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Abstract
The USDA’s National Agricultural Statistics Service (NASS) conducts the U.S. Census of Agri-

culture in years ending in 2 and 7. Population estimates from the census are adjusted for under-
coverage, non-response and misclassification and calibrated to known population totals. These
adjustments are reflected in weights that are attached to each responding unit. Calculating these
weights has been a two-part procedure. First, one calculates initial (Dual System Estimation or
DSE) weights that account for under-coverage, non-response and misclassification. and in the sec-
ond step, calibration is used to adjust the weights by forcing the weighted estimates obtained in the
first step to match known population totals. Recently, a calibration algorithm, Integer Calibration
(INCA), was developed to produce integer calibrated weights as required in NASS publications.
This paper considers combining the two steps of calculating weights into one. This new algo-
rithm is based on a regularized constrained dual system estimation methodology, which combines
capture-recapture and calibration (CaRC).
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1. Introduction

Weighting is an important part of generating estimates of population statistics from surveys
and censuses. Weighting usually consists of two steps: (i) calculating design weights that
account for sample selection, these weights are also adjusted for non-response and often
for under-coverage and (ii) adjusting these weights so that the estimates are consistent with
administrative data. The latter step is called calibration.

Another approach to generating population estimates uses Dual-System Estimation
(DSE). DSE uses two independent samples to calculate its estimates. The units that are
surveyed twice (recaptured) together with those only surveyed once provide information
to compute the probability that a generic unit is sampled. The reciprocals of these proba-
bilities are the DSE weights. Again these weights are adjusted for non-response and often
for under-coverage. Calibration is often also applied to the DSE weights to ensure final
estimates are consistent with administrative data.

Calibration was introduced by Lemel (1976) as a technique to improve estimates. Af-
ter Deville (1988), and Deville and Särndal (1992) generalized it, calibration has received
much attention in the past three decades. A natural question is: can calibration be per-
formed simultaneously with dual system estimation and does this simultaneous methodol-
ogy produce better final estimates?

Can one-step methods make better use of the available information? To achieve optimal
estimates, a data-driven approach is needed that gives higher priority to the contribution of
the information from the surveys rather than from the administrative data; otherwise, biased
estimates will likely be produced.
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Slud and Thibaudeau (2009) made the first attempt to develop a methodology to per-
form simultaneously calibration and non-response adjustments. They developed a generalized-
ranking calibration that adjusts the weights by minimizing a multi-objective function. Suc-
cessively, Slud et al. (2013) investigated this technique in presence of soft-constraints, and
Shaffer et al. (2014) studied the role of penalty factors. Elkasabi et al. (2015) developed a
joint calibration estimator for a dual survey system.

This approach is different since here the focus is combining DSE and calibration. To
the best of the authors’ knowledge, there have been no attempts to perform calibration and
DSE simultaneously.

The proposed technique performs a constrained maximization of the capture-recapture
likelihood. The constraints impose consistency with administrative data. A linear logistic
model is used to compute the capture probabilities, and variables in the model are selected
using an elastic net penalty function. The estimation process consists of a dynamic ad-
justment of the penalty factors, such that the survey weights are initially estimated and
gradually calibrated during the optimization.

2. Methodology

This section formulates the optimization function for the simultaneous calibration and DSE
optimization (CaRC). The optimization function is the sum of three distinct parts; logistic
regression, penalty function and a calibration offset measure.

2.1 Notation

The following notation is used throughout the paper:

xj Vector of covariates

w Vector of final calibrated weights

β Vector of parameters

A An n× p matrix of collected data

ai The i-th row of matrix A

y Vector of targets(known totals)

2.2 Logistic regression

Alho (1990) applied logistic regression in a DSE context to the problem of estimating the
size of a closed population. Here his setup is followed. The units of a sample S collected
from a finite population U are usually selected such that S ⊂ U . A special case arises
when all the units of the population are in the sample. When the conditions U = S is
satisfied, the sample S is a census. The goal of a census is to observe every unit in the tar-
get population. However, this complete enumeration rarely occurs due to under-coverage,
non-response and, possibly, misclassification. Thus, most censuses are extensive surveys
that require the extension of the inferential results to the entire population. This can be
achieved by applying standard capture-recapture techniques on the data collected from two
finite samples S1 ⊂ U and S2 ⊂ U when the intersection S1 ∩ S2 6= ∅. Under the assump-
tion that U \ (S1 ∪ S2) 6= ∅, it is reasonable to model the selection probabilities using a
multinomial distribution

(vj10, vj01, vj11, vj00)
> ∼ Mult(1; πj10, πj01, πj11, πj00),
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where πj10, πj01, πj11 and πj00 are the probabilities associated with the indicator variables
for a generic sample unit sj ∈ U :

vj10 = 1IS1 \ S2
(sj), vj01 = 1IS2 \ S1

(sj),

vj11 = 1IS1∩S2(sj), vj00 = 1− 1IS1∪S2(sj),

where the notation is

1IS(s) =

{
1, if s ∈ S,
0, otherwise.

The final formulation of the likelihood is simplified by considering only the observa-
tions in the second sample (Aberenthy et al., 2017), so that the following probability is
adopted for making an inference:

Pr(sj ∈ S1 ∩ S2|sj ∈ S2) = π
zj
j (1− πj)

1−zj

where zj = vj11, and
πj =

πj11
πj01 + πj11

.

To model the probabilities πj for any sj ∈ S2, a functional form depending on a vector of
parameters β ∈ Rq is assumed. The likelihood can be written as

L(β) =
∏

sj∈S2

πj(β)
zj {1− πj(β)}1−zj ,

where πj(β) is a regression model usually based on the logistic function.
Once the parameters are estimated, the optimal weights wj are computed as πj(β̂)−1,

for any sj ∈ S1, and the total number of units in the population U is estimated as

N̂ =
∑
sj∈S1

πj(β̂)
−1.

To enforce certain boundaries on the weights, it is necessary to reformulate the prob-
abilities such that a generic weight wj ∈ [1, uj ], where uj ≥ 1 is defined for any unit
sj ∈ S1 ∪ S2. These boundaries are attained by minimizing the negative log-likelihood
where the probabilities involved are formulated as

πj(β) =
1 + uj exp

(
x>
j β

)
uj + uj exp

(
x>
j β

) ,
where xj ∈ Rq is a vector of covariates.

By substituting the probabilities in the formulation of the likelihood, one can obtain the
following negative log-likelihood

`(β) =
∑
sj∈S2

{
log

(
1 + exp(x>

j β)
)
− zj log

(
1 + uj exp(x

>
j β)

)}
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2.3 Penalty function

The regression model is fitted using all the predictors with the elastic-net penalty function
developed by Zou and Hastie (2005). The elastic-net penalty linearly combines the LASSO
and ridge penalties (Zou and Hastie, 2005; Friedman et al., 2010),

(1− α)
1

2
||β||22 + α||β||1,

where the notation ‖·‖1 represents the L1-norm used to perform the LASSO regularization,
and ‖ · ‖2 denotes the L2-norm for the ridge regularization. The factor α controls the
compromise between the LASSO (α = 1) regularization and ridge (α = 0) regularization.
The combination of these two penalties has several advantages. In particular, the elastic-net
is useful in situations where there are many correlated predictor variables as is the case in
the USDA’s Census of Agriculture.

2.4 Calibration equations

The calibration equations are encapsulated with the following loss function:

F (y −Ag(β)) =

p∑
k=1

∣∣∣∣a>k g(β)− yk
yk

∣∣∣∣
where g(β)> = (π1(β)

−1, π2(β)
−1, . . . , πN (β)−1) Since the quantities

∣∣∣a>
k g(β)−yk

yk

∣∣∣ are
the relative errors for any k = 1, . . . , p, these functions ensure that the totals produced by
the optimization are close to the known population totals.

The three components are combined to obtain the following objective function, which
should be minimized with respect to β:

ω(β) = `(β) + λβ

(
(1− α)

1

2
||β||22 + α||β||1

)
+ λw

p∑
k=1

∣∣∣∣a>k g(β)− yk
yk

∣∣∣∣ ,
where `(·) is a negative log-likelihood. λβ and λw are positive scalar quantities that bal-
ance the effects of the elastic net penalty and the calibration equations, respectively. This
method produces calibrated weights by taking into account simultaneously variable selec-
tion, model fitting, and calibration adjustments.

3. Case study

This section works through a simple simulation to demonstrate the algorithm. The popula-
tion U consisting of 10000 units is generated by simulating 100 variables such that akj =
VkZk, where Vk ∼ Poisson(γk), with γk ∼ Gamma(2, 0.05), and Zk ∼ Bernoulli(ωk),
with ωk ∼ Unif(0, 1), for any k = 1, . . . , 100, and j = 1, . . . , 10, 000. The tuning pa-
rameters, λβ and λw are order pairs with λβ ∈ {e−10, e−6.25, e−2.5, e1.25, e5} and λw ∈
{e−5, e−2, e, e4, e7}.

The optimizations at each ordered pair are evaluated and the weights are generated for
models using α values equal to 0, 0.5 and 1. Table 1 shows the results of the simulation.
Table 1 shows that the LASSO penalty is the best penalty when the ratio of the number
of target variables to total variables is low, and the ridge penalty is the best when the ratio
is high. There are two important factors of the simulation to highlight. The first is that a
target is considered attained if its estimate is within ±10% of the target valued. The second
is that the weights presented here are rounded using INCA, see Sartore and Toppin (2016).
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Ridge (α=0) α=0.5 LASSO (α=1)
# of targeted variables MV Rel Error MV Rel Error MV Rel Error
20 24 0.763 25 0.844 23 0.844
40 25 0.794 22 0.622 21 0.622
60 16 0.501 12 0.563 14 0.563
80 5 0.29 9 0.223 9 0.223
100 0 0.096 0 0.098 0 0.099

Table 1: Table showing the number of missed targets and relative error for α = 0,0.5 and 1
for various amount target variables. MV is the number of missed variables out of a total of
100 variables.

4. Summary

This is a preliminary report on this research to spark interest and generate feedback about
this approach of combining the two steps of weight procedures into a single step. The
plan is to explore methods of moving λβ and λw from a discrete grid to a continuous
search algorithm. An important question must be answered before this method can be
implemented at the NASS. How should the weights generated by CaRC and the current two
step method (DSE followed by calibration) be compared? It is also important to consider
the fact that currently at NASS the variables used to generate the DSE weights are different
from the calibration variables. The results of CaRC are encouraging and exploration of
techniques to improve CaRC’s methodology is the next step in this research.
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