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Abstract:  
A consortium recently submitted an application to qualify Total Kidney Volume (TKV) as a biomarker 
for enriching trials of patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). TKV, in 
combination with patient age and baseline estimated glomerular filtration rate (eGFR), was qualified as a 
prognostic enrichment biomarker for ADPKD subjects at high risk for a progressive decline in renal 
function,  defined as a confirmed 30% decline in eGFR.  Risk scores can be derived from datasets to 
select patients to enrich future trials. The utility of this approach is discussed. We used a model from the 
historical datasets to define a risk score and applied it to a hypothetical trial. In the hypothetical trial, we 
simulated data according to a model that was fit to an independent dataset. We found the risk score may 
not select the higher risk patients very well. The R package SurvDisc can be used to try out different 
assumptions and enrichment criteria. This will be illustrated in the presentation. 
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Introduction. Consider a clinical trial where a measurement of function is taken on a patient at the start 
of the trial and at fixed times after randomization.  The primary endpoint is the time to a pre-defined value 
of the measurement. This value can be a fixed value that is the same for all patients, a percent decline of 
the patient's baseline value, or an absolute amount of decline from the patient's baseline measurement. For 
example, in trials of Chronic Kidney Disease (CKD), the estimated Glomerular Filtration Rate (eGFR) is 
used as the measure of kidney function. This is measured at baseline and at pre-defined times (for 
example, every 3 months) after baseline. An event occurs when the patient's eGFR declines by a fixed 
amount, which could be a 30% decline, for example [1,2].  The event can be defined either as a single 
measurement that crosses the defined threshold or the definition can require a second measurement to 
confirm the decline. The latter definition (requiring confirmation) is more common in CKD trials. In 
CKD trials, there are several reasons for having a confirmation measurement. From the clinical 
standpoint, it can be required to rule out cases of Acute Kidney Injury (AKI), which are events where the 
kidney function has not decreased although temporarily the eGFR is markedly lower than the true kidney 
function. The confirmatory measurement can either occur at the next scheduled visit or there can be at an 
unscheduled visit at a short time after the initial qualifying event (e.g. 1 month after).  The interval should 
be long enough so that the potential AKI can be resolved. Another example is long term maintenance 
trials for Major Depressive Disorder.  There, the primary endpoint is the time to relapse, which can be 
defined as having a pre-defined score on the Hamilton Depression Rating Scale, the Montgomery-Asberg 
Depression Rating Scale, or the Clinical Global Impression Scale; the exact choice and the threshold 
varies from trial to trial [3]. The purpose of this article is to discuss survival analysis for events that are 
defined in any of these ways. 
 
Let the time points where measurements are taken after baseline be  𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝐽𝐽.  Of note, the 
measurement times are assumed to be the same for all subjects, measurements are observed at all 
scheduled time points and there is no missing data. In practice, there is a time window for each visit. 
Small differences in the event time are not considered clinically relevant and do not reflect differences in 
outcome since the precise timing of the measurement at each visit is considered independent of the 
response.  For example, if the first visit is scheduled for Day 90 and if one subject has the visit on Day 88 
while a second subject has the visit on Day 93 and both subjects have an event, those two subjects are 
considered to have an event at the same time in the analysis. In addition, in many trials the primary 
endpoint is the time to the first event. After a patient has an event, there are several things that could 
happen and any are possible depending on the protocol for the trial: the patient could continue to be 
followed and stay on the randomized study drug, the patient could discontinue from the trial completely 
and have no further follow-up, the patient could be unblinded and go onto any open-label treatment 
strategy but continue to be followed and have measurements taken. Also, depending on the protocol, 
subjects in a clinical trial could have variable number of visits by design. For example, if the total 
duration of the trial is 5 years with visits every 3 months and 2 years of accrual, then by design the first 
patient could have a maximum of 20 visits where the last patient randomized could have a maximum of 
12 visits. Other trials could have 12 visits (3 years) for every patient regardless of when they were 
randomized. 
 
For subject 𝑖𝑖, we will observed 𝐽𝐽 Bernoulli random variables: 𝐵𝐵𝑖𝑖,1,𝐵𝐵𝑖𝑖,2, … ,𝐵𝐵𝑖𝑖,𝐽𝐽 with 𝑃𝑃�𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� = 𝜋𝜋𝑖𝑖,𝑗𝑗 
and all of these Bernoulli random variables are independent (within a subject and between subjects).  
These Bernoulli random variables are defined as the indicator of the event that the measurement has 
declined by the fixed amount from baseline at the respective visit. In the following, we will assume the 
fixed amount is a 30% decline for illustration. 
 
The rates 𝜋𝜋𝑖𝑖,𝑗𝑗 can depend on subject-specific fixed and random effects. For example, the individual eGFR 
measurements can be modeled using a longitudinal mixed effects model. Suppose the true (unobserved) 
baseline GFR for patient 𝑖𝑖 is denoted by  𝑌𝑌𝑖𝑖,0∗  and the observed value of eGFR at baseline is denoted by  
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𝑌𝑌𝑖𝑖,0 = 𝑌𝑌𝑖𝑖,0∗ + 𝜀𝜀𝑖𝑖,0. Furthermore, suppose trt𝑖𝑖 is the treatment assignment indicator (0 or 1)  for subject 𝑖𝑖 
and there is a set of covariates measured at baseline,  �⃗�𝑋𝑖𝑖′, that modify the rate of change of GFR over time. 
This vector of covariates could include the latent variable 𝑌𝑌𝑖𝑖,0∗ . This model also includes a random slope 
and intercept. One possible longitudinal model for the measured eGFR at time 𝑡𝑡𝑗𝑗 is defined by 𝑌𝑌𝑖𝑖,𝑗𝑗 =
𝑌𝑌𝑖𝑖,0∗ + 𝛼𝛼𝑖𝑖 + �𝛽𝛽𝑖𝑖 + 𝛿𝛿 trt𝑖𝑖 + �⃗�𝑋𝑖𝑖′𝜃𝜃�𝑡𝑡𝑗𝑗 + 𝜀𝜀𝑖𝑖,𝑗𝑗. Here, 𝜃𝜃 is a fixed effect parameter vector. All measurement 
errors 𝜀𝜀𝑖𝑖,𝑗𝑗 are assumed normally distributed with mean 0 and variance 𝜎𝜎2;  (𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖)′ are bivariate normal 
random effects with mean (0,0)′ with some covariance matrix; all measurement errors and random effect 
vectors are independent within and between subjects. Alternatively, a linear mixed effects model can be 
used for the natural logarithm of the response variable with the obvious changes. Importantly, the actual 
data need not come from this model at all and the treatment effect can in reality be much more 
complicated than expressed in this simple model [4,5,6]. Indeed, part of the attractiveness of analyzing 
time to event is to avoid the reliance on the model assumptions needed for this longitudinal analysis. 
However, if the data actually do follow this model then  

𝜋𝜋𝑖𝑖,𝑗𝑗 = 𝑃𝑃�𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� = 𝑃𝑃�𝑌𝑌𝑖𝑖,𝑗𝑗 < 0.7𝑌𝑌𝑖𝑖,0� 
= 𝑃𝑃�𝑌𝑌𝑖𝑖,0∗ + 𝛼𝛼𝑖𝑖 + �𝛽𝛽𝑖𝑖 + 𝛿𝛿 trt𝑖𝑖 + 𝜃𝜃�⃗�𝑋𝑖𝑖′�𝑡𝑡𝑗𝑗 + 𝜀𝜀𝑖𝑖,𝑗𝑗 < 0.7�𝑌𝑌𝑖𝑖,0∗ + 𝜀𝜀𝑖𝑖,0� � 

= 𝑃𝑃�𝜀𝜀𝑖𝑖,𝑗𝑗 < 0.7𝜀𝜀𝑖𝑖,0 − 0.3𝑌𝑌𝑖𝑖,0∗ − 𝛼𝛼𝑖𝑖 − �𝛽𝛽𝑖𝑖 + 𝛿𝛿 trt𝑖𝑖 + 𝜃𝜃�⃗�𝑋𝑖𝑖′�𝑡𝑡𝑗𝑗 � 

= Φ�
0.7𝜀𝜀𝑖𝑖,0 − 0.3𝑌𝑌𝑖𝑖,0∗ − 𝛼𝛼𝑖𝑖 − �𝛽𝛽𝑖𝑖 + 𝛿𝛿 trt𝑖𝑖 + 𝜃𝜃�⃗�𝑋𝑖𝑖′�𝑡𝑡𝑗𝑗

𝜎𝜎
� 

where Φ(𝑥𝑥) denotes the standard normal distribution function. So, conditional on 𝑌𝑌𝑖𝑖,0∗ , 𝜀𝜀𝑖𝑖,0,𝛼𝛼𝑖𝑖, and 𝛽𝛽𝑖𝑖, 
these 𝐵𝐵𝑖𝑖,𝑗𝑗 are independent Bernoulli random variables with rates 𝜋𝜋𝑖𝑖,𝑗𝑗 that can be calculated from the 
above formula.  Table 1 shows the 𝜋𝜋𝑖𝑖,𝑗𝑗 for other ways of defining the event based on this same 
longitudinal model. 
 
Table 1. Formula for 𝜋𝜋𝑖𝑖,𝑗𝑗 = 𝑃𝑃�𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� based on the longitudinal model used in the text for different 
definitions of events. 

Definition of event 𝜋𝜋𝑖𝑖,𝑗𝑗 
Decline of ∆ × 100% from baseline 

Φ�
(1 − Δ)𝜀𝜀𝑖𝑖,0 − Δ𝑌𝑌𝑖𝑖,0∗ − 𝛼𝛼𝑖𝑖 − �𝛽𝛽𝑖𝑖 + 𝛿𝛿 trt𝑖𝑖 + 𝜃𝜃�⃗�𝑋𝑖𝑖′�𝑡𝑡𝑗𝑗

𝜎𝜎
� 

Decline of absolute amount  ∆ from baseline 
Φ�

𝜀𝜀𝑖𝑖,0 − Δ − 𝛼𝛼𝑖𝑖 − �𝛽𝛽𝑖𝑖 + 𝛿𝛿 trt𝑖𝑖 + 𝜃𝜃�⃗�𝑋𝑖𝑖′�𝑡𝑡𝑗𝑗
𝜎𝜎

� 

Decline below an absolute constant M 
Φ�

M − 𝑌𝑌𝑖𝑖,0∗ − 𝛼𝛼𝑖𝑖 − �𝛽𝛽𝑖𝑖 + 𝛿𝛿 trt𝑖𝑖 + 𝜃𝜃�⃗�𝑋𝑖𝑖′�𝑡𝑡𝑗𝑗
𝜎𝜎

� 

 
Unconfirmed events. The survival function for subject 𝑖𝑖 is  

𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗� = 𝑃𝑃�No event for subject 𝑖𝑖 up to and including time 𝑡𝑡𝑗𝑗� = ��1 − 𝜋𝜋𝑖𝑖,𝑘𝑘�
𝑗𝑗

𝑘𝑘=1

 

and the hazard rate is  
ℎ𝑖𝑖�𝑡𝑡𝑗𝑗� = ℎ𝑖𝑖,𝑗𝑗 = 𝑃𝑃�Event at time 𝑡𝑡𝑗𝑗�No event before time 𝑡𝑡𝑗𝑗� = 𝜋𝜋𝑖𝑖,𝑗𝑗 

The probability mass function is 

𝑃𝑃�First event for subject 𝑖𝑖 occurs at time 𝑡𝑡𝑗𝑗� = 𝜋𝜋𝑖𝑖,𝑗𝑗��1− 𝜋𝜋𝑖𝑖,𝑘𝑘�
𝑗𝑗−1

𝑘𝑘=1
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Take the longitudinal model described previously and assume the patient's true baseline function is 100, 
the mean response without measurement error is declining by 8 units per year so that function will decline 
by 30% from baseline (30 units) in 3.75 years.  In the model, we could assume 𝑌𝑌𝑖𝑖,0∗ = 100,  
𝜀𝜀𝑖𝑖,0 = 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = trt𝑖𝑖 = 0, and 𝜃𝜃�⃗�𝑋𝑖𝑖′ = −8 so that  
0.7𝜀𝜀𝑖𝑖,0 − 0.3𝑌𝑌𝑖𝑖,0∗ − 𝛼𝛼𝑖𝑖 − �𝛽𝛽𝑖𝑖 + 𝛿𝛿 trt𝑖𝑖 + 𝜃𝜃�⃗�𝑋𝑖𝑖′�𝑡𝑡𝑗𝑗 = −30 + 8𝑡𝑡𝑗𝑗. Now, suppose the measurement error has 
standard deviation σ = 5 and measurements are taken every 3 months (indefinitely until the patient has an 
event for the sake of the following calculations). For instance, at time 𝑡𝑡16 = 4 years, we have  
ℎ𝑖𝑖,16 = 𝜋𝜋𝑖𝑖,16 = Φ�−30+8(4)

5
� ≈ 0.6554. But, under the same assumptions except changing the treatment 

assignment to trt𝑖𝑖 = 1 and assuming 𝛿𝛿 = 2, we would have ℎ𝑖𝑖,16 = 𝜋𝜋𝑖𝑖,16 = Φ�−30+6(4)
5

� ≈ 0.1151. The 
hazard ratio for treatment is approximately 0.1756 at time 𝑡𝑡16 = 4, but would be approximately 0.0623 at 
time 𝑡𝑡8 = 2. The hazard ratio is not constant under this model with these parameters. Furthermore, the 
expected time when the event will be observed (reverting back to the case trt𝑖𝑖 = 0) can be calculated 
numerically from the probability mass function as 3.506. In other words, the measurement error creates a 
negative bias in the estimated time to event even when there is no measurement error at baseline.  
 
Confirmation of events at unscheduled visit. Assume that by the trial design, whenever a patient has a 
qualifying measurement below the threshold at a scheduled visit at time 𝑡𝑡𝑗𝑗, they will return for an 
unscheduled visit at time 𝑡𝑡𝑗𝑗 + 𝜀𝜀. If the scheduled visits are every 3 months, then 𝜀𝜀 could be approximately 
2 to 4 weeks. The calculations are similar to those for unconfirmed events with the exception that the 
probability of a confirmed event at time 𝑡𝑡𝑗𝑗 is  

𝜋𝜋𝑖𝑖,𝑗𝑗𝑃𝑃�measurement is below threshold at uncheduled visit at time 𝑡𝑡𝑗𝑗 + 𝜀𝜀� 
With 𝜀𝜀 = 0.1 and the same longitudinal model assumptions used in the example for unconfirmed events 
together with an assumption that the measurement error at time 𝑡𝑡𝑗𝑗 + 𝜀𝜀 is independent and identically 
distributed to the other measurement errors, the hazard rate at time 𝑡𝑡16 = 4 years in the control group 
subject would be ℎ𝑖𝑖,16 = Φ�−30+8(4)

5
�Φ�−30+8(4.1)

5
� ≈ 0.4668. The expected value of the time to the 

first confirmed event is approximately 3.92. So, the observed time to confirmed event is now positively 
biased in this case. The hazard ratio for the treatment effect is again not constant: approximately 0.0038 at 
year 2 and approximately 0.0345 at year 4. A rough approximation to the hazard ratio for this type of 
confirmation is the square of the hazard ratio for unconfirmed events (better for smaller values of 𝜀𝜀). 
 
Confirmation of events at scheduled visit. Next, we consider the problem of calculating the discrete 
time hazard function for confirmed events at scheduled visits.  The definition of the survival function for 
subject 𝑖𝑖, as usual, is 𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝑃𝑃[no confirmed event for subject 𝑖𝑖 up to and including time 𝑡𝑡]. The survival 
function for the first two time points can be computed easily from the rates 𝜋𝜋𝑖𝑖,𝑗𝑗 as follows: 𝑆𝑆𝑖𝑖(𝑡𝑡1) = 1 −
𝜋𝜋𝑖𝑖,1𝜋𝜋𝑖𝑖,2 and 𝑆𝑆𝑖𝑖(𝑡𝑡2) = 1 − 𝜋𝜋𝑖𝑖,1𝜋𝜋𝑖𝑖,2 − 𝜋𝜋𝑖𝑖,2𝜋𝜋𝑖𝑖,3 + 𝜋𝜋𝑖𝑖,1𝜋𝜋𝑖𝑖,2𝜋𝜋𝑖𝑖,3. For 2 < 𝑗𝑗 < 𝐽𝐽, the survival function can be 
computed recursively. First, note that  

1 − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗� = 𝑃𝑃 � ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗

𝑘𝑘=1

� 

= 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1� or ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−1

𝑘𝑘=1

� 

= 𝜋𝜋𝑖𝑖,𝑗𝑗𝜋𝜋𝑖𝑖,𝑗𝑗+1 + �1 − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−1�� − 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−1

𝑘𝑘=1

� 
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 then observe that 

1 − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗� = 𝑃𝑃 ���𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗

𝑘𝑘=1

� 

= 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� or �𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1� or ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� 

= 𝑃𝑃�𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1 � + 𝑃𝑃�𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1�+ 𝑃𝑃 � ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

�

− 𝑃𝑃��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and �𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1� �

− 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

�

− 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

�

+ 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and �𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� 

= 𝜋𝜋𝑖𝑖,𝑗𝑗−1𝜋𝜋𝑖𝑖,𝑗𝑗 + 𝜋𝜋𝑖𝑖,𝑗𝑗𝜋𝜋𝑖𝑖,𝑗𝑗+1 + �1− 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2�� − 𝜋𝜋𝑖𝑖,𝑗𝑗−1𝜋𝜋𝑖𝑖,𝑗𝑗𝜋𝜋𝑖𝑖,𝑗𝑗+1

− 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� − 𝜋𝜋𝑖𝑖,𝑗𝑗𝜋𝜋𝑖𝑖,𝑗𝑗+1�1− 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2��

+ 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and �𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� 

Now, the prior equation implies  

𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� = 𝜋𝜋𝑖𝑖,𝑗𝑗−1𝜋𝜋𝑖𝑖,𝑗𝑗 + 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−1� − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2� 

Also, we can see that  

𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and �𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� 

= 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� 

× 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖,𝑗𝑗+1 = 1�   ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� 

= 𝑃𝑃 ��𝐵𝐵𝑖𝑖,𝑗𝑗−1 = 𝐵𝐵𝑖𝑖,𝑗𝑗 = 1� and ��𝐵𝐵𝑖𝑖,𝑘𝑘 = 𝐵𝐵𝑖𝑖,𝑘𝑘+1 = 1�
𝑗𝑗−2

𝑘𝑘=1

� 𝜋𝜋𝑖𝑖,𝑗𝑗+1 

Hence,  
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1 − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗� 
= 𝜋𝜋𝑖𝑖,𝑗𝑗−1𝜋𝜋𝑖𝑖,𝑗𝑗 + 𝜋𝜋𝑖𝑖,𝑗𝑗𝜋𝜋𝑖𝑖,𝑗𝑗+1 + �1− 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2�� − 𝜋𝜋𝑖𝑖,𝑗𝑗−1𝜋𝜋𝑖𝑖,𝑗𝑗𝜋𝜋𝑖𝑖,𝑗𝑗+1 − �𝜋𝜋𝑖𝑖,𝑗𝑗−1𝜋𝜋𝑖𝑖,𝑗𝑗 + 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−1� − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2��

− 𝜋𝜋𝑖𝑖,𝑗𝑗𝜋𝜋𝑖𝑖,𝑗𝑗+1�1 − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2�� + �𝜋𝜋𝑖𝑖,𝑗𝑗−1𝜋𝜋𝑖𝑖,𝑗𝑗 + 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−1� − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2��𝜋𝜋𝑖𝑖,𝑗𝑗+1 
= 1 + 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−1��𝜋𝜋𝑖𝑖,𝑗𝑗+1 − 1� + 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2��𝜋𝜋𝑖𝑖,𝑗𝑗𝜋𝜋𝑖𝑖,𝑗𝑗+1 − 𝜋𝜋𝑖𝑖,𝑗𝑗+1� 

and finally, 
𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗� = 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−1��1− 𝜋𝜋𝑖𝑖,𝑗𝑗+1� + 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−2�𝜋𝜋𝑖𝑖,𝑗𝑗+1�1− 𝜋𝜋𝑖𝑖,𝑗𝑗� 

Since there are no measurements after time 𝑡𝑡𝐽𝐽 that could confirm a possible qualifying measurement at 
this time, 𝑆𝑆𝑖𝑖�𝑡𝑡𝐽𝐽� = 𝑆𝑆𝑖𝑖�𝑡𝑡𝐽𝐽−1�. 
 
The hazard function at time 𝑡𝑡𝑗𝑗, denoted by ℎ𝑖𝑖�𝑡𝑡𝑗𝑗� or simply ℎ𝑖𝑖,𝑗𝑗, is the probability of having a confirmed 
event at time 𝑡𝑡𝑗𝑗  given that there was no event before that time. Hence, 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗� = �1− ℎ𝑖𝑖,𝑗𝑗�𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−1� for  

𝑗𝑗 > 1. Thus, ℎ𝑖𝑖,1 = 1 − 𝑆𝑆𝑖𝑖(𝑡𝑡1) and the hazard function can be calculated from ℎ𝑖𝑖,𝑗𝑗 = 1 − 𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗�
𝑆𝑆𝑖𝑖�𝑡𝑡𝑗𝑗−1�

 for 

𝑗𝑗 > 1.  
With the same assumptions used in the example for unconfirmed events, the hazard rate at time 𝑡𝑡16 = 4 
years in the control group subject would be ℎ𝑖𝑖,16 ≈ 0.4159. The expected value of the time to the first 
confirmed event is approximately 3.93. The hazard ratio for the treatment effect is approximately 0.0037 
at year 2 and approximately 0.048 at year 4. 
 
N𝑖𝑖(𝑡𝑡𝑘𝑘) = ∑ 𝐵𝐵𝑖𝑖,𝑗𝑗𝐵𝐵𝑖𝑖,𝑗𝑗+1𝑘𝑘

𝑗𝑗=1  is a discrete time counting process that counts the number of events up to and 
including time 𝑡𝑡𝑘𝑘.  We can see that this is a non-Markov process by considering two scenarios where 
N𝑖𝑖(𝑡𝑡2) = 1. In one case, 𝑃𝑃�N𝑖𝑖(𝑡𝑡3) = 2�𝐵𝐵𝑖𝑖,1 = 𝐵𝐵𝑖𝑖,2 = 1 and 𝐵𝐵𝑖𝑖,3 = 0� = 0 but in a second case 
𝑃𝑃�N𝑖𝑖(𝑡𝑡3) = 2�𝐵𝐵𝑖𝑖,2 = 𝐵𝐵𝑖𝑖,3 = 1 and 𝐵𝐵𝑖𝑖,1 = 0� = 𝜋𝜋𝑖𝑖,4. In the case of unconfirmed events or confirmation at 
unscheduled visits, the corresponding counting processes have the Markov property. 
 
Summary and conclusions. There are some notable issues in the analysis of trials where the endpoint is 
the time to a pre-defined value of some measured endpoint and the measurements are at fixed times. First, 
time is discrete and special attention should be made to how the ties are handled. Small differences in the 
random timing of visits should be ignored in many cases and all events at the same visit should be treated 
as occurring at the same time in those cases.  The frequency of ties could be larger than usual. There are 
several common methods for handling ties used in commercial statistical software packages [7, 8, 9]. The 
method for grouped survival data described in [10] is the preferred method but is not available in many of 
those packages. Efron's method [8] tends to be the best among the three generally available methods [11].  
The proportional hazards assumption is often not correct, so attention should be paid to the way the 
treatment effect is described. The estimated hazard ratio may still be a reasonable summary of the 
treatment effect [12].  We provided formulas in this article for the survival function, the hazard function, 
and the probability mass function for events with confirmation (in two different definitions of 
confirmation) and without confirmation. We then compared the hazard functions and hazard ratios under 
one example model for the longitudinal data. The expected value of the time to event is negatively biased 
with measurement error and no confirmation, but was positively biased with confirmation. 
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