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Abstract
It is known that a protein’s biological function is in some way related to its physical

structure. Many researchers have studied this relationship both for the entire backbone
structures of proteins as well as their binding sites, which are where binding activity
occurs. However, despite this research, it remains an open challenge to predict a pro-
tein’s function from its structure. The main purpose of this research is to gain a better
understanding of how structure relates to binding activity and to classify proteins ac-
cording to function via structural information. First, we performed the classification
of binding sites for the data set arising from Ellingson and Zhang (2012) through the
use of logistic regression. Then we approach the problem from the data set compiled
by Kahraman et al. (2007). We calculated the covariance matrices of the binding sites’
coordinates, which use the distance of each atom to the center of mass, and calculated
the distance from an atom to the 1st, 2nd and 3rd principal axes. Then we obtained co-
variance matrices of these distances to serve as our data objects. Finally, we performed
classification on these matrices using a variety of techniques, including nearest neigh-
bor.

1 Introduction

Proteins are molecules consisting of chains of amino acids that fold into a 3-dimensional
structure. They perform various functions by binding to various chemicals. Binding occurs
at binding sites near surface of the protein. In protein-ligand binding, the ligand is usually
a signal-triggering molecule binding to a site on a target protein.

The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank
(PDB) is the largest data bank that provides information about the 3D structures of pro-
teins and nucleic acid. As of April 18, 2017, there are 129, 184 biological macromolecular
structural information files available in PDB and about 92.9% of them are proteins. X-ray
crystallography and Nuclear Magnetic Resonance (NMR) are a few common methods used
to obtain the protein structure. As of 2003 and 2010, respectively, Berman et al. (2003) and
Chruszcz et al. (2010) showed that as many as 26% of the entries in the PDB have either
unknown or putative function. Because much work has been done in this area, those fig-
ures have changed due to the discovering of functions and the additions of new structures
to the database. The most up to date figures that are readily accessible are from the inven-
tory done by Nadzirin and Firdaus-Raih (2012), which shows that there are about 42.53%
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Figure 1: Protein Ligand Binding

of PDB entries that were categorized as proteins of unknown functions. By seeing how
these figures have changed through past few years, we can understand the amount of re-
search activity that has been going on over these years. As a result, the development of
different context-based and structure based method is expanding drastically for prediction
of unknown protein function.

1.1 General Problem

A common hypothesis in the literature is that proteins with similar functions should have
binding sites with similar shapes and chemical properties. Some of the literature that sug-
gest the above hypothesis are Ellingson and Zhang (2012), Hoffmann et al. (2010), and
Kahraman et al. (2007). Therefore, analyzing the structure of proteins has become a very
popular method in predicting unknown protein functions. One of the most useful applica-
tions of protein function prediction is in discovery of effective drug design.

The main goal of this research is to gain a better understanding of how structure relates
to binding activity and then classify proteins according to function via structural informa-
tion.

1.2 Background

Many researchers have conducted ligand-binding protein prediction studies by taking struc-
tural information into consideration as an initial step towards protein function prediction.
The different types of such structure-based approaches are shape based methods, alignment
base methods, graph-theoretic approaches, machine learning methods and, model-based
methods. Some of the examples of these types of approaches can be found in Bertolazzi
et al. (2014), Nussinov and Wolfson (1991), Fischer et al. (1994), Wallace et al. (1997),
Kinoshita et al. (2001), Najmanovich et al. (2008), Hertz and Yanover (2006), Zhang et al.
(2006), Ellingson and Zhang (2012), and Hoffmann et al. (2010).

Out of all these methods, more focus will be given to the alignment based method as
I will be comparing the implemented model-based method results. In the alignment based
method, binding sites are compared after finding spatially equivalent positions by super-
imposing them pairwise according to some criteria. These ideas have been used by differ-
ent researchers. Shulman-Peleg et al. (2005) talked about two web servers and software
packages named SiteEngine and Interface-to-Interface (I2I)-SiteEngine, for the recogni-
tion of the similarity of binding sites and interfaces. Gold and Jackson (2006) talks about
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(a) Binding sites 1AYL and 1E2Q from ligand ATP

(b) Binding sites 1AYL and 1E2Q from ligand ATP after alignment
(Ellingson and Zhang (2012))

Figure 2: Aligning binding sites

a database named SiteBase, which holds information about structural similarity between
known ligand-binding sites. For the comparison of these binding sites, geometric hash-
ing was used and the equivalent atom constellations between pairs of binding sites were
identified. Hoffmann et al. (2010) talks about assessing similarity between pockets in pro-
tein binding sites by aligning them in 3D space and comparing the results with a convolu-
tion kernel. Then Ellingson and Zhang (2012) talks about a new algorithm named TIPSA
(Triangulation-based Iterative-closest-point for Protein Surface Alignment) based on the
iterative closest point (ICP) algorithm (Besl and McKay (1992)). Figure 2 describes an
example of two binding sites that bind to the same ligand group after aligning and super-
imposing them by rotation and translation. It also supports the common hypothesis that
binding sites with similar shapes bind to similar chemicals.

In the model-based method, features of binding sites for a given group were used and
then implement a model for categorization. Ellingson and Zhang (2012) talked about radius
of gyration as a model based approach. For a single binding site, the radius of gyration can
be calculated by simply calculating the standard deviation of distance of the atom to the
center of mass, as shown below:
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Rg =

√√√√ 1

n

n∑
i=1

‖xi − x̄‖2. (1)

However, this does not contain much useful information, as it restrict all the information
to one dimension.

2 Methodology

In this research, the ligand-binding protein prediction problem is approached by taking a
higher level, objected oriented approach that summarizes the description of the binding site,
so that it reduces the amount of information lost compared to most of the other approaches.
Thereby, a model-based method is considered, where the nonparametric model is imple-
mented by using the features of the binding sites for a given ligand group for understanding
and classification purposes.

A model-based method that we named Covariances of Distances to Principal Axis
(CDPA) was implemented by developing a new representation to each binding site using
the entire covariance matrix. Since the coordinates of each binding site were based upon
X-ray crystallography, each binding site has an arbitrary x, y and z coordinate system. As
such, using distances from each atom to the x, y and z axes will not give a clear picture of
the variability within each binding site. Therefore, in this method, the distance from each
atom to the three principal axes that provide the three orthogonal directions of maximal
variation in atom coordinates were found. For each binding site, atom coordinates were al-
ready known. Therefore, to find the three principal axes, the covariance of the coordinates
were calculated and then we found the three eiganvectors that give the maximal variation.
Once the principal axes were found for each binding site, the orthogonal projection of all
atoms to each principal axis were calculated for every binding sites. Figure 3 shows an
example of how to obtain the three principal axes.

Figure 3: Orthogonal principal axes of 1AYL-ATP (note: The third principal axis is orthog-
onal to the page.)

Suppose dkj is the distance from kth atom to jth principal axis, where, k=1, 2, ..., ni

; j=1, 2, 3 ; i=1, 2, . . . , 100 or i=1, 2, . . . , 972 and ni is the number of atoms for the ith

binding site. Then the distance matrix di can be represented as (2).
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di =
(
~d.1 ~d.2 ~d.3

)
. (2)

Once the distance matrices (di) were calculated for all binding sites, the covariance ma-
trice (Si) of the distance matrix was calculated for each binding site i and can be represented
as (3).

Si = Cov(di) =

 V ar(d.1) Cov(d.1, d.2) Cov(d.1, d.3)
Cov(d.2, d.1) V ar(d.2) Cov(d.2, d.3)
Cov(d.3, d.1) Cov(d.3, d.2) V ar(d.3)

 (3)

where, i=1, 2, . . . , 100 or i=1, 2, . . . , 972

The new representation of the binding sites are now in the form of covariance matrices.
By doing this, we will not only consider the amount of variability, but also the shape of the
variability of the binding sites. These new covariance matrices are now 3 × 3 Symmetric
Positive Definite (SPD) matrices.

For example, from the extended Kahraman dataset, the binding site 1cbq, which binds
with the ligand PO4, has only 8 atoms within 5.3Å distance. This is the 582nd observation
of the sorted extended Kahraman dataset. The distance of each atom to each principal axis
for the binding site 1cbq that binds with ligand PO4 can be shown using a 8 × 3 matrix as
shown in equation (4). Then, the covariance matrix for ligand-binding site, 1cbq.PO4 can
be shown as equation (5).

d582 =



d1 d2 d3

Atom1 1.7037 4.8011 5.0779
Atom2 1.6471 2.3297 2.7237
Atom3 0.7226 1.0903 1.3059
Atom4 0.6659 0.9572 0.8708
Atom5 1.5013 1.0586 1.2798
Atom6 0.5727 3.1320 3.1330
Atom7 1.5059 2.7635 3.1433
Atom8 0.6002 3.5621 3.5920


(4)

S582 =

0.2638 0.1667 0.2445
0.1667 1.9077 1.9459
0.2445 1.9459 2.0161

 (5)

Once the covariance matrices of the distances for all binding sites were calculated,
the primary model is the Covariance of Distances to Principal Axis (CDPA). In order to
perform the classification of protein ligand-binding sites using CDPA, a non-parametric
model based upon Mahalanobis distance of CDPA was used as the similarity measure. In
order to calculate the Mahalanobis distances, means and covariances of Si are required.
Instead of using the covariance matrix Si, to calculate Mahalanobis distance, the vectorized
form of Si and vectorized form of mean of Si for each ligand is considered . Equation (6)
represents the vectorized form of Si.
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Figure 4: Mahalanobis Distance from each binding sites in PO4 group to the mean of PO4
group

Sveci =



V ar(d.1)
V ar(d.2)
V ar(d.3)√

2 ∗ Cov(d.1, d.2)√
2 ∗ Cov(d.1, d.3)√
2 ∗ Cov(d.2, d.3)

 (6)

The reason why the last three entires of the equation (6) are multiplied by the
√

2 is
so that the Euclidean distance between any two observations remains the same whether in
matrix or vector form. In other words, the Frobenius norm of the matrix will be equal to the
norm of the vectorized form of the matrix.

In order to calculate the mean covariance (S̄j) of the jth ligand, the covariance matrices
of the binding sites that corresponds to each ligands are considered and their mean is calcu-
lated. For all nine groups, 3 × 3 mean covariances were found. Then, the vectorized form
of each mean covariances Svecj is considered. Next, the covariance of Sveci of jth ligand
(Cov(Svecij)) is calculated and we named that 6× 6 matrix as Σj , where j = 1, 2, . . . , 9.
Then the Mahalanobis distance Di from each binding site i to the mean of each ligand
group j is calculated and the equation is given in (7).

Di =
√

(Sveci − Svecj)′Σ
−1
j (Sveci − Svecj) (7)

where, i=1, 2, . . . , 100 or i=1, 2, . . . , 972 and j=1, 2, . . . , 9.
Figures 4 and 5 represent an example of the reasons why this is considered a model-

based approach. Figure 4 represents the frequency histogram of Mahalanobis distances
from each binding site in PO4 to the mean of PO4. Figure 5 represents the frequency
histogram of Mahalanobis distances from each binding site that are not coming from PO4
to the mean of PO4. Figure 4 depicts that almost all binding sites from PO4 are closer to
their mean, whereas Figure 5 shows that most of the binding sites that are coming from
other ligand groups except PO4, have higher Mahalanobis distances to the mean of PO4.

2060



Figure 5: Mahalanobis Distance from each binding sites in non-PO4 groups to the mean of
PO4 group

Once Di is calculated for each binding site, two classification procedures were used.
The 1-nearest mean classification and predicted probabilities of Polytomous (Multinomial)
Logistic Regression model were used to classify these binding sites into the ligand group.
For each, the classification error is calculated as the proportion of misclassified binding
sites.

Then the results obtained using the model-based approach are compared to the alignment-
based method used by Ellingson and Zhang (2012) and Hoffmann et al. (2010), where they
superimpose binding sites pairwise, based on certain criteria. We compare our approach to
just two methods because many methods are not readily accessible for use with new data
and only very few methods use a common benchmark dataset. Therefore, we used those
methods that used a common benchmark data set to compare our results with the same
dataset.

3 Data

Kahraman et al. (2007), which is known in the literature as the Kahraman dataset. It consists
of 100 protein binding sites which bind to one of 10 ligands (AMP, ATP, FAD, FMN,
GLC, HEM, NAD, PO4, EST, AND). The second dataset is the one that used in Hoffmann
et al. (2010), which they named the extended Kahraman Dataset. It consists of 972 protein
binding sites, of which the Kahraman dataset is a subset. These sites also bind to one of the
above same 10 ligands. There are only 2 and 4 binding sites that forms with ligand AND
and EST, respectively. Therefore, both ligand groups are considered as one ligand group
named “Steroid”. These ligands vary in size and flexibility. PO4 is the smallest ligand in
size and the most rigid molecule. FAD is the largest in size and is the highest in flexibility.

For all protein structures, information about the 3D structures of full binding sites were
downloaded from the PDB (Protein Data Bank) that were determined by X-ray crystallog-
raphy (Henrick and Thornton (1998)). Then, all the binding sites that consist of those atoms
within radius of 5.3Å (Angstroms) to the specified ligand were extracted. Figure 6 shows
an example to a full binding site of 1AYL and an extracted binding site within 5.3Å to the
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Figure 6: Full binding site 1AYL and the extracted binding site 1AYL within the radius of
5.3Å to the ligand ATP.

ligand group ATP. We selected this radius of 5.3Å, because Hoffmann et al. (2010) found
experimentally that it corresponds to a good default value. It also facilitates comparisons to
Ellingson and Zhang (2012) and Hoffmann et al. (2010). Tables 1 and 2 show the number
of binding sites that belong to each ligand group of the Kahraman dataset and the extended
Kahraman dataset, respectively.

Table 1: Kahraman dataset
AMP ATP FAD FMN GLC HEM NAD PO4 STEROID

Number of
Sites

9 14 10 6 5 16 15 20 5

Table 2: extended Kahraman dataset
AMP ATP FAD FMN GLC HEM NAD PO4 STEROID

Number of
Sites

63 78 79 58 88 113 91 389 6

4 Results

4.1 Ligand Classification for Kahraman dataset

The results obtained for the Kahraman dataset were considered first. Multi Dimensional
Scaling (MDS) is used to plot a visual representation of the covarince matrix representa-
tions. Figure 7 is the MDS plot for the Kahraman dataset. It shows a clear separation
between the groups. This gives us a motivation that this method could work well.

Then, the summary of classification error found using CDPA with the nearest mean
classification is provided in Table 3.

To validate the model, a testing set is simulated by adding different amounts of noise to
each coordinate. We used 100 different noise levels from 0.01 to 1 with 0.01 increments.
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Figure 7: MDS plot for Kahraman (5.3 Å) dataset.

Then each such noise added to the data was replicated 100 times and we found their classi-
fication errors. Figure 8 represents the classification error with respect to the different noise
level for the Kahraman dataset.

Figure 8 explains that, for each increasing noise, there is a change in the model with a
consistency. That is, even though the classification error increases when the noise is increas-
ing, there is a trend between the variables. As a result, it validates the model performance.
Here, the noise is added to each coordinates and adding a noise of 1 means a lot of noise.
That is because, when selecting a binding site, we considered the atoms that are within a
5.3Å. Therefore the entire diameter of it in any dimension should be no more than roughly
about 10Å. Therefore standard deviation of the noise been 1Å to each coordinate would
dramatically impact the position of each atom and as a result the classification error will
increase significantly. But with a smaller amount of noise it does not change very much and
the classification error is also closer to the CE of original data. Also, it can be observed that
the amount of thickness of the confidence band is low during lower level of noises and it
then being some what constant at higher level of noises. It can also be noticed that up until
about noise of 0.25, we are still not very far from what we originally have with the data and
its CEs are still lower than other methods.
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Table 3: Results for nearest mean classification for the Kahraman (5.3 Å) dataset.
Method Classification Error

TYPSA:TI 0.43
Gyr 0.54

TYPSA:TI+Gyr 0.29
Sup− CKL 0.27

CDPA with nearest mean classification 0.15

Figure 8: Classification error with respect to different noise level for Kahraman dataset

4.2 Ligand Classification for Extended Kahraman dataset

The extended Kahraman dataset, the summary of classification error found using CDPA
is provided in Table 4. Ellingson and Zhang (2012) unable to perform their method to
the extended Kahraman dataset introduced by Hoffmann et al. (2010), due to the extreme
computational cost of that method.

Here, CDPA shows a higher CE than Hoffmann et al. (2010)’s method. This is mainly
because Hoffmann et al. (2010) considered a pairwise alignment method. For instance,
if there are two binding sites that are closer to each other but far away from their actual
ligand group, but still according to the pairwise alignment, they will still be grouped in
to the actual ligand group and using the model based method those binding sites will be
misclassified into a ligand group that is more closer to it.

Figure 9 represents a visual comparison of classification performed using nearest mean
and predicted probabilities with added noise for the simulated dataset. The classification
performed using nearest mean shows that the mean line is closer to a line and it has a
increasing linear trend between CE and noise level. However, the classification performed
using predicted probabilities of polytomous logistic regression is not linear and it starts off
really slow and then its starts increasing with the more noise. That is, it is less sensitive to
smaller noise than with nearest mean classification.
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Table 4: Results for nearest neighbor classification for the extended Kahraman (5.3 Å)
dataset.

Method Classification Error
TYPSA:TI *

TYPSA:TI+Gyr *
Sup− CKL 0.19

CDPA with nearest neighbor classification 0.32
CDPA with predicted probabilities 0.25

Figure 9: Classification Error with validation

Figure 10 shows the visual representation of all the binding sites together in a MDS
plot. It clearly shows how each ligand groups disperse around, and how the model affect
the classification directly.

5 Conclusion

To summarize, the performance of CDPA is better than that of the other methods using
Kahraman dataset. The model-based approach used in this research is very fast compared
to the alignment-based approaches used by Ellingson and Zhang (2012) and Hoffmann et al.
(2010). For instance, in Ellingson and Zhang (2012), to perform pairwise alignment for the
Kahraman dataset, it took between 2 to 6 seconds per alignment. Since there are 100 bind-
ing sites in this dataset, there will be 4950 pairs, requiring a minimum of 9900 seconds
to compare all of the pairs. For Hoffmann et al. (2010), the algorithm running time per
pockets pair varied between 0.2 and 1.3 seconds. This means that, at a minimum, it will
take 990 seconds to compare all the pairs using that methodology. With CDPA, to calculate
the similarity measure for all binding sites and classify them to their ligand group, for the
Kahraman dataset, it took only 2.4 seconds. This illustrates the computational advantage of
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Figure 10: MDS plot of all ligands together for the extended Kahraman (5.3 Å) dataset

our model-based methodology since it is not restricted to pairwise comparisons. Further-
more, this computational efficiency is further aided by the method being alignment-free.
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