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Abstract

The Public Sector Sample Design and Estimation Branch uses Horvitz-Thompson,
Empirical Best Linear Unbiased Prediction (EBLUP) and Bayesian approach to
small area estimation (SAE) for the Annual Survey of Public Employment & Payroll
(ASPEP). The EBLUP estimator is based on a linear mixed-effect model (LMM)
with errors that are assumed to be normally distributed. In this study we provide
a robust estimate for the total number of full-time employees in the ASPEP using
Bayesian method for a LMM assuming errors governed by a mixture of normal
distributions. We specify the Markov Chain Monte Carlo (MCMC) procedure in
order to produce samples for the LMM’s parameter space. We then compare our
research method to the existing methods being used at the U.S. Census Bureau.
The Census of Governments (CoG), Survey of Public Employment & Payroll data
of 2007 and 2012 were used for the evaluation of this research.

Key Words: Linear mixed-effect models, Mixture models, Bayesian method,
MCMC procedure.

1 Introduction

The presence of outliers in the ASPEP data requires a robust regression approach
when fitting linear mixed-effect models (LMMs). The error term in LMMs is assumed
to be normally distributed. Outliers often appear when this assumption is violated.
To accommodate outliers we may use error terms that follow a t−distribution that
has relatively thicker tails (e.g. McLachlan and Basford [12] (1987), McLachlan
and Peel [13] (2000), McLachlan, Ng, and Bean [14] (2006), Bell and Huang [2]
(2006), Staudenmayer, Lake and Wand [17] (2009)). A more flexible way is to
assume that the data are drawn from a finite mixture model, including the normally-
distributed error models as a special case, in capturing a broader range of non-normal
behaviors (see McLachlan and Peel [13] (2000), McLachlan and Basford [12] (1987),
and McLachlan et al. [14] (2006)). Figure 1 shows the standard normal distribution,
the t−distribution with 4 degrees of freedom, and a mixture of normal distributions.
Notice that the mixture of normal distributions has relatively thicker tails among
the three. In reality, real data often show more than one mode, and estimates using
mixture models appear more reliable than the others.

−−−−−−−−−−−−−
Any views expressed are those of the authors and not necessarily those of the U.S.
Census Bureau.
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Figure 1: N (0, 1), t4(0, 1) and Mixture 0.75N (0, 1) + 0.25N (0, 10)

The mixture model parameters can be deduced by using Expectation-Maximization
(EM) algorithm (e.g. McLachlan and Basford [12] (1987), De Veux and Krieger [5]
(1990), McLachlan and Peel [13] (2000), Tadjudin and Landgrebe [18] (2000), Hall
and Wang [10] (2005), McLachlan et al. [14] (2006), Gershunskaya and Lahiri [9]
(2010), Trinh and Tran [19] (2016)), Gibbs Sampling or the MCMC procedure (e.g.
Wand et al. [20] (1994), Woodworth [21] (2004), Bolstad [3, 4] (2007, 2010) using
posterior sampling as indicated by Bayes’ theorem:

P (θ| y) =
P (θ)P (y| θ)

P (y)
∝ P (θ)P (y| θ) (1.1)

where P (y| θ) is the likelihood function or the density of the data y given the pa-
rameters θ; P (θ) is the prior density of the parameters; and P (θ| y) is the posterior
density of the parameters given the data. Once the likelihood and the prior density
are specified, inferences on parameters can be made by using samples drawn from
the posterior distribution produced by the MCMC simulation.

This report is organized as follows: In Section 2, three Hierarchical Bayes (HB) esti-
mators (using normal, t, and mixture of normal distributions) are specified in order
to estimate the total number of full-time employees for various government func-
tions in the ASPEP data. Section 3 shows convergence diagnostics and test results.
The 2012 ASPEP data (in Alabama, California, Georgia, Illinois, and Louisiana) are
used, with the 2007 ASPEP data as auxiliary information. The performance of the
three HB estimators is assessed by Relative Root Mean Square Errors (RRMSE).
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2 Robust Estimations

To accommodate outliers in the ASPEP data, three LMMs will be used: normal, t
(e.g. Lange, Little, and Taylor [11] (1989), Bell and Huang [2] (2006)), and mixture
of normal distributions (e.g. De Veux and Krieger [5] (1990), Gershunskaya and
Lahiri [9] (2010)). We will fit these models using Bayesian methods.

Let ymk denote the value of the kth unit within the mth government function (area).

We are interested in estimating the total Ym =
Nm

Σ
k=1

ymk form = 1, ...,M (Nm: number

of units of the mth area; M : number of areas). An estimator of Ym is given by:

Ŷm = ym + Ŷmr (2.1)

= Nm[fmym + (1− fm)Ŷ mr] (2.2)

where ym =
nm

Σ
k=1

ymk: the sum of the sample values; Ŷmr is a predictor of the total

of the non-sampled part of the mth area; ym =
ym
nm : the sample mean; fm = nm

Nm
:

the sampling rate; nm: the sample size; and Ŷ mr: a predictor for the mean of the
non-sampled part of the mth area. The predictor Ŷmr can be derived from a LMM
or Fay-Herriot model (see Fay and Herriot [7] (1979)).

Hierarchical Bayesian (HB) Model

log(ymk) = β1 + β2 log(xmk) + um + εmk, (2.3)

where ymk and xmk are the number of full-time employees from the survey year
and census year, respectively; m = 1, 2, ..., 29 denotes the mth area; k = 1, 2, ..., Nm

the kth unit; um is the random effect of the mth area, εmk is the error term. The
log-transformation is applied to xmk and ymk to make the predictor and response
variables approximately conform to normality. Then ymk (m = 1, ...,M ; k = nm +
1, ..., Nm) is predicted using the inverse transformation ŷmk = exp(β̂1+β̂2 log(xmk)+
ûm).

2.1 HB model assuming normally distributed errors (N-model) given by (2.3),
(2.4)-(2.5):

um| τ2
iid∼ N (0, τ2), (2.4)

εmk|σ2
iid∼ N (0, σ2). (2.5)

MCMC specification for the N-model:

Parms : β1 = 0, β2 = 1, τ2 = 1, σ2 = 1 (2.6)

Priors :

[
β1
β2

]
∼ BVN

([
0
0

]
,

[
50 0
0 50

])
(2.7)

τ2, σ2 ∼ igamma(0.01, 0.01) (2.8)
Random : um ∼ N (0, τ2) (2.9)

Likelihood : log(ymk)|um ∼ N (β1 + β2 log(xmk) + um, σ
2) (2.10)
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2.2 HB model with t-distributed errors (t-model) given by (2.3), (2.11)-(2.12):

um| τ2
iid∼ N (0, τ2), (2.11)

εmk|σ2
iid∼ t(0, σ2, ν). (2.12)

MCMC specification for the t-model:

Parms : β1 = 0, β2 = 1, τ2 = 1, σ2 = 1 (2.13)

Priors :

[
β1
β2

]
∼ BVN

([
0
0

]
,

[
50 0
0 50

])
(2.14)

τ2, σ2 ∼ igamma(0.01, 0.01) (2.15)
Random : um ∼ N (0, τ2) (2.16)

Likelihood : log(ymk)|um ∼ t(β1 + β2 log(xmk) + um, σ
2, ν = 4) (2.17)

2.3 HB model assuming error terms follow mixture of normal distributions
(MN-model) given by (2.3), (2.18)-(2.20):

um| τ2
iid∼ N (0, τ2), (2.18)

εmk|σ21, σ22, sp
iid∼ (1− sp)N (0, σ21) + spN (0, σ22), σ1 < σ2, (2.19)

sp| p
iid∼ Bin(1; p). (2.20)

MCMC specification for the MN-model:

Parms : β1 = 0, β2 = 1, sp = 0, τ2 = 0.01, σ21 = 0.01, σ22 = 1 (2.21)

p =
1

1 + exp(−sp)
(2.22)

Priors :

[
β1
β2

]
∼ BVN

([
0
0

]
,

[
50 0
0 50

])
(2.23)

τ2, σ21, σ
2
2 ∼ igamma(0.01, 0.01) (2.24)

sp ∼ Bin(1, p) (2.25)
Random : um ∼ N (0, τ2) (2.26)

µ = β1 + β2 log(xmk) + um, z1 =
log(ymk)− µ

σ1
, z2 =

log(ymk)− µ
σ2

Likelihood : log(ymk)|um ∼
p

σ1
exp(−z

2
1

2
) +

1− p
σ2

exp(−z
2
2

2
) (2.27)

Notice that, random effects are set up using random-effect distributions as specified
in equations (2.9), (2.16), and (2.26). Non-informative priors (equations (2.7), (2.14),
(2.23), (2.8), (2.15), (2.24)) would not influence the posterior distribution (see Ojo
et al. [15] (2017) and Gelman [8] (2006)). The degree of freedom ν = 4 (equation
(2.17)) is recommended in problems with small sampling rates (e.g. Lange et al.
[11] (1989)). The MCMC procedures discard the first 2, 500 as burn-in and keep the
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next 12, 500 samples. The thinning rate of 5 is applied to produce 2, 500 thinned
samples from the posterior distribution. Then um is predicted by the average of
MCMC posterior estimates of um.

3 Application to ASPEP data: MCMC Diagnostics and Test results

The ASPEP survey is designed to produce estimates of statistics on the number of
federal, state, and local government civilian employees and their gross payroll for the
month of March at the national level and for large domains. The target population of
approximately 90,000 government units includes 5 types: counties, cities, townships,
special districts, and school districts. The ASPEP consists of three components: a
census of select federal agencies, a census of 50 state governments, and a sample of
about 10,000 local governments. Every five years, in years ending in “2” and “7,” the
Census Bureau conducts a CoG. The employment component of the CoG, known as
CoG-E, collects public employment and payroll data. About two years after every
CoG-E, the Census Bureau redesigns and selects a new sample of local governments.
The sample design is a two-phase, stratified, systematic probability-proportional-to-
size design where the measure of size depends on total pay. See Dumbacher and Hill
[6] (2014) for more details on the description of the sample design for the ASPEP.

To produce reliable estimates on the total number of full-time employees in govern-
ment function codes where sampling rates are relatively small, we are exploring the
Small Area Estimation (SAE) methodology that borrows strengths from previous
census data instead of collecting expensive additional data for small cells (we refer
the reader to Rao [16] (2003) for a comprehensive account on SAE techniques). Two
recent consecutive censuses are used in this study, the 2007 and 2012 CoG-E..

The ASPEP data on employment include the number of full-time, part-time employ-
ees and gross pay as well as hours paid for part-time employees. The parameter of
interest in this study is the total number of full-time employees, Ym, for each function
code m = 1, 2, ..., 29. We use samples from posterior distribution, produced by the
MCMC procedure, to predict the total number of non-sampled full-time employees
Ymr. Then the estimate of the total number of full-time employees for the mth area
would be Ŷm = ym + Ŷmr.

The convergence of the MCMC procedures can be assessed from Figures D1, D2,
D3, D4, D5. The traceplots, of the drawn value of the parameters at each iter-
ation against the number of MCMC iterations, all show good mixing of Markov
chains. Samples from the posterior distribution can then be used to estimate the
non-sampled total number of full-time employees for each function code.

The quality of the estimators is evaluated using the Relative Root Mean Square

Error: RRMSE =

√
1
rep

rep

Σ
i=1

(
Ŷm,i−Ym

Ym
)2 where Ŷm,i is an estimate of Ym, rep = 1, 000

is the number of replicate ASPEP samples selected from 2007 CoG data and used
to estimate totals for 2012.

Let RRMSEN , RRMSET , and RRMSEMN (last three columns in each Table) be the
RRMSEs of the HB estimates using normal, t, and mixture of normal distributions
respectively. The following five tables show test results as applied to the ASPEP
data of the states of Alabama, California, Georgia, Illinois, and Louisiana:
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3.1 Application to Alabama ASPEP data - MCMC convergence diagnostics
for θ = (β1, β2, τ

2, σ2
1, σ

2
2) and comparison of RRMSEs of the estimates
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Figure T1a indicates the N-model is the least efficient. Figure T1b suggests the MN-
model is the most efficient. Figure T1c shows that, on the average, the MN-model
provides HB estimates with smallest RRMSEs and estimates using N-model have
largest RRMSEs.
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3.2 Application to California ASPEP data - MCMC convergence diagnostics
for θ = (β1, β2, τ

2, σ2
1, σ

2
2) and comparison of RRMSEs of the estimates
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Figure T2a indicates the N-model is the least efficient. Figure T2b suggests the MN-
model is the most efficient. Figure T2c shows that, on the average, the MN-model
provides HB estimates with smallest RRMSEs and estimates using N-model have
largest RRMSEs.
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3.3 Application to Georgia ASPEP data - MCMC convergence diagnostics for
θ = (β1, β2, τ

2, σ2
1, σ

2
2) and comparison of RRMSEs of the estimates
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Figure T3a indicates the N-model is the least efficient. Figure T3b suggests the MN-
model is the most efficient. Figure T3c shows that, on the average, the MN-model
provides HB estimates with smallest RRMSEs and estimates using N-model have
largest RRMSEs.
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3.4 Application to Illinois ASPEP data - MCMC convergence diagnostics for
θ = (β1, β2, τ

2, σ2
1, σ

2
2) and comparison of RRMSEs of the estimates
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Figure T4a indicates the N-model is the least efficient. Figure T4b suggests the MN-
model is the most efficient. Figure T4c shows that, on the average, the MN-model
provides HB estimates with smallest RRMSEs and estimates using N-model have
largest RRMSEs.
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3.5 Application to Louisiana ASPEP data - MCMC convergence diagnostics
for θ = (β1, β2, τ

2, σ2
1, σ

2
2) and comparison of RRMSEs of the estimates
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Figure T5a indicates the N-model is the least efficient. Figure T5b suggests the MN-
model is the most efficient. Figure T5c shows that, on the average, the MN-model
provides HB estimates with smallest RRMSEs and estimates using N-model have
largest RRMSEs.

3.6 Conclusions

On the average, the MN-model provides HB estimates with smallest RRMSEs, esti-
mates using N-model have largest RRMSEs. The N-model is the least efficient. The
MN-model is the most efficient.

The performance of the estimators using the t or the mixture of normal distributions
is significantly more reliable than the one using normal distribution. The mixture of
normal model is better than the t-model in terms of RRMSE. Our future projects
may focus on models using mixture of t-distributions or finite mixture of normal
distributions with more than two mixing components.
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Appendix

FC Description
001 Air Transportation
005 Correction
012 Elementary and Secondary - Instruction
016 Higher Education - Other
018 Higher Education - Instructional
023 Financial Administration
024 Firefighters
025 Judicial & Legal
029 Other Government Administration
032 Health
040 Hospitals
044 Highways
050 Housing & Community Development
052 Libraries
059 Natural Resources
061 Parks & Recreation
062 Police Protection - Officers
079 Public Welfare
080 Sewerage
081 Solid Waste Management
087 Water Transport & Terminals
089 All Other & Unallocable
091 Water Supply
092 Electric Power
093 Gas Supply
094 Transit
112 Elementary & Secondary Schools - Other
124 Fire - Other
162 Police - Other
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