying key differences among these main features between healthy and unhealthy
animals. The proposed methods were applied to check whether two testing animals are diseased or
not. The results were consistent with the status of both animals.

Key Words: Respiratory disease, disease diagnosis, breath data, functional data, functional data
analysis, dolphin

1. Introduction

Respiratory disease in marine mammals evokes strong public attention as well as worth-
while scientific interest. The growing number of marine mammals suffering morbidity
and mortality from respiratory disease implies a growing need for diagnosing the disease
(Smith, Solano, Lutmerding, Johnson, Meegan, Le-Bert, Emory-Gomez, Cassle, Carlin,
and Jensen, 2012; Sweeney, and Ridgway, 1976; Waltzek, Cortes-Hinojosa, Wellehan Jr,
and Gray, 2012). Traditional methods for animal disease diagnosis include blood test, ul-
trasound, and computed tomography scan (Smith, Solano, Lutmerding, Johnson, Meegan,
Le-Bert, Emory-Gomez, Cassle, Carlin, and Jensen, 2012). These methods require inva-
sive equipment to perform, and cannot be applied to free-swimming animals. Compared
to the traditional methods, the analysis of breath data is a non-invasive way for diagnos-
ing respiratory disease in dolphin (Gans, 2013; Van Elk, Epping, and Gans, 2001). Res-
piration cycles of dolphin are measured by a combined flow-meter (pneumotachometer),
allowing collection of breath data from trained dolphins participating voluntarily. Then,
functional data analysis with computational statistics is introduced to provide tools to an-
alyze breath data. For disease diagnosis of dolphin, differences between distributions of
scores for healthy and diseased dolphins are revealed. The findings and results of the study
will help researchers to diagnose health status of marine mammals, which can be used in
studying health status of different populations. Thus, the diagnostic tools developed here
may provide an important resource to assess environmental health.

The rest of this paper is organized as follows. Sections 2 introduces the methods to
decompose time series into individual breath cycles, and to analyze the breath data. We
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apply curve registration, where multiple adjustments are applied to reduce variability in the
breath cycles. We propose three geometric models to describe magnitude/shape features
of the breath cycles. Next, principal component analysis (PCA) is used to obtain main
features from magnitude/shape descriptors. Then, distribution of scores from the breath
data of healthy animals is constructed. Finally, criteria for disease diagnosis are defined
to detect health condition of dolphin. Section 3 provides numerical results, which will be
used to detect the health condition of two testing animals. Finally, concluding remarks are
provided in Section 4.

2. Methods

2.1 Breath Data

Breath data were measured on both healthy and diseased dolphins. Our analysis will focus
on two specific measurements, volume and flow-rate. Volume, measured in liters, is the
amount of air in the lung at different times as a dolphin exhales and inhales. Flow-rate,
measured in liter per second, is the change in volume per unit time. Because measurements
are taken at the constant frequency rate, for convenience, we just use the temporal order to
denote the time information.

In this paper, we define a breath cycle to begin with exhalation and end with inhalation.
When the dolphin begins to exhale, the flow-rate of a breath cycle starts decreasing from
zero. The flow-rate declines to a minimum value before increasing to a maximum value,
and then returns to zero again. Consequently, the sign of flow-rate changes from negative
to positive as the respiration cycle of the dolphin changes from exhalation to inhalation.

Original breath data contains a sequence of breath cycles. Figure 1 shows different
views of a sequence of breath cycles. In particular, Figure 1a shows breath cycles with
respect to flow-rate versus time, which form fluctuating curve moving in forwarding direc-
tion. The breath cycles are attached by flat segments. However, since respiration cycles
occur when flow-rate is changing over time, these steady segments are not connected with
the breath cycles. Eliminating the segments from the dataset helps to decompose the time
series into individual breath cycles. Besides that, Figure 1b shows the flow-rate of breath
cycles plotted against volume, which results in closed and asymmetrical curves. In ad-
dition, we define half-up cycles are where flow-rate is greater than or equal to zero, and
half-down cycles are where flow-rate is less than zero.

(a) Flow-rate versus Time (b) Flow-rate against Volume

Figure 1: Breath Curves
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2.2 Curve Registration

Consulting Figure 1b, we can that the raw breath curves contain substantial imperfections
that would interfere with any synthesis of a common pattern. These imperfections include
the differences in starting/ending points and sizes of the breath cycles, and the local intra-
subject variability of the breath curves. The purpose of curve registration is to remedy these
imperfections without losing any important information. To begin the registration process,
we apply moving averages to moderate the intrasubject variability of breath cycles. Mov-
ing averages replace a given dataset with sets of averages of consecutive values in that
dataset (Booth, Mount, and Viers, 2006). Since the half-up of the breath curve typically
has less variation than the half-down cycle, two different equations are used to describe
how moving averages are applied in each half cycle. To illustrate, let {X1, X2, . . . Xn}
be a set of breath data measurements before moving averages. Then, {Y1, Y2, . . . , Yn−1}
and {Z1, Z2, . . . , Zn−2} describe two new sets of breath data measurements after moving
average, which are computed by

Yi−1 =
Xi−1 +Xi

2
, 2 ≤ i≤ n , Zi−2 =

Xi−2 +Xi−1 +Xi

3
, 3 ≤ i≤ n

where Yi−1 is used to compute the new set of breath data for the top half, and Zi−2 is used
to compute the new set of breath data for the down half. Figure 2 shows that after moving
average, the adjusted curve has less local intrasubject variation than the original.

(a) Before Moving Averages (b) After Moving Averages

Figure 2: A Breath Cycle before and after Moving Averages

Figure 1b shows that the magnitude of the breath cycles are different. Our next step is
to resize inner area of the breath cycles. Each half of the breath cycle is rescaled separately.
We use ratios r1 and r3 to rescale the half-up cycle to have maximum flow-rate at 100, and
ending point at (200,0). We use ratios r2 and r4 to rescale the half-down cycle to have
minimum flow-rate at -100, and ending point at (200,0). The equations for computing the
ratios are described as

r1 =
100

Fmu
, r2 = − 100

Fmd
, r3 =

200

Vmu
, r4 =

200

Vmd

whereFmu is maximum flow-rate of the half-up cycle, andFmd is minimum flow-rate of the
half-down cycle. The quantity volume is defined in a similar fashion. After being resized,
maximum flow-rate is equal to 100, minimum flow-rate is equal to -100, and maximum
volume is equal to 200. Figure 3 shows the breath cycles after curve registration.

2420



2.3 Modeling Size and Shape Information

In this section, we describe three models that provide simplified descriptions of the breath
cycles. The first, a simple oval model, uses only the magnitude information of the breath
cycles. The remaining two models, a quadratic spline model and a piecewise linear model,
augment magnitude information with mark registration of the half-up breath cycles.

2.3.1 Simple Oval Model

The first geometric model constructed in this study is a simple oval model. To represent
the model, a vector of five components is used, which includes area ae, and the ratios (r1,
r2, r3, and r4). In detail, the ratios r1, r2, r3, and r4 are used to rescale the magnitude of
the breath cycles stay. After being rescaling, the shape of the breath cycles look relatively
similar to oval shape, which names the method. Besides that, area ae, represents inner area
bounded by the curve of flow-rate of the breath cycles plotted against volume, is used to
describe the magnitude of the entire breath cycles before moving averages and rescaling.
The area is calculated by using the trapezoid sum, which is described as

area =
US + LS

2

where the upper sum US =
∑i=n

i=2 |Fi|δV , the lower sum LS =
∑i=n−1

i=1 |Fi|δV , and
δV = Vi+1 − Vi.

2.3.2 Quadratic Spline Model

The second geometric model constructed in this study is a quadratic spline model. To rep-
resent the model, a vector of ten components is used. Firstly, to summarize the magnitude
of the breath cycles, we use the inner area au of the half-up cycles before curve registration,
and the ratios (r1 and r3). The fourth component of the vector is xm, the volume after curve
registration at while the maximum re-scaled flow rate of 100 occurs. Secondly, we use a1,
b1, a2, and b2 to summarize the geometric shape of half-up cycles after curve registration.
The name “quadratic spline”, itself, represents that quadratic equation is used to construct
the model. The system of equations below describes how quadratic equation is applied to
construct the model.

f1(x) = a1x
2 + b1x+ c1,when x ≤ xm

f2(x) = a2x
2 + b2x+ c2,when x ≥ xm

f ′1(xm) = f ′2(xm)

Figure 3: Breath Cycles after Curve Registration
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where a1 and b1 are the coefficients of the first quadratic equation, which passes through the
origin and maxima at (xm, 100) after curve registration; and a2 and b2 are the coefficients
of the second quadratic equation, which passes through the maxima and ending point at
(200, 0) after curve registration. Additionally, at the maximum rescaled flow-rate, the first
derivative of the two quadratic equations are equal to each other.

The last two components of the vector representing the quadratic spline model are R1

and R2, which summarize deviation from the quadratic spline model. The equations for
computing R1 and R2 are described as

R1 = y2 − y1, R2 = y4 − y3

where x1 is the midpoint of the interval [0, xm], y2 is the positive flow-rate at x1, and y1

is the predicted flow-rate for the quadratic spline at x1. The quantity R2 is computed in
a similar fashion on the interval [xm, 200]. Figure 4a shows an example of the quadratic
spline model.

(a) A Quadratic Spline Model (b) A Piecewise Linear Model

Figure 4: Geometric Models

2.3.3 Piecewise Linear Model

The third geometric model constructed in this study is a pieceswise linear model. To rep-
resent the model, a vector of twelve components is used. There are similarities and differ-
ences between the quadratic spline model and the piecewise linear model. Regarding the
similarities, three identical marks appear in both models, which are the origin, maximum,
and ending point. Thus, they share four identical components including the area au, ratios
r1 and r3, and variable xm, which are used to summarize the magnitude of the half-up
cycles in both models.

The remaining eight elements of the vector representing the piecewise linear model are
x5, y5, x6, y6, x7, y7, x8, and y8, defined as follows. x5 and x6 are the trisectors of the
interval [0, xm], and y5 and y6 are the positive rescaled flow-rates at those two points. x7,
y7, x8, and y8 are defined similarly on the interval [xm, 200]. Figure 4b shows an example
of the piecewise linear model.

2.4 Principal Component Analysis

Let X0 be a d × n data matrix, to begin dimension reduction process, X0 is normalized,
which is described as

X =
X0 − X̄
sd(X0)

2422



where X̂ is the mean of the column of the matrix X0, and sd(X0) is the standard deviation
of the column of the matrix X0.

Then, correlation matrix ΣXX = XTX is constructed to describe linear dependence
between variables in the matrix X . By diagonalizing the correlation matrix ΣXX , we
obtain loading W as eigenvectors, and variances Λ of new variables as eigenvalues, which
is described as

ΣXX = WΛW T

where eigenvalues and eigenvectors are in the descending order of eigenvalues.
For each of the models described above, a model matrixX0 is formed by using the vec-

tors from all breath cycles as row vectors. The R function prcomp() is used to compute
the singular value decomposition for these three model matrices.

By dropping some of the least important eigenvectors, PCA reduces the number of di-
mensions of the breath data. The number of dimensions can be determined by comparing
the proportion of variation remaining in the models with the total variation of the dataset.
Figure 5 shows three scree plots, which displays PCA results. A scree plot is a simple line
segment plot, which shows the eigenvalues/variances of individual components in descend-
ing order (Cattell, 1966).

(a) Scree Plot from the Simple Oval Model (b) Scree Plot from the Quadratic Spline Model

(c) Scree Plot from the Piecewise Linear Model

Figure 5: PCA Results from Different Models

According to the screen plots in Figure 5, the variances of PC1 and PC2 are signif-
icantly higher than the other PCs in individual models. Therefore, there are respectively
two equations for computing score1 and score2 from each model, where Equation 1 and 2
are from the simple oval model, Equation 3 and 4 are from the quadratic spline model, and
Equation 5 and 6 are from the piecewise linear model.

score1 = 0.495au − 0.379r1 − 0.400r2 − 0.478r3 − 0.472r4 (1)

score2 = −0.033au + 0.581r1 + 0.493r2 − 0.445r3 − 0.469r4 (2)
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score1 = 0.149au − 0.059r1 − 0.157r3 − 0.473xm − 0.433a1 + 0.461b1 + 0.352a2

− 0.342b2 + 0.088R1 − 0.277R2

(3)
score2 = −0.538au + 0.429r1 + 0.491r3 − 0.126xm + 0.024a1 + 0.020b1 + 0.296a2

− 0.302b2 − 0.012R1 + 0.298R2

(4)
score1 = 0.085au + 0.004r1 − 0.098r3 − 0.419xm − 0.404x5 − 0.233y5 − 0.417x6

+ 0.031y6 − 0.423x7 − 0.173y7 − 0.413x8 + 0.188y8

(5)
score2 = −0.550au + 0.438r1 + 0.510r3 − 0.057xm − 0.153x5 − 0.333y5 − 0.095x6

− 0.085y6 − 0.013x7 + 0.142y7 + 0.093x8 − 0.252y8

(6)

2.5 Distributions of Scores for Healthy Animals

In this section, to determine scores characterizing the breath cycle of healthy animals, a
set of 92 breath cycles taken from five healthy animals are combined into a training set
referred to below as animal H. We construct bivarate boxplots to describe two-dimensional
distributions of scores from the breath data of animal H (Rousseeuw, Ruts, and Tukey,
1999). From the bivariate boxplot, we can visualize the spread and outlier of the breath
data. Figure 6 show two-dimensional distributions of scores from breath data of healthy
animals from the three models. We also use the Shapiro-Wilk test and Anderson-Darling
test to test for normality (Shapiro and Wilk, 1965; Anderson and Darling, 1952). Table 1
shows the normality test results.

(a) The Simple Oval Model (b) The Quadratic Spline Model

(c) The Piecewise Linear Model

Figure 6: Bivariate Boxplots of the first Two Scores from Different Models for Healthy
Animals

According to Figure 6, neither plots reveal unusual qualities, such as outliers or gaps.
The bivariate boxplots show that the distributions of scores are slightly skewed; however,
their means are located approximately at the centers of the boxplots, and the spread of the
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data is small as the majority lie relatively close to the means. In addition, according to
the normality test results from Shapiro-Wilk and Anderson-Darling tests, all p-values are
greater than the 1% significant level. These results/findings indicate that the distributions
of scores from the breath data of healthy animals are approximately normal or not too far
away from normal distribution.

Table 1: Normality Test Results from Different Models

Model Simple oval Quadratic spline Piecewise linear
Score score1 score2 score1 score2 score1 score2

Shapiro-Wilk Test 0.082 0.616 0.836 0.286 0.100 0.970
Anderson-Darling Test 0.029 0.603 0.934 0.314 0.264 0.950

2.6 Criteria for Disease Diagnosis

In this section, based on the PCs and scores collected from PCA, we define criteria for
disease diagnosis. Because the breath data of different animals have different numbers of
breath cycles measured, we define criteria for disease diagnosis according to the number of
breath cycles. When there are only one or a very few cycle available for a testing animal, the
criterion is that the animal is diseased if the score/or the average score is out of the normal
range shown in Figure 6 (or one-dimensional boxplot). The normal ranges of the healthy
population are defined by 3 standard deviations from the mean criterion or 1.5 interquartile
range criterion in a modified boxplot. Additionally, when a dataset from a testing animal
contains many cycles, two-sample t-test and Hotelling’s t-squared test are used to test the
difference between healthy and testing animals (Snedecor and Cochran, 1989; Hotelling,
1931). While the two-sample t-test is used to compare the two population means of one
score from healthy and testing animals, the Hotelling’s t-squared test is used to test the
mean vector of the two sets of score values from healthy and testing animals. The equation
for computing diseased index for the two-sample t-test is defined as

Diseased index T =
x− y√
s21
n1

+
s22
n2

where x is the average score of a testing animal, y is the average score of healthy animals,
n1 is the number of breath cycles from a testing dataset, n2 is the number of breath cycles
from healthy dataset, s1 is the standard deviation of scores of a testing animal, and s2 is the
standard deviation of scores of healthy animals.

The equation for computing diseased index for the Hotelling’s t-squared test is defined
as

Diseased index T 2 = (x− y)T (Σ̂(
1

n1
+

1

n2
))−1(x− y)

where x = 1
nx

∑nx
i=1 xi is the average score vector of a testing animal, y = 1

ny

∑ny

i=1 yi is

the average score vector of healthy animals, and Σ̂ =
nxΣ̂x+nyΣ̂y

nx+ny−2 is the covariance matric
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where Σ̂x = 1
nx−1

∑n
i=1(xi − x)(xi − x)′ is the covariance matrix of a testing animal and

Σ̂y = 1
ny−1

∑n
i=1(yi−y)(yi−y)′ is the covariance matrix of healthy animals. Under the

null hypothesis, the statistics T 2 is related to the F-distribution with p and n− p degrees of
freedom, where p = 2 for comparing bivariate scores.

3. Disease Diagnosis for Animals

In this section, based on the scores defined in equations 1 to 6, we compute scores for
testing animals. Then we test the claim that the mean for a testing animal is the same as,
or different from, the mean for the healthy population. Results from the test will be used to
detect the health condition of two testing animals which we will refer to as animal T1 and
animal T2. T1 has one breath cycle measured, while T2 has 59 breath cycles measured.
Figure 7 shows breath cycles of T1 and T2 after curve registration. In addition, scatter plots
are used to compare the two-dimensional measurements from healthy animals with testing
animals, as shown in Figure 8.

(a) Animal T1 (b) Animal T2

Figure 7: Breath Cycles of Testing Animals after Curve Registration

For the disease diagnosis for animal T1, as can be seen in Figures 8, the scores of
animal T1 appear to be outliers in the plots. That indicates some differences between
healthy animals and animal T1. For the disease diagnosis for animal T2, since it has 59
breath cycles measured, we use two-sample t-test and Hotelling’s t-squared test to test the
differences between healthy animals and testing animal T2. Two-sample t-test is used to
compare the two population means of one score from healthy animals and animal T2. The
null hypothesisH0 states that the mean for animal T2 is the same as the mean for the healthy
population. The alternative hypothesis H1 states that the mean for animal T2 is different
from the mean for the healthy population. Table 2 shows results from the two-sample t-test.

Table 2: Two-sample T-test Results from Different Models

Model Simple oval Quadratic spline Piecewise linear
Score score1 score2 score1 score2 score1 score2

P-value < 2.2e-16 1.262e-13 2.449e-11 < 2.2e-16 0.004 < 2.2e-16

Hotelling’s t-squared test is used to test the mean vector of the two sets of score values
from healthy animals and animal T2. The null hypothesis H0 states that the mean vector
for testing animal is the same as the mean vector for the healthy population. The alternative
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hypothesis H1 states that the mean vector for animal T2 is different from the mean vector
for the healthy population. Table 3 shows results from the Hotelling’s t-squared test.

Table 3: Hotelling’s T-squared Test Results from Different Models

Model Simple oval Quadratic spline Piecewise linear
P-value < 2.2e-16 < 2.2e-16 < 2.2e-16

As can be seen from Tables 2 and 3, all the p-values are less than the 1% significant
level, so we reject the null hypothesis H0 (Snedecor and Cochran, 1989; Hotelling, 1931).
In addition, according to Figure 8, the distributions of scores for animal T2 are separated
from the distributions of scores for healthy animals. These findings/results indicate some
differences between healthy animals and animal T2.

(a) The Simple Oval Model (b) The Quadratic Spline Model

(c) The Piecewise Linear Model

Figure 8: Scatter Plots of the first Two Scores from Different Models for Healthy and
Testing Animals

4. Conclusion and Future Work

We propose some statistical methods for disease diagnosis on dolphin by analyzing the
breath data. In the analysis, a total of 92 breath cycles of five healthy dolphins have been
analyzed to build the baseline of healthy animals. The ratios/area are used to describe the
magnitude of the breath curves. Three models are constructed to describe the geometric
shape of the breath curves. Then PCA is applied to extract important features from the
magnitude/shape descriptors. Criteria for disease diagnosis are defined using boxplots and
bivariate boxplots to display the distributions of scores for healthy and testing animals,
the two-sample t-test to compare the two population means of one score from healthy and
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testing animals, and the Hotelling’s t-squared test to test the mean vector of the two sets
of score values from healthy and testing animals. The proposed methods were applied to
detect the health condition of two testing animals. The results/findings indicate that there
are some differences between healthy and testing animals.
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