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Abstract 
  
Beane (Lemire 2015) identified injury prevention as the next frontier in sports analytics. 
In this study, I demonstrate that statistics is essential by examining re-injury prevention, 
through testing whether NCAA coaches and players, facing the need to limit repetitions as 
key players recover from injury, allocate those repetitions in a manner that maximizes win 
probability. I calculate in-game win probabilities using the methodology of Stern (1991) 
and Winston (2009), NCAA historical point spread data from Covers.com, and NCAA 
expected points of each down-distance-position state from Knowlton (2015). As a test 
case, I consider Brigham Young University's use of dual-threat quarterback Taysom Hill 
in his 2016 return from a prior-year Lisfranc injury. I extract play-by-play data from 
BYUCougars.com using R's rvest package and regular expression functions. I determine 
the situations in which Hill's rushing, based on his yards per carry prior to the game on 
standard and passing downs, maximizes changes in win probability.  
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1. Introduction 
 
The icon of the analytics revolution in sports, Billy Beane, has said that injury prevention 
was the next frontier in analytics (Lemire 2015). Using Brigham Young University’s 
(BYU) dual-threat quarterback Taysom Hill as a case study, I examine re-injury prevention 
by determining whether BYU allocated his runs in a way that maximized win probability 
for the 2016 football season. Hill suffered three season-ending injuries prior to 2016: a 
knee injury in 2012 against Utah state, a leg fracture in 2013, also against Utah State, and 
in 2015, a Lisfranc injury against Nebraska. In 2016, he played most of the season while 
having his rushes limited, until hyper-extending his elbow in the last regular-season game 
against Utah State.  
 
In this study, I assume that quarterbacks are more likely to injure themselves if they rush.  
I find that in 2016, off all possible situations in which BYU could have used Hill, they 
used him in a manner that was modestly better than using him at random. There was a high 
degree of variation in the amount of leverage in Hill’s rushes. In most games, Hill was 
used in situations that ranked in the 90th percentile in leverage. In two games, against Utah 
and Cincinnati, he was used in the highest-leverage situation of each game. When Hill was 
used in low-leverage situations, he gained more yards than expected, suggesting that 
coaches and Hill had more information about the defense in those situations than just 
down, distance, field position, time, and score.  
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2. Literature Review 
 
2.1 Similar Methodologies in Popular Analytics 
Analysts have employed similar methodologies in popular analytics works. Woolner 
(2006) attempted to answer the question of whether baseball teams can use a starting 
rotation with only four pitchers instead of the usual five, without overextending and 
consequently injuring them. His approach is opposite mine: he determined how much 
strain pitchers can withstand given the fixed workload of three days’ rest, while mine is to 
estimate the maximum contribution to win probability given repetitions fixed to prevent 
re-injury. Tom Tango et al. (2014) also studied the allocation of talent by determining the 
batting lineup that would maximize the number of runs scored. In my study, the objective 
is to maximize win probability, of which expected points is a component. Dawkins (2012) 
examined why Washington Nationals phenom Steven Strasburg kept re-injuring himself. 
 
2.1 Re-injury Prevention in Scholarly Literature 
Holme et al. (1999) assessed the impact of supervised rehabilitation programs on re-
injuries after acute ligament strains. Woods et al. (2004) found that the re-injury rate for 
soccer players who underwent hamstring injuries was higher than for other injuries. In a 
longitudinal study of twenty-three UEFA soccer teams over seven consecutive seasons, 
researchers in Sweden found that 12 percent of all injuries were re-injuries, and re-injuries 
caused longer absences than non-reinjuries (Ekstrand, et al. 2010).   
 

3. Methodology 
 
3.1 Determining Optimal Use in Face Possible Re-injury 
Players recovering from injury need to limit their workload during games in order prevent 
re-injury. Determining whether BYU used Hill optimally requires assessing the impact his 
use has on win probability. Ideally, this entails calculating how having Hill run in every 
possible situation changes win probability, and inspecting whether the instances in which 
BYU actually had him run created the largest positive changes in win probability among 
all possible situations. But doing what is optimal in every situation, based only on down, 
distance, and field position, and information on your own team, is not possible under 
game-theoretic conditions because the opponent will prepare himself for the play and 
negate your advantage. Winston (2009, 158-64), for instance, has demonstrated in a two-
person zero-sum game, it may be optimal to pass less than before even if the team averaged 
more yards per pass than before, and vice versa. Thus, to determine optimal use, I examine 
how win probability gains (or losses) in which BYU used Hill to run lie along the entire 
distribution of win-probability gains. To summarize, I (1) calculate the changes in win 
probability for all possible plays in which BYU would run Hill, and (2) determine where 
the plays in which Hill was used lies along the distribution of (1). 
 
3.1.1 Win Probability 
Historically, the point spread has outperformed all regression models in predicting the 
margin of victory in football games (Fair and Oster 2007). Stern (1991) built a win 
probability model based on the point spread. The margin-of-victory of an NFL game is 
distributed normally with a mean equal to the spread and a standard deviation of 13.861. 
Using this, Winston (2009) constructed an equation for in-game win probabilities with a 
pdf over the game margin. The win probability would equal the entire area under the curve 
from (0.5 + x) to ∞, plus the half the area from (-0.5 + x) to (0.5 + x), all divided by the 
entire area under the curve. The x equals the game margin plus expected points. The 
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reasoning behind this is since game outcomes are discrete, so the [-0.5 + x, 0.5 + x] interval 
represents a tie game, which would send the game into overtime, and overtime games are 
won with a fifty percent chance. The following equation illustrates this relationship: 

(1) , ,
√. √

.
. , 

 
where , with  as the expected game margin,  the game margin, and 

 denoting expected points. The  represents the point spread for the game, and 
should be adjusted down proportional how much of the game there is to play. The intuition 
is this: since the point spread equals how much the team would score above the other team 
in a sixty-minute period, if there is only one quarter remaining, one would expect the team 
to score a quarter of the point spread more points than its opponent. The standard deviation 
should also be adjusted down by dividing by the square root of the inverse of time 
proportion of the game remaining. For instance, BYU was a 7.5-point underdog against 
West Virginia. With about 6.141 minutes remaining in the game, µ = (7.5)(6.141/60) = 
0.7676 , with σ = 15.82/sqrt(60/6.141) = 5.061. Figure 1 provides the graphical illustration. 

 
 
 

Figure 1: Sample Win Probability Situation. BYU was playing 7.5-point favorite West 
Virginia at Fedex Field, trailing by 10 points with about 6 minutes remaining in the game, 
with the ball at the West Virginia 19 yard line facing a 1st and 10. Having the ball in that 
predicament equals 4.224 expected points. Since football scores are discrete, a tie 
(represented by the gold region) means losing by 0.5 to winning by 0.5. A win is 
represented by the blue region, wining by 0.5 points or more. To win outright during 
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regulation, BYU would have to score 10 – 4.224 + 0.5 = 6.276 points. Total win probability 
equals half the area of the gold region added to the entire area of the blue region, all divided 
by the total area under the curve. 
 

 
3.1.2 Expected Points 
What matters to win probability is not only the current score, but also the expected score. 
Carter and Machol (1971) first introduced the concept of expected points. To determine 
the impact the player has on expected points, we assume that each time he rushes, he 
expects a certain number of yards. I assume the number of expected yards should be Hill’s 
cumulative average before each game, on rushing downs and passing downs. This 
distinction is important for game-theoretic reasons—defenses gear for rushes on down-
distance situations when offenses usually pass and for passes when offenses usually pass. 
Connelly (2015) has determined passing downs to be second-and-5 or more, third-and-8 
or more, and fourth-and-8 or more.  
 
To determine expected changes in expected points, suppose that Hill averages 8 yards per 
carry on passing downs, and 7 yards per carry on standard downs. In BYU’s game against 
Michigan State, he was facing second-and-8 from the Michigan State 22-yard line. NCAA 
football teams average 3.793404 points from that position. Since this is a passing down, 
we expect Hill to gain 8 yards by rushing. This means the new expected state would be 
first-and-10 from the 14-yard line, with expected points of 4.384309. Hill is expected to 
gain 4.384309 – 3.793404 = 0.5909049 expected points were Hill to rush. For this study, 
what I am doing differs slightly in that I will be calculating is changes in win probability, 
of which expected points is a component, instead of expected points per se. 
 
3.2 Ranking Hill’s Runs among All Plays in Terms of Changes in Win 
Probability 
After I calculate changes in win probability for every down-distance-field position and 
time left remaining in game, if Hill were to run, I rank them from highest to lowest. Then 
I take the plays in which Hill actually did run, and compute the percentile they fall on. 
Afterwards, I examine boxplots of the data and compute the mean percentile of Hill’s 
actual runs. 
 
To determine expected changes in expected points, assume that Hill averages 8 yards per 
carry on passing downs, and 7 yards per carry on standard downs. To illustrate: in BYU’s 
game against Michigan State, Hill was facing second-and-8 from the Michigan State 22 
yard line. NCAA football teams score 3.793404 points from that position. Since this is a 
passing down, we expect Hill to gain 8 yards by rushing. This means the new state would 
be first-and-10 from the 14 yard line, with an expected points of  4.384309. Hill is 
expected to gain 3.793404 – 4.384309 = 0.5909049 expected points if he were to rush. For 
this study, what I am doing differs slightly in that what I will be calculating is changes in 
win probability, of which expected points is a component, instead of expected per se. 
 

4. Data 
 
4.1 Priors 
Before analyzing BYU’s use of Hill during the 2016 season, two pieces of information are 
required to assess his impact on win probability: first, information on the distribution of 

2412



margins-of-victory for NCAA games; second, information on the expected outcome if Hill 
were to be used.  
 
4.1.1 Betting Spread for Prior Normal 
Covers.com has betting spreads and game results from the 2010-11 NCAA football season 
on. From the 2010-11 to the 2015-16 seasons, the spread served as an unbiased predictor 
of games, with deviations distributed normally with a mean of 0 and a standard deviation 
of 15.82. 

  

4.1.2 Hill’s Yards Per Carry 
To compute the expected outcome were Hill to run, I scrape play-by-play data from 
BYUCougars.com, the official athletic site of the BYU Cougars, for all games in which 
he played prior to the 2016 season, using R’s rvest library. Simple yards per carry, 
available without any calculation, is insufficient for my purposes for the following reasons: 
(1) the need to compute yard per carry for standard and passing downs separately, and (2) 
the need to distinguish between sacks and quarterback keepers (planned or improvised) 
that resulted in negative yardage, the latter of which should be excluded. Fortunately, the 
data from BYU athletics makes this distinction. 
 
To maintain time consistency, I assume that BYU coaches and Hill both know Hill’s career 
yards per carry leading up to the game. The following table displays Hill’s yards per carry 
for standard and passing downs leading up to each game: 
 

Table 1. Taysom Hill Yards per Carry Prior to Each Game 
 

Yard per Carry 
Standard Downs Passing Downs 

Arizona 7.356828 8.107843 
Utah 7.245763 8.048544 
UCLA 7.307054 8.233645 
West Virginia 7.173387 7.875000 
Toledo 7.084942 8.043103 
Michigan State 7.084942 8.170940 
Mississippi State 7.033835 8.058333 
Boise State 7.025830 8.190083 
Cincinnati 7.007246 8.047244 
Southern Utah 7.000000 8.193798 
UMass  6.955326 8.193798 
Utah State  6.915825 8.298507 
 

 

4.2 Game Information for 2016 
With prior information in place, I now extract the information required to determine 
whether BYU used Hill optimally as he recovered from injury in 2016. This entails betting 
spreads for each game and in-game information. 
 
4.2.1 Betting Spread for Each Game 
Like historical spreads, spreads for each 2016 game are available from Covers.com. Note 
that the number, which represents the number of points BYU is favored by, is the negative 
of the actual point spread. 
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Table 2. Points Spread for Each Game 
 

BYU Favored by 
  

Arizona 1.5 
Utah -3 
UCLA -3.5 
West Virginia -7.5 
Toledo 3 
Michigan State -3.5 
Mississippi State 7.5 
Boise State -7.5 
Cincinnati 8 
Southern Utah 32 
UMass  28 
Utah State 17 

 
 
4.2.2 In-Game Information 
I scraped all required in-game information from BYUCougars.com, extensively using 
regular expression capabilities in R. This information entails play-by-play data, which 
includes down, distance, field position, quarter, time remaining in quarter, yards gained 
on play, and whether Hill ran. The time remaining in the quarter is only available for 
beginning and end of drives and when timeouts are called. For plays in between those 
available, I estimate by assuming a linear relationship between the each play and the time. 
For instance, suppose that for a four-play drive, it is known that the first play occurred 
with 10:00 left in the second quarter, and the last play occurred with 8:30 remaining in the 
same quarter. I would estimate the other two plays. I would estimate the two plays 
occurring in between to be at 9:30 and 9:00 in the quarter. 
 
4.3 Win Probability Calculations 
I calculate changes in expected win probabilities for before and after each play using 
formula (1) in section 3.1.1 and R’s pnorm() function.   
 

5. Results and Discussion 
 
5.1 Results on BYU’s Use of Hill 
After calculating the changes in expected win probability for all of BYU’s offensive plays 
from scrimmage, I examine where along the distribution do plays in which BYU used Hill 
lie, in terms of percentile. The 99th percentile the play in which theoretically running Hill 
would produce the largest change in win probability in the entire game. The first percentile 
represents the lowest.  
 
 
 
5.1.1 Game Averages 
The following table contains the average rank, in percentile, for plays in which Hill rushed, 
among all plays in each game. The higher the percentile, the more leverage the use of Hill. 
The mean percentile of all the game means is the 53rd percentile. This indicates in 

2414



determining when to run Hill, on average, BYU used him with only modestly better 
leverage than using him at random.  
 

Table 3. Rank of Taysom Hill Rushing Plays (in Percentile), 
Changes in Win Probability 

Average 
Percentile 

Arizona 0.458333333 
Utah 0.611244019 
UCLA 0.436507937 
West Virginia 0.392307692 
Toledo 0.748858447 
Michigan State 0.533950617 
Mississippi State 0.468312757 
Boise State 0.630864198 
Cincinnati 0.477272727 
Southern Utah 0.725 
UMass  0.559925094 
Utah State 0.593181818 

 
 

  

5.1.2 Boxplot 
To gain a better picture of the distribution of plays in which Hill ran, I generate a boxplot 
using the ggplot2 library, found on Figure 1. Although BYU, on average, did not appear 
to be using Hill’s limited runs in an optimal manner, they did use him when the highest-
leverage situations presented themselves. In games against Utah and Cincinnati, Hill took 
the highest-leverage situation of the entire game. Against Utah, with 00:18 left in the game, 
BYU was facing a first and goal at the Utah 7-yard line, and was down by 7 points. Since 
this is a standard down, if Hill were to run in that situation, he would gain an expected 
7.25 yards (see table 1), which would result in a touchdown, evening the score and brining 
BYU’s win probability to slightly under 50 percent. Hill did run and scored the touchdown, 
although the team unsuccessfully tried for a two-point conversion instead. Against 
Cincinnati, BYU was facing a third down and 7 at the Cincinnati 8-yard line, with the 
score tied with 00:48 seconds left in the first half. This is a passing down, so we expect 
Hill to gain 8.05 yards (see table 1) if he were to run, which would result in a touchdown. 
He did, and scored a touchdown, enabling BYU to take a 10-3 lead. In these two games, 
Hill ran when running accrued the greatest benefit the entire game. 
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Figure 1: Changes in Win Probability, Instances in which Hill Ran for Each Game (ranked 
in terms of percentile among all possible plays) 
 
 

 

5.1.3 Did Coaches or Hill Have More Information? 
The offensive coordinator, Ty Detmer in this case, and quarterback Hill should have more 
information in making their decisions than the score, down, distance, field position, and 
time remaining. They may see something in the defensive alignment to base their decision 
whether the quarterback should run. To determine whether this is true, we explore the low-
leverage situations in which Hill ran. The data suggests that there is truth to this. For Hill’s 
runs that rank under the 25th percentile for all potential run situations in games, Hill 
averaged 6.82 yards per run, compared to 6.09 yards per run for all his other runs, 
indicating reasons for running in low-leverage situations.  
 
5.2 Discussion 
The broadest results from this study show a high degree of variation in the leverage of 
Hill’s rushes. BYU used Hill’s rushes in both high- and low-leverage situations, with the 
average being modestly above using him at random. This also shows that BYU did take 
much of the highest-level situations. Furthermore, there appears to be justification for 
using Hill in low-leverage situations. 
 

5. Conclusion and Further Steps 
 
As Hill returned from injury for the 2016 season, coaches sought to limit his repetitions, 
in this case the number of times he rushed. This study showed that he was used with 
modestly higher leverage than being used at random; that BYU did use him in many of the 
highest-leverage situations; and, when BYU used him in low-leverage situations, they had 
more information that justified doing so. This examination should be extended to other 
dual-threat quarterbacks and running backs for more external validity. Collaboration with 
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subject-matter experts, namely sports doctors, should be done on Lisfranc injuries and 
hyper-extended elbows. 
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