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Abstract

In view of recent mounting criticism concerning over-use of p-values, first in the journal Basic
and Applied Social Psychology, followed by statements by the American Statistical Association and
the American Psychological Association, this paper discusses an alternative approach to hypothesis
testing, via the BIC model selection criterion.

We do not necessarily advocate the complete abandonment of the p-value approach but rather
ask that a logical framework for hypothesis testing and model selection be employed.

In this paper, first, a logical background for hypothesis testing from the viewpoint of Decision
Risk Analysis is reviewed.

Then an approach via the BIC model-selection criterion is presented. The earlier AIC (Akaike
Information Criterion) is reviewed and compared with BIC.

Those p-values corresponding to some BIC-based tests are computed, with a view toward seeing
how much or how little sense the various levels of p-values make. For specific illustration, examples
include one- and two-sample tests in Normal distributions, although obviously the methods can be
applied in other situations as well.

Key Words: Decision risk analysis, hypothesis testing, p-value, Bayesian information criterion
(BIC)

1. Introduction and Background

1.1 Organization

This paper reviews some recent criticism of over-use of p-values, reviews some hypoth-
esis testing situations and the decision-risk analysis approach to them, and discusses an
alternative approach based on model-selection criteria.

At the end of the paper, to facilitate reading the paper, there is, for reference, an Ap-
pendix listing the notations used.

1.2 Introduction

Hypothesis testing involves choice of null and alternative parameter values, Type I and
Type II error rates, and the sample size. The Type I error rate is called alpha and denoted by
α. If the achieved level of significance p is less than the prescribed level of significance α,
the null hypothesis is rejected. In recent years there have been several articles critical of the
conventional use of p-values in hypothesis testing. There was an article in the journal Basic
and Applied Social Psychology, followed by statements by the American Psychological
Association and the American Statistical Association, concerning over-exclusive use of p-
values.
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Here are the bibliographic references to some of those recent papers (in chronological
order):
David Trafimow and Michael Marks (2015), Editorial, Basic and Applied Social Psy-

chology, 37(1), 1-2. Taylor & Francis (Routledge), Philadelphia, PA.
American Psychological Association. “P-values Under Question.” Psychological Science

Agenda, March, 2016.
Ronald L. Wasserstein and Nicole A. Lazar (2016). The ASAs statement on p-values:

context, process, and purpose. The American Statistician, Vol. 70, No. 2, 120 – 133.
June 9, 2016.

Scott Nestler and Harrison Schramm (2016). P-value Primer: P OR (P-values in operations
research) M N O P Q R S T You don’t need a license to download R, but you should
have a good understanding of p-values. OR/MS Today, Vol. 43, June, 2016.

Some of the best succinct advice we have seen on choosing p is that of Rupert Miller
(1966), early in his excellent book: Do the test at the .01 level if it gives reasonable power
against reasonable alternatives; otherwise, drop back to a p of .05 or even .10.

Here, in this paper, joint choice of sample size and error rates is reviewed. The situa-
tion is discussed from the viewpoint of Decision Risk Analysis, in terms of loss and risk
functions. Further, an alternative approach to testing, via model selection criteria, is dis-
cussed. In view of the recent criticism of p values, those p-values corresponding to tests
based on model selection criteria, especially AIC (Akaike’s Information Criterion) and
BIC (Bayesian Information Criterion), are evaluated, with a view toward seeing how much
or how little sense the p-values make in that context.

The criterion now called AIC developed by Akaike (1973, 1974) for looking at situa-
tions with many variables and a large number of alternative models.

As an example that is related to risk analysis, Sclove (2017) compared simultaneously
several different types of models for a dataset. The data was on number of days ill in a year
for n persons but in a risk-analysis, actuarial context could be considered alternatively as
numbers of accidents in a year for n persons. The alternative models included

• histograms with different numbers of bins,

• clustering by the finite mixture model, and

• a predictive distribution (marginal distribution of number of events, integrating out
the prior on the rate parameter λ), which can be considered as an infinite mixture
model.

The set-up is that there are K alternative models, indexed by say, k = 1, 2, . . . ,K,
and we want to rank them and choose the best among them. Let mk be the number of
free parameters in Model k and LLk the maximized log likelihood for Model k. LLk is a
measure of goodness-of-fit (GOF) of Model k.

The criteria AIC and BIC as often stated, and as we state them here, are smaller-is-
better criteria. AIC is given by

AICk = −2LLk + 2mk.

BIC is BICk = −2LLk + (lnn)mk.

Both of these model-selection criteria (MSCs) are of the form

MSCk = LOFk + Penaltyk,
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whereLOFk = −2LLk is the Lack of Fit of Model k and the Penalty isPenalty(mk, n) =
a(n)mk, where mk is the number of free parameters in Model k and a(n) = lnn for BIC
(note that for n ≥ 1, lnn > 0) and a(n) = 2 for AIC.

BIC is derived from an approximation (Schwarz 1978) to the posterior probability ppk
of Model k,

ln ppk = LLk − (lnn)mk/2.

These posterior probabilities play an important role in the developments discussed in this
paper.

Here, however, we look at some smaller problems, too. One may consider the hypoth-
esis testing problem as a special case with the number K of alternative models being just
K = 2. Examples here include one- and two-sample tests in Normal distributions. Other
examples would include log Normal distributions and negative Exponential distributions
for positive random variables, and choosing a subset of explanatory variables for use in a
regression model.

2. Test on a Single Mean
Although much of our focus will be on comparing two samples and larger problems, we
begin with a one-sample problem. The simplest hypothesis testing problem concerning a
parameter θ can be phrased as testing H0: θ = θ0 against H1: θ = θ1. about a scalar
parameter θ, . where θ0 and θ1 are specified values.

Consider the case where θ is the mean µ, H0: µ = µ0, H1: µ = µ1.When the values
of µ0, µ1 and the variance σ2 are specified, the test statistic is z = (µ1 − µ0)/σȳ, where
σ2
ȳ = σ2/n. Assume that µ1 > µ0. Then one rejects the null hypothesis for large z.

2.1 Computation of required n, in terms of α, β and Effect Size

The required minimum sample size is given by

n = σ2 (zα + zβ)2

(µ1 − µ0)2
=

(zα + zβ)2

ES2
.

Here ES is the effect size ES = (µ1 − µ0)/σ, and zp is the upper p-th percentage point
of the standard Normal distribution, that is, if Φ(z) is the cumulative distribution function
(c.d.f.) of the standard Normal distribution, then Φ(zp) = 1− p.

This formula for the required sample size n holds in the Gaussian case and at least
approximately in other cases, due to the Central Limit Theorem, provided that n is not
small. (The formula could be re-computed to apply to Student’s t when the variance is not
specified and so is estimated. )

2.2 Choice of error rates and sample size

But where should the Type I and Type II error rates α and β come from? Intelligent choice
of a level of significance α and power 1 − β would involve several factors. One factor is
that n, α and β should be decided upon jointly and appropriately. The above formula for n
in terms of α and β can be turned around to solve for β given n, α or for α, given n and β.

We have
(zα + zβ)2 = n(µ1 − µ0)2/σ2

and, for µ1 − µ0, zα and zβ positive, (that is, α and β greater than one-half, )

zα + zβ =
√
n (µ1 − µ0)/σ,

zβ =
√
n (µ1 − µ0)/σ − zα,
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2.3 Tabulation of Power by n, α, and Effect Size

We have, remembering that the power is the complement of the Type II-error rate β,

Power = 1− β = Φ(zβ) = Φ(
√
n
µ1 − µ0

σ
− zα) = Φ(

√
nES − zα).

For example, if ES = 0.5, α = .05, and n = 25, then
√
nES − zα = 5(0.5) − 1.645 =

2.500− 1.645 = 0.855 and Power = 1− β = Φ(0.855) ≈ .804. The power is tabulated
in Table 1 for several combinations of ES, n and alpha.

Table 1: Power, in terms of ES, n and α

ES n α ES
√
n− zα Power ES n α ES

√
n− zα Power

0.5 9 0.01 -0.83 0.20 1.5 9 0.01 2.17 1.00
0.5 9 0.05 -0.14 0.44 1.5 9 0.05 2.86 1.00
0.5 9 0.1 0.22 0.59 1.5 9 0.1 3.22 1.00
0.5 25 0.01 0.17 0.57 1.5 25 0.01 5.17 1.00
0.5 25 0.05 0.86 0.80 1.5 25 0.05 5.86 1.00
0.5 25 0.1 1.22 0.89 1.5 25 0.1 6.22 1.00
0.5 100 0.01 2.67 1.00 1.5 100 0.01 12.67 1.00
0.5 100 0.05 3.36 1.00 1.5 100 0.05 13.36 1.00
0.5 100 0.1 3.72 1.00 1.5 100 0.1 13.72 1.00
1.0 9 0.01 0.67 0.75 2.0 9 0.01 3.67 1.00
1.0 9 0.05 1.36 0.91 2.0 9 0.05 4.36 1.00
1.0 9 0.1 1.72 0.96 2.0 9 0.1 4.72 1.00
1.0 25 0.01 2.67 1.00 2.0 25 0.01 7.67 1.00
1.0 25 0.05 3.36 1.00 2.0 25 0.05 8.36 1.00
1.0 25 0.1 3.72 1.00 2.0 25 0.1 8.72 1.00
1.0 100 0.01 7.67 1.00 2.0 100 0.01 17.67 1.00
1.0 100 0.05 8.36 1.00 2.0 100 0.05 18.36 1.00
1.0 100 0.1 8.72 1.00 2.0 100 0.1 18.72 2.00

Perhaps more to the point of the present discussion is a tabulation of alpha in terms of
ES, n and power, to see what alpha might be reasonable in terms of the other quantities,
rather than looking rather blindly toward an alpha of five percent.

The above formula for n in terms of α and β can be turned around to solve for α given
n and β. We have

(zα + zβ)2 = n(µ1 − µ0)2/σ2

and, for µ1 − µ0, zα and zβ positive,

zα + zβ =
√
n (µ1 − µ0)/σ =

√
nES,

zα =
√
nES − zβ,

Φ−1(1− α) =
√
nES − zβ,

1− α = Φ(
√
nES − zβ).

α = 1− Φ(
√
nES − zβ).
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Table 2: Level α, in terms of ES, n and β

ES n β ES
√
n− zβ α ES n β ES

√
n− zβ α

0.5 9 0.05 -0.145 0.56 1.5 9 0.05 2.855 0.00
0.5 9 0.10 0.218 0.41 1.5 9 0.10 3.218 0.00
0.5 9 0.20 0.658 0.26 1.5 9 0.20 3.658 0.00
0.5 25 0.05 0.855 0.20 1.5 25 0.05 5.855 0.00
0.5 25 0.10 1.218 0.11 1.5 25 0.10 6.218 0.00
0.5 25 0.20 1.658 0.05 1.5 25 0.20 6.658 0.00
0.5 100 0.05 3.355 0.00 1.5 100 0.05 13.355 0.00
0.5 100 0.10 3.718 0.00 1.5 100 0.10 13.718 0.00
0.5 100 0.20 4.158 0.00 1.5 100 0.20 14.158 0.00
1.0 9 0.05 1.355 0.09 2.0 9 0.05 4.355 0.00
1.0 9 0.10 1.718 0.04 2.0 9 0.10 4.718 0.00
1.0 9 0.20 2.158 0.02 2.0 9 0.20 5.158 0.00
1.0 25 0.05 3.355 0.00 2.0 25 0.05 8.355 0.00
1.0 25 0.10 3.718 0.00 2.0 25 0.10 8.718 0.00
1.0 25 0.20 4.158 0.00 2.0 25 0.20 9.158 0.00
1.0 100 0.05 8.355 0.00 2.0 100 0.05 18.355 0.00
1.0 100 0.10 8.718 0.00 2.0 100 0.10 18.718 0.00
1.0 100 0.20 9.158 0.00 2.0 100 0.20 19.158 0.00

In this context, the set of values of ES, n and β for which α = .05 would be appropriate
is given by

.05 = α = 1− Φ(
√
nES − zβ).

For example, when β = .20 (power = .80), zβ = 0.842, and

.05 = α = 1− Φ(
√
nES − 0.842).

This gives
Φ(
√
nES − 0.842) = .95

or √
nES − 0.842 = Φ−1(.95) = 1.645,

or √
nES = Φ−1(.95) = 2.487.

If ES =1.0,
√
n = 2.487, and the n needed is about 6. If ES = 0.5,

√
n = 2(2.487) = 4.974.

and n is about 25. If ES = 0.25,
√
n = 4(2.487) = 9.958 and n is about 100.

2.4 Approach via Decision Risk Analysis

But where should α and β come from? But should the procedure on even be centered on
these error probabilities?

Presumably, the prescribed level of significance α is set to a very small probability
because the losses associated with a Type I error are greater than those associated with
a Type II error. A rational way to make a decision (accept or reject H0) between the two
models, without pre-specifying the error rates, would be by means of decision risk analysis,
minimizing posterior expected loss. This approach presupposes specifying prior probs π0

and π1 for the two states H0 and H1 and a loss function L(a, s) giving the loss for each

2038



action a and state of nature, s. For a hypothesis testing problem, the actions a are to accept
or reject the null hypothesis, and the states of nature are that the hypothesis is true or that
the hypothesis is false.

Let us discuss the approach via decision risk analysis in more detail. An intelligent
choice of a level of significance α would involve several factors. One is that n, α and β
need to be decided upon jointly and intelligently.

The intelligent choice of how to do a test is illuminated by some concepts from decision
risk analysis. This is illustrated below.

The simplest hypothesis testing problem concerning a parameter θ, phrased as testing
H0 : θ = θ0 against H1 : θ = θ1, can be stated in terms of a two state, two action decision
problem, to be based on data represented as a sample vector y.

But first take a look at the no-data decision problem. Assume the following set-up.
Later, given data, Action 0 will correspond to accepting the null hypothesis; action 1, to
rejecting it. The loss of taking action a under state s is denoted by L(a | s).

Table 3: Loss Function, L(a|s)

State of Nature
0 1

Prior probabilities π0 π1

Action 0 (accept) L(0|0) L(0|1)

Action 1 (reject) L(1|0) L(1|1)

Typically, there will be gains instead of losses when the correct decision is made, so
L(0|0) and L(1|1) are negative. Also, the decision is obviously to take action 0 if L(0|0) <
L(1|0) and L(0|1) < L(1| 1), and the decision is obviously to take action 1 if L(1|0) <
L(0|0) and L(1|1) < L(0 | 1), so we assume that neither of these conditions hold.

The way to make a decision is to minimize expected loss, that is, to choose the action
that has the smaller expected loss. The expected loss of Action a given state s is

E [L(a|s)] = π0 L(a|0) + π1 L(a|1).

Each of the following is equivalent to the others.

Action 0 is better than Action 1

E [L(0|s) ] < E [L(1|s) ]

π0 L(0|0) + π1 L(0|1) < π0 L(1|0) + π1 L(1|1).

π0 [L(0|0)− L(1|0)] < π1 [L(1|1)− L(0|1)]

The difference L(1|0)− L(0|0) is the regret when the state is 0. It is the amount by which
the loss of the incorrect decision exceeds that of the correct decision when the state is 0. It
may be denoted by R(·| 0). The difference L(0|1) − L(1|1) is the amount by which the
loss of the incorrect decision exceeds that of the correct decision when the state is 1. It is
the regret when the state is 1 and may be denoted by R( · | 1). Continuing, we have

π0 [L(0|0)− L(1|0)] < π1 [L(1|1)− L(0|1)]

π0R( · | 0 ) < π1R( · | 1)

π1 / π0 > R( · | 0 ) /R( · | 1)
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Given data, the prior probabilites are replaced by posterior probabilities Pr(0|x) and Pr(1|x).
The posterior expected losses are compared. The expected posterior loss of Action a given
state s is

E [L(a|s) |x] = Pr(0 |x)L(a|0) + Pr(1|x )L(a|1).

The optimal rejection region can be described in terms of a set of values of x where
the expected posterior loss of action 1 is less than that of action 0. The above inequality
becomes: take action 1 if

Pr(State 1 |x) / Pr{State 0 |x) > R( · | 0 ) /R( · | 1).

This is equivalent to

π1 f1(x) / π0 f0(x) > R( · | 0 ) /R( · | 1).

This can be written as

f1(x) / f0(x) > π0R( · | 0 ) / π1R( · | 1).

The LHS, f1(x) / f0(x), is the likelihood ratio. Often it reduces to a function of sufficient
statistics, such as the sample mean and variance in the Gaussian case. If the null distribu-
tion is N (µ0, σ

2) and the alternative distribution is N (µ1, σ
2, then the LR f1(x)/f0(x)

reduces to
lnLR = ln f1(x) / f0(x) = n

µ1 − µ0

σ2
(x̄ − µ0 + µ1

2
).

The probability content of the region where the LR exceeds the RHS above in the space
of x under the null hypothesis (that is, in State 0) will be the optimal α. Note that it depends
upon the prior probabilities and the four loss values, through the ratio of regrets. The
rejection region is lnLR > lnπ0R( · | 0 ) / π1R( · | 1). This is nµ1−µ0

σ2 (x̄ − µ0+µ1
2 ) >

lnC, where
C = π0R( · | 0 ) / π1R( · | 1).

Let us call C the posterior regret ratio.
Now, this rejection region reduces to the set of samples x such that the mean barx

satisfies

x̄ > µ0 +
µ1 − µ0

2
+

σ2

n(µ1 − µ0)
lnC.

2.5 Optimal α

Now, the rejection region is the set of samples x such that

x̄ − µ0 >
µ1 − µ0

2
+

σ2

n(µ1 − µ0)
lnC.

The optimal alpha is the probability that this inequality holds, where the probability is com-
puted according to the null distribution given by f0(x). The above inequality is equivalent
to

z =
x̄− µ0

σ/
√
n

>
(µ1 − µ0)/2

σ/
√
n

+
σ√

n(µ1 − µ0)
lnC.

Note that the RHS is
√
nES/2 + (lnC) /

√
nES, where ES = (µ1 − µ0)/σ. This is

the value of z for the optimal α.
Table 4 lists values of the optimal α corresponding to some values of n,ES and C,

where C = π0R( · | 0 ) / π1R( · | 1). The values of zα∗ can range over the whole axis, so
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Table 4: Optimal αs for some values of n, ES and posterior regret ratio C =
π0R( · | 0 ) / π1R( · | 1).

ES n C z(α) α ES n C z(α) α

0.5 9 0.50 -0.290 0.614 1.5 9 0.50 -0.869 0.808
0.5 9 1.00 0.750 0.227 1.5 9 1.00 2.250 0.012
0.5 9 2.00 1.790 0.037 1.5 9 2.00 5.369 0.000
0.5 25 0.50 -0.483 0.685 1.5 25 0.50 -1.449 0.926
0.5 25 1.00 1.250 0.106 1.5 25 1.00 3.750 0.000
0.5 25 2.00 2.983 0.001 1.5 25 2.00 8.949 0.000
0.5 100 0.50 -0.966 0.833 1.5 100 0.50 -2.897 0.998
0.5 100 1.00 2.500 0.006 1.5 100 1.00 7.500 0.000
0.5 100 2.00 5.966 0.000 1.5 100 2.00 17.897 0.000
1.0 9 0.50 -0.579 0.719 2.0 9 0.50 -1.159 0.877
1.0 9 1.00 1.500 0.067 2.0 9 1.00 3.000 0.001
1.0 9 2.00 3.579 0.000 2.0 9 2.00 7.159 0.000
1.0 25 0.50 -0.966 0.833 2.0 25 0.50 -1.931 0.973
1.0 25 1.00 2.500 0.006 2.0 25 1.00 5.000 0.000
1.0 25 2.00 5.966 0.000 2.0 25 2.00 11.931 0.000
1.0 100 0.50 -1.931 0.973 2.0 100 0.50 -3.863 1.000
1.0 100 1.00 5.000 0.000 2.0 100 1.00 10.000 0.000
1.0 100 2.00 11.931 0.000 2.0 100 2.00 23.863 0.000

α∗ can be anywhere between 0 and 1. Note that C = 1, corresponding for example to
equal prior probabilities π0 = π1 = 1/2 and equal regrets R( · | 0 ) = R( · | 1), may be in
some sense considered a “neutral” value of C.

What would be the values corresponding to .05? Now, .05 = Pr{z > 1.645}, that
is, the 95th percentile of the standard Normal distribution is 1.645. So the set of input
values corresponding to the .05 level can be found (although the point is that there should
be nothing special about .05).

2.6 Posterior Probabilities

Now the posterior probabilities of the two models are pp0 = π0 f0(x)/f(x) and pp1 =
π1 f1(x)/f(x), where

f(x) = π0f0(x) + π1 f1(x).

That is to say, the decision rule is to take action 1 if

posterior odds, Pr(State 1 |x) / Pr{State 0 |x) > R( · | 0 ) /R( · | 1),

in short,
posterior odds, pp1/pp0 > R( · | 0 ) /R( · | 1).

In turn, this can be approximated as

π1 exp(LL1)nm1/2 / π0 exp(LL0)nm0/2 > R( · | 0 ) /R( · | 1),

that is
π1M1 n

m1/2 / π0M0 n
m0/2 > R( · | 0 ) /R( · | 1),
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where Mk = exp(LLk) is the maximized likelihood of Model k. This can be conveniently
considered as

(π1 π0) (M1/M0)n(m1−m0)/2 > R( · | 0 ) /R( · | 1),

that is,

prior odds × likelihood ratio × n(m1−m0)/2 > R( · | 0 ) /R( · | 1).

The decision-risk-analysis framework obviously extends to more than two actions.
Here there is some focus on the case of two actions because it corresponds to that form
of hypothesis testing.

Note that a prescribed significance level α (such as .05) is not an input to the problem
but rather could be computed as a function of the inputs. Often these inputs would be hard
to come by, so another approach, just focusing on the values of model-selection criteria, is
also discussed here.

3. Interval Estimation

What might be a model-selection approach to interval estimation (confidence intervals, or
Bayesian credibility intervals)?

3.1 Bayesian Credibility Intervals

A credibility interval is an interval of plausible parameter values, in the sense that these
values have relatively high posterior probability, that is, the set of parameter values θ for
which pp(θ |x) > C. The posterior probability is

pp(θ |x) = fΘ(θ) f(x|θ)/f(x),

where fΘ(θ) is the p.d.f. of the prior distribution on the parameter Θ. More generally, a
credibility region for a vector parameter θ is a set of plausible parameter values, in the
sense that these values have relatively high posterior probability, that is, the set of parame-
ter values θ for which pp(θ |x) > C. Using the Schwarz approximation, pp(θ|x) > C
is approximately LL(θ) − (lnn)m/2 > C, where m is the number of free parameters
estimated. BIC (Schwarz 1978) as defined here is (−2LL(θ) + (lnn)m), where LL(θ)
denotes the maximum log likelihood over θ. This is the Schwarz (1978) approximation to
−2 log posterior probability, so BIC is applicable to the formation of credibility intervals.
(That is, the Schwarz approximation ot the posterior probability of a model with m param-
eters is pp = LL(θ) − (lnn)m/2.)

So, large values of posterior probability correspond to small values of BIC as it is
expressed here (with the multiplier of -2). That is, a credibility region will be a set of
parameter values with sufficiently good (low) BIC. For Gaussian models with error variance
σ2, the statistic −2LL = n ln σ̂2; thus the credibility region is the set such that n ln σ̂2 +
(lnn)m is sufficiently small. Recall that n ln σ̂2 is the so-called deviance. So, in such
Gaussian models, the credibility region is equal to the set of parameter values for which the
deviance is sufficiently small.
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3.2 Confidence Intervals

A confidence interval for a mean is a set of values µ0 that are plausible in the sense that
they would be accepted if they were values specified in the null hypothesis. For example, in
testing the null hypothesis H0: µ = µ0 against two-sided alternatives, based on a sample
y1, y2, . . . , yn of n from a Normal distribution with specified standard deviation σ. The
value µ0 is accepted if |z(µ0)| ≤ z∗, where z∗ = zα/2 and zp denotes the upper p-th
percentile of the standard Normal distribution and z(µ0) = (ȳ − µ0)/σ/

√
(n). . This

interval of “acceptable” µ0 is the set {µ0 : ȳ − z∗σ/
√
n < µ0 < ȳ − z∗σ/

√
n }.

The confidence interval comes from the probability

Pr{µ0 − z∗ σȳ < Ȳ < µ0 + z∗σȳ | µ = µ0}.

Here σȳ is the standard deviation of the mean: σȳ = σ/
√
n. If z∗ is the upper α/2 per-

centile of the standard Normal distribution, then this probability is 1− α. This probability
is called the coverage probability of the interval because the probability statement above
can be rewritten as

Pr{Ȳ − z∗ σȳ < µ0 < Ȳ + z∗σȳ | µ = µ0} = 1− α.

So the probability that the interval (Ȳ − z∗σȳ, Ȳ + z∗σȳ) covers the true parameter
value is 1− α.

Because a confidence interval is a set of “acceptable” values µ0, this could, in the
model-selection context, be taken to mean a set of values for which the value of the MSC
is better than that of the MLE. Since the MLE has the highest value of LL, this means that
for a value to be in the confidence interval, the difference MSC for that value minus MSC
for the MLE must be less than the penalty amount:

Let MSC(µ̂) = −2LL(µ̂) + a(n)mk,where LL(µ̂) is the maximum log likelihood
at µ̂, a(n) = 2 for AIC and = lnn for BIC, and mk is the number of parameters estimated
in Model k, remembering that such MSCs have the form MSC = Lack-of-fit + Penalty,
where the Lack-of-Fit term is −2LLk and the Penalty for the number of parameters used
is of the form a(n)mk.

At this point, where we are considering inference about a single mean, we can consider
that there are two models, indexed by k = 0, 1, 0 for the mean specified to be µ0 and 1 for
the mean to be estimated. With specified variance, the number mk of parameters estimated
is m0 = 0 for µ specified to be µ0 and m1 = 1 parameter estimated when µ estimated
by the MLE, ȳ. A confidence interval could be defined according to the model-selection
criterion MSC as the set of values µ0 such that

MSC(µ0) ≤ MSC(ȳ).

Recall that for Gaussian models, the likelihood L is

L = L(µ, σ2) = (2πσ2)−n/2 exp(−(1/2σ2)
∑

(yi − µ)2,

as a function of the parameters µ and σ2. The log likelihood l is

l = −(n/2) ln(2π) − (n/2) lnσ2 − (1/2σ2)
∑

(yi − µ)2.

This gives
−2 l = n ln(2π) + n lnσ2 +

∑
(yi − µ)2 /σ2.

Denoting the maximum of this l over σ2 by LL, that is, with

µ̂ = ȳ and σ̂2 =
∑

(yi − ȳ)2/n,
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we have
−2LL = n ln(2π) + n ln σ̂2 + n.

Under H0 : µ = µ0, the estimate of σ2 is
∑

(yi − µ0)2/n. This gives
−2LL(µ0) = n ln 2π + n ln

∑
(yi − µ0)2/n + n.

The confidence interval could be taken as the set of µ0 such thatMSC(µ0) ≤MSC(ȳ).
This is

−2LL(µ0) + a(n)m0 ≤ −2LL(ȳ) + a(n)m1.

Since in this case m0 = 0 and m1 = 1, this is simply

−2LL(µ0) ≤ −2LL(ȳ) + a(n).

For AIC, a(n) = 2 and this is−2LL(µ0) ≤ −2LL(ȳ) + 2. For BIC, a(n) = lnn, so this
criterion for inclusion of µ0 in the confidence interval is −2LL(µ0) ≤ −2LL(ȳ) + lnn.

Alternatively, a confidence interval for µ could be taken to be a set of values for which
the value of the MSC is within an amount C of that of the MLE (the preceding case being
C = 0):

MSC(µ0) ≤MSC(ȳ) + C.

This is
−2LL(µ0) ≤ −2LL(ȳ) + a(n) + C.

This becomes

n ln 2π + n ln
∑n
i=1 (yi − µ0)2/n + n

≤ n ln(2π) + n ln
∑

(yi − ȳ)2/n + n+ a(n) + C.

This is
n ln

∑
(yi − µ0)2/n ≤ n ln

∑
(yi − ȳ)2/n+ a(n) + C.

This in turn is
n ln[

∑
(yi − µ0)2/

∑
(yi − ȳ)2] ≤ a(n) + C

or ∑
(yi − µ0)2/

∑
(yi − ȳ)2 ≤ exp{[a(n) + C]/n}

Now, the lefthand side is

[
∑

(yi − ȳ)2 + n(µ0 − ȳ)2] /
∑

(yi − ȳ)2 = 1 +
(µ0 − ȳ)2

(n− 1)s2/n
.

The inequality becomes

1 +
(µ0 − ȳ)2

(n− 1)s2/n
≤ exp{[a(n) + C]/n}

This is
(µ0 − ȳ)2

(n− 1)s2/n
≤ exp{[a(n) + C]/n} − 1

or
(µ0 − ȳ)2 ≤ [exp{[a(n) + C]/n} − 1](n− 1)s2/n.

This is
|µ0 − ȳ | ≤

√
[exp{[a(n) + C]/n} − 1]

√
n− 1 s/

√
n.
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Focusing on µ0, this is the confidence interval

ȳ −m.e. ≤ µ0 ≤ ȳ +m.e.,

where the margin of error m.e. is

m.e. =
√

[exp{[a(n) + C]/n} − 1]
√
n− 1 s/

√
n.

This is
m.e. = exp{(1/2)[a(n) + C]/n} − 1]

√
n− 1 s/

√
n.

This compares with the m.e. tα/2s/
√
n, where tp denotes the upper p-th percentile of the

Student’s t distribution with n − 1 degrees of freedom, for a 100(1 − α)% confidence
interval.

4. Posterior Probabilities for K Alternative Models

Approximate posterior probabilities can be obtained from BIC, as BIC is the first terms
of an expansion of −2 ln ppk, where ppk is the posterior probability of Model k. We
have BICk = −2LLk + (lnn)mk. The posterior probability ppk is proportional to
exp(−BICk/2). If there are prior probabilities πk, then this is adjusted to πk exp(−BICk/2).
That is, ppk = C πk exp(−BICk/2). Thus,

1 =
K∑
k

ppk = C
K∑
k

πk exp(−BICk/2),

so that C = 1/
∑K
k πk exp(−BICk/2).

5. Comparison of Means of Two Gaussian Distributions

Consider the two-sample problem for means µ1 and µ2,with null hypothesis H0 : µ1 = µ2

vs. Halt : µ2 > µ1, given samples of sizes n1 and n2 from Gaussian distributions with
specified common variance σ2. The test is to reject H0 if z > zα, where zα is the upper
α-th percentage point of the standard Normal distribution and

z = (ȳ1 − ȳ2)/σȳ1−ȳ2 ,

where σ2
ȳ1−ȳ2 = σ2 (1/n1 + 1/n2). (The concepts discussed here would of course apply to

two-sided alternatives as well.)
Given values of the error rates α and β, one can determine the needed sample size from

n1 + n2 = σ2 (zα + zβ)2/(µ1 − µ2)2 = (zα + zβ)2/ES2,

where here the effect size ES is given by ES = (µ1−µ2)/σ and zp denotes the upper p-th
percentile of the standard Normal distribution.

5.1 Approach via Decision Risk Analysis

But where should α and β come from? But should the procedure on even be centered on
these error probabilities?

Presumably, the prescribed level of significance α is set to a very small probability to
demand a sufficient level of “proof”. Beyond that, it could be because the losses associated
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with a Type I error are greater than those associated with a Type II error. A rational way
to make a decision (accept or reject H0) between the two models, without pre-specifying
the error rates, would be by means of decision risk analysis, minimizing posterior expected
loss. This approach presupposes specifying prior probs π0 and π1 for the two states H0 and
H1 and a loss function L(a, s) giving the loss for each action a and state of nature, s. For
a hypothesis testing problem, the actions a are to accept or reject the null hypothesis, and
the states of nature are that the hypothesis is true or that the hypothesis is false.

Let us discuss the approach via decision risk analysis in more detail. For another thing,
intelligent choice of a level of significance α would involve several factors. One is that
n, α and β need to be decided upon jointly and intelligently.

The intelligent choice of how to do a test is illuminated by some concepts from decision
risk analysis. This is illustrated below.

The simplest hypothesis testing problem concerning a parameter θ, phrased as testing
H0 : θ = θ0 against H1 : θ = θ1, can be stated in terms of a two state, two action decision
problem, to be based on data represented as a sample vector y.

But first take a look at the no-data decision problem. Assume the following set-up.
Later, given data, Action 0 will correspond to accepting the null hypothesis; action 1, to
rejecting it. The loss of taking action a under state s is denoted by L(a | s).

Table 5: Loss Function, L(a|s)

State of Nature
0 1

Prior probabilities π0 π1

Action 0 (accept) L(0|0) L(0|1)

Action 1 (reject) L(1|0) L(1|1)

Typically, there will be gains instead of losses when the correct decision is made, so
L(0|0) and L(1|1) are negative. Also, the decision is obviously to take action 0 if L(0|0) <
L(1|0) and L(0|1) < L(1| 1), and the decision is obviously to take action 1 if L(1|0) <
L(0|0) and L(1|1) < L(0 | 1), so we assume that neither of these conditions hold.

The way to make a decision is to minimize expected loss, that is, to choose the action
that has the smaller expected loss. The expected loss of Action a given state s is

E [L(a|s)] = π0 L(a|0) + π1 L(a|1).

Each of the following is equivalent to the others.

Action 0 is better than Action 1

E [L(0|s) ] < E [L(1|s) ]

π0 L(0|0) + π1 L(0|1) < π0 L(1|0) + π1 L(1|1).

π0 [L(0|0)− L(1|0)] < π1 [L(1|1)− L(0|1)]

The difference L(1|0)− L(0|0) is the regret when the state is 0. It is the amount by which
the loss of the incorrect decision exceeds that of the correct decision when the state is 0.
It may be denoted by R(|0). The difference L(0|1) − L(1|1) is the amount by which the
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loss of the incorrect decision exceeds that of the correct decision when the state is 1. It is
the regret when the state is 1 and may be denoted by R( | 1). Continuing, we have

π0 [L(0|0)− L(1|0)] < π1 [L(1|1)− L(0|1)]

π0R( | 0 ) < π1R( | 1)

π1 / π0 > R( | 0 ) /R( | 1)

Given data, the prior probabilites are replaced by posterior probabilities Pr(0|x) and Pr(1|x).
The posterior expected losses are compared. The expected posterior loss of Action a given
state s is

E [L(a|s) |x] = Pr(0 |x)L(a|0) + Pr(1|x )L(a|1).

The optimal rejection region can be described in terms of a set of values of x where
the expected posterior loss of action 1 is less than that of action 0. The above inequality
becomes: take action 1 if

Pr(State 1 |x) / Pr{State 0 |x) > R( | 0 ) /R( | 1).

This is equivalent to

π1 f1(x) / π0 f0(x) > R( | 0 ) /R( | 1).

This can be written as

f1(x) / f0(x) > π0R( | 0 ) / π1R( | 1).

The LHS, f1(x) / f0(x) is the likelihood ratio. Often it reduces to a function of sufficient
statistics, such as the sample mean and variance in the Gaussian case. The probability
content of the region where the LR exceeds the RHS above in the space of x under the null
hypothesis (that is, in State 0) will be the optimal α. Note that it depends upon the prior
probabilities and the four loss values, through the ratio of regrets.

The decision risk analysis framework obviously extends to more than two actions. Here
the case of two actions has been discussed because it corresponds to hypothesis testing.

Note that α is not an input to the problem but rather could be computed as a function of
the inputs. Often these inputs would be hard to come by, so another approach, via model-
selection criteria, is discussed here.

5.2 Approach via Model Selection Criteria

Model selection criteria were really developed mainly for choosing among models with a
somewhat large number of parameters. But it is interesting to see what they imply about
problems with smaller numbers of parameters. In particular, it is interesting to develop
model selection criterion-based tests as alternatives to conventional hypothesis testing,
which is coming under so much criticism.

5.2.1 BIC

Another approach is via model comparison by menas of a model selection criterion such
as BIC. (Schwarz 1978, Kashyap 1982). Given K alternative models, indexed by k =
1, 2, . . . ,K, the criterion BIC is

BICk = −2 LLk + mk ln(n) = LOFk + Penaltyk,
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where mk is the number of free parameters estimated in Model k. The term LOFk is the
Lack of Fit of Model k, namely, -2 LLk, where LL, for “log likelihood”, is the log of
the maximized likelihood.. The penalty of Model k due to the number mk of parameters
fit is mk lnn. BIC is a smaller-is-better criterion. BICk is the leading terms of a Tay-
lor series expansion of −2 ln ppk, where ppk = Pr(Model k | data) is the posterior
probability of Model k, given the data. The posterior probability ppk is approximately
ppk ≈ C exp(−BICk/2), where the constant C is determined so that the sum of the
probabilities over the models is 1.

An advantage of BIC is that, in a single criterion, it considers both model fit, via LOF,
and sample size, n, via the coefficient lnn in the penalty factor. In AIC, this coefficient is
2, independent of sample size.

In the two-sample problem, the number of models is K = 2, the number of parameters
in Model 1 is m1 = 1, the common mean, and the number of parameters in Model 2
is m2 = 2 means. Model 1 corresponds to the null hypothesis H0, Model 2, to the
alternative hypothesis H1. Let n = n1 + n2. Indexing the two models by k = 1, 2. we
have

BIC1 = −2 LL1 + m1 ln(n) = −2 LL1 + 1 ln(n) = −2 LL1 + ln(n),
BIC2 = −2 LL2 + m2 ln(n) = −2 LL2 + 2 ln(n).
In a notation familiar from the Analysis of Variance (ANOVA), the decomposition of

the sum of squares is
SST = SSB + SSW,

where

SST = SS(Total) =
G∑
g=1

ng∑
i=1

(ygi − ȳ)2,

SSB = SS(Between Groups) =
G∑
g=1

ng(ȳg − ȳ)2,

SSW = SS(Within Groups) =
G∑
g=1

ng∑
i=1

(ygi − ȳg)2.

The maximized likelihoods come out in terms of SST and SSW and are
maxL1 = (2πσ2)−n/2 exp[(−1/2σ2)SST ],
maxL2 = (2πσ2)−n/2 exp[(−1/2σ2) SSW],
and for the log maximum likelihoods

l1 = (−n/2) ln(2πσ2) − SST /2σ2

l2 = (−n/2) ln(2πσ2) − SSW/2σ2;

this gives

−2LL1 = −2 l1 = n ln(2πσ2) + SST/σ2 = n ln(2πσ2) + SSB/σ2 + SSW/σ2

−2LL2 = −2l2 = n ln(2πσ2) + SSW/σ2

So
BIC1 = − 2LL1 + lnn = n ln(2πσ2) + SSB/σ2 + SSW/σ2 + lnn,

BIC2 = −2LL2 + 2 lnn = n ln(2πσ2) + SSW/σ2 + 2 lnn.

The test is to reject if BIC1 > BIC2, that is, if BIC1 − BIC2 > 0. This difference is
BIC1 − BIC2 = [(SSB + SSW) − SSW]/σ2 − lnn = SSB/σ2 − lnn. Thus the test is to
reject if

SSB/σ2 > lnn.
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Now note that SSB = n1(ȳ1 − ȳ)2 + n2(ȳ2 − ȳ)2, where ȳ is the overall mean, (n1ȳ1 +
n2ȳ2)/(n1 + n2). This gives SSB = n1n2(ȳ1 − ȳ2)2/(n1 + n2). Note that this means
that the test statistic SSB/σ2 is equal to n1n2(ȳ1 − ȳ2)2/σ2(n1 + n2) = n1n2(ȳ1 −
ȳ2)2/σ2(1/n1 + 1/n2) = z2. Note further that

z2 = (ȳ1 − ȳ2)2/ [σ2 (1/n1 + 1/n2)] = (ȳ1 − ȳ2)2/σ2
ȳ1−ȳ2 .

Performing the test requires only comparing the two BICs. It does not directly involve
the distribution of the test statistic. Probabilities are already taken into account by the BICs.
However, it is interesting to note that in this comparison of two means, the BIC-based test
statistic is the square of a Normally distributed random variable and thus has a chi-square
distribution with one degree of freedom, χ2

1.
Consequently, the test has Type I error rate α = Pr{χ2

1 > lnn}. The α for various
sample sizes are given below.

Table 6: Alpha in terms of sample sizes

n = n1 + n2 ln n α = Pr{χ2
1 > ln n}

10 2.303 0.129
20 2.996 0.083
30 3.401 0.065
47 3.850 0.050
50 3.912 0.048

100 4.605 0.032

5.2.2 Another Criterion: AIC

Another well-known model selection criterion, actually preceding BIC, is AIC, Akaike’s
Information Criterion (Akaike 1973). This is AICk = −2 LLk + 2mk, k = 1, 2, . . . , K
models; that is, the factor lnn in BIC is replaced by 2 in AIC. Both model selection criteria
(MSCs) AIC and BIC are “penalized likelihood criteria” and take the form

MSCk = LOFk + Penaltyk = −2LLk + mk a(n),

where LOF is the Lack of Fit: LOFk = −2 LLk; the penalty term is mk a(n), the penalty
constant is a(n) = 2 for AIC and a(n) = lnn for BIC.

So, AIC does not include the direct dependence upon n that BIC does. AIC is derived
(Akaike 1973) as -2 times the estimated entropy of the distributions in the various models.
BIC is derived (Schwarz 1978) as the first terms of an expansion of -2 times the posterior
probability of Model k.

5.2.3 Discussion in Terms of the Likelihood Ratio Test

To test H0 against H1, one can maximize the likelihood L under H0 and H1 and compare
the results. In our indexing of models by k = 1, 2, . . . ,K, here K = 2 with k = 1 corre-
sponding to H0 and k = 2 corresponding to H1. The likelihood ratio for testing a hypoth-
esis is L1/L2. The Likelihood Ratio Test is to reject H0 if LR = maxL1/maxL2 < c,
where c is determined byα. That is, Pr(Type I error) = Pr(Reject H0 when H0 is true) =
Pr{maxL1/maxL2 < c when H0 is true} = α. We have

MSC1 = −2 ln maxL1 + m1a(n), MSC2 = −2 ln maxL2 + m2a(n)

2049



The difference in MSC values is MSC1 − MSC2 = −2 ln(maxL1/maxL2) + (m1 −
m2)a(n) = − 2 lnLR− (m2 −m1)a(n). So one rejects H0 if

MSC1 −MSC2 > 0;

This condition is −2LR− (m2 −m1)a(n) > 0, or −2LR > (m2 −m1)a(n).
The hypothesis H0 restricts the parameter to a subset of the parameter space. The gen-

eralized likelihood ratio statistic, often denoted by Λ, is the ratio of the restricted maximum
of the likelihood to the unrestricted maximum. Thus it is defined as

Λ = max
S0

L(θ) / max
S0∪S1

L(θ).

Here θ is the vector of parameters, S0 is the set over which θ varies when H0 is true, and
S0 ∪ S1 is the set over which θ varies when it is not restricted by the null hypothesis. In
the two-sample problem for means, θ = (µ1, µ2), S0 is the set in the parameter space
where µ1 = µ2, and S0 ∪ S1 is the whole (µ1, µ2) plane.

If the max of L occurs in S0, then λ = 1. The test is to reject for small values of the
test statistic, that is, to reject if

Λ < c,

where c is a suitably chosen constant that in the classical setting would be dependent upon
the level of significance, α.

Under some regularity conditions, the asymptotic (large-sample) distribution of−2 ln Λ
is chi-square with m2 −m1 degrees of freedom. (Presumably, this is why Akaike (1973)
used a multiplier −2 in defining his criterion. ) Note that if maxL1 ≥ maxL2 then Λ =
L1/L1 = 1 and LR = L1/L2 ≥ 1. If maxL1 < maxL2 then Λ = L1/L2 = LR < 1.

6. Discussion

In this paper, tests based on model-selection criteria are proposed as replacements for test-
ing based on p-values. We have shown how tests based on model selection criteria involve
the usually relevant statistics.

We note that the MSCs can be modified to take account of prior probabilities πk, k =
1, 2, . . . , K on the models. The likelihood Lk then changes to πk Lk. The log likelihood
lk is changed to lnπk + lnLk = lnπk + lk. The rejection criterion MSC1 −MSC2 > 0
becomes

[−2 lnπ1 − 2 LL1 + 1 a(n)]− [−2 lnπ2 − 2 LL2 + 2a(n)] > 0,

[−2 ln(π1/π2)− 2 LL1 + a(n)]− [−2LL2 + 2a(n)] > 0,

−2[LL1 − LL2] > 2 ln(π1/π2) + a(n)

The focus here has been on MLEs, often leading to a focus on means. It can also be of
interest to consider the extent to which comparison of medians, and effect size defined in
terms of them, makes more practical sense.

7. Appendix: Review of Some Model-Selection Criteria

Prominent among model-selection criteria are likelihood based model-selection criteria
such as AIC and BIC.
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Consider alternative models indexed by k = 1, 2, . . . ,K. Let mk = number of ex-
planatory variables used in Model k. Let Lk be the maximized likelihood for Model k
and LLk be the natural log of Lk. The “deviance” for Model k is ] −2LLk = LOFk.
Here LOF means lack-of-fit. For Gaussian models, Deviancek = n ln(SSEk / n). Note
that SSEk/N is the maximum-likelihood estimate of the error variance in Model k. Note
also that ln(SSEk/n) = lnSSEk− lnn, and in the present context the term− lnn can be
dropped for purposes of comparing models because it is the same for all models.

Penalized likelihood MSCs take the form MSCk = Deviancek + penalty termk. The
penalty termk = is a(n)mk, where mk = number of free parameters used in Model
k, a(n) is a function of n or a constant.

7.1 AIC and BIC

MSCs are an alternative to a sequence of hypothesis tests for choosing a model.

AIC: aN = 2 Akaike’s Information Criterion: AICk = Deviancek + 2mk

BIC: aN = lnN Bayesian Information Criterion: BICk = Deviancek + (lnN)mk

AIC and BIC involve the LOF (via the Deviance) and the number of parameters used to
achieve the fit.

BIC is usually preferred nowadays.

Note that BIC incorporates not only the Deviance and the number of parameters but also
the sample size.

Some modifications of these criteria follow.

CAIC. CAIC (Bozdogan 1987) or “consistent” AIC is

CAICk = −2LLk + (lnn+ 1)mk.

It is the same as BIC, but with lnn in BIC replaced by lnn+ 1 in CAIC.

The acronym CAIC also stands for Corrected AIC (also called :bias-corrected AIC):
In a multivariate regression problem, let p be the number of Ys and k be the number of Xs.
Then

CAIC = np ln 2π + n ln |Σ̂ | + n(n+ k)p/(n− p− k − 1)

= AIC + (p+ k + 1)(p+ 2k + 1)p / (n− p− k − 1− 1),

where AIC = np(ln 2π + 1) + n ln |Σ̂|+ 2pk + p(p+ 1).

AICc is AIC with a correction for finite sample size. It is

AICc = AIC + 2k(k + 1)/(n− k + 1),

where n denotes the sample size and k denotes the number of parameters. It is AIC but
with a greater correction, by an amount 2k(k + 1)/(n− k + 1), for extra parameters.
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7.2 Mallows’ Cp

Mallows’ Cp is a model selection criterion for alternative multiple regression models. The
statistic Cp is an estimate of the Mean Squared Error of Prediction (MSEP), so it is a
smaller-is-better criterion. Note that MSEP is the sum of the variance and squared bias.

Given K alternative models ] k = 1, 2, . . . ,K, denote the value of CP for Model k
by CP (k). Then CP (k) = (N − mk − 1)( MSEk

MSEfull
− 1) + (mk + 1). Here MSEfull is

MSEK , the MSE of the full model with the maximum number K of predictors. Note that
the second term mk + 1 increases with the number mk of variables in Model k. The first
term compares the MSE of Model K with that of the full model. For the full model, this
first term equals 0. The statistic MSEk includes both the error variance and the square of
the bias of Model k; the bias reflects the contribution of omitted variables. Note that this
criterion also is of the form, LOF + penalty term.

7.3 Development of BIC

We are viewing hypothesis testing as a particular case of model selection. Schwarz (1978)
considers the problem of selecting one of a number of models of different dimensions is
treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic
expansion. These leading terms in the expansion are a valid large-sample criterion beyond
the Bayesian context, since they do not depend on the prior distribution.

Kashyap (1982) reviews and applies this development. His proof has a few more com-
ments along with it than does Schwarz’.

Qualitatively, both Schwarz’ procedure and Akaike’s give ”a mathematical formu-
lation of the principle of parsimony in model building.” Quantitatively, since Schwarz’
procedure differs from Akaike’s only in that the dimension is multiplied by 1/2 log n,
Schwarz procedure leans more than Akaike’s towards lower-dimensional models (when
there are 8 or more observations). For large numbers of observations the procedures
differ markedly from each other. If the rather minimal assumptions made by Schwarz are
accepted, Akaike’s criterion cannot be asymptotically optimal. According to Schwarz, no
such proof of optimality seems to have been published before his work, and the heuristics
of Akaike(1974) and of Tong (1975) do not seem to lead to any such proof.

Following Akaike (1973, 1974), we multiply the criteria by -2, obtaining the expres-
sions

AIC = −2LL+ 2mk

and
BIC = −2LL+ (lnn)mk

for the two criteria. In this form, the criteria are of the form LOF + Penalty, where LOF
is lack of fit. Apparently, Akaike was motivated to introduce the multiplier of −2 because
of the analogy with −2 ln Λ being asymptotically distributed according to a chi-square
distribution, where the statistic Λ is the generalized likelihood ratio test statistic. Also,
−2LL in Gaussian models is n times the log of the MLE of the error variance σ2, n ln σ̂2.
This statistic −2LL = n ln σ̂2 is often called the deviance.

8. Notation

Here, the acronyms and symbols used are listed.
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8.1 Acronyms

AIC Akaike’s Information Criterion

BIC Bayesian Information Criterion

GOF goodness of fit

LHS lefthand side

LL maximized log likelihood; LLk, maximized log likelihood of Model k

LOF lack of fit

MSC Model selection criterion (such as AIC or BIC)

RHS righthand side

SIC Schwarz’ Information Criterion

8.2 Symbols

D dimension of the sufficient statistic Y in the expression for an Exponential (Koopman-
Darmois) distribution

fX(x)) value of the p.d.f. of the r.v. X, evaluated at x

K number of alternative models, indexed by k = 1, 2, . . . ,K

L(a, s) loss of taking action a when s is the true state of nature

M maximized likelihood; Mk, maximized likelihood of Model k

n sample size

ppk posterior probability of Model k

R( · | s) regret when the state is s

θ value of a parameter

Θ parameter, considered as a r.v. in a prior distribution

X,Y random variables (r.v.s)

x1, x2, . . . , xn observations: observed values of a r.v. X

y1, y2, . . . , yn observations: observed values of a r.v. Y

zp the upper p-th percentile of the standard Normal distribution

2053



9. Bibliography

9.1 References on p-values

American Psychological Association. “P-values Under Question.” Psychological Science
Agenda, March, 2016. http://www.apa.org/science/about/psa/2016/03/p-values.aspx

Miller, Rupert G., Jr. (1966), Simultaneous Statistical Inference. McGraw-Hill Book
Company, New York. (1981), Springer, New York.

Nestler, Scott, and Schramm, Harrison (2016), “P-value Primer: P OR (P-Values in
Operations Research) M N O P Q R S T You don’t need a license to download R, but
you should have a good understanding of p-values”, OR/MS Today, Vol. 43, June,
2016.

Trafimow, D. (2014). Editorial. Basic and Applied Social Psychology, 36(1), 1-2. Taylor
& Francis (Routledge), Philadelphia, PA.

Trafimow, D., and Marks, M. (2015), Editorial, Basic and Applied Social Psychology,
37(1), 1-2. Taylor & Francis (Routledge), Philadelphia, PA.

Wasserstein, Ronald L., and Lazar, Nicole A. (2016), “The ASAs Statement on p-Values:
Context, Process, and Purpose”. The American Statistician, Vol. 70, No. 2, 120 –
133.

9.2 References on Model Selection Criteria

Akaike, H. (1973), “Information Theory and an Extension of the Maximum Likelihood
Principle”, Proceedings of the 2nd International Symposium on Information Theory
(eds. B.N. Petrov and F. Csaki), 267-281, Akademia Kiado, Budapest.

Akaike, H. (1974), “ A New Look at the Statistical Identification Model”, IEEE Trans. on
Automatic Control, 19, 716 – 723.

Bozdogan, H. (1987), “Model Selection and Akaike’sIinformation Criterion (AIC): the
General Theory and its Analytical Extensions”, Psychometrika, 52, 345 - 370.

Burnham, Kenneth P., and Anderson, David R. (2002). Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. Springer.

Imori, Shinpei, Yanagihara, Hirokzu, and Wakaki, Hirofumi (2014), . “Simple Formula
for Calculating Bias-corrected AIC in Generalized Linear Models”, Scandinavian
Journal of Statistics, 41, 535–555.

Kashyap, R. L. (1982), “Optimal Choice of AR and MA Parts in Autoregressive Moving
Average Models”, IEEE Trans. Pattern Analysis and Machine Intelligence, 4, 99-
104.

Schwarz, Gideon (1969), “A Second Order Approximation to Optimal Sampling Regions”,
Annals of Mathematical Statistics, 40, 313 – 315.

Schwarz, Gideon (1971), “A Sequential Student Test”, Annals of Mathematical Statistics,
42, 1003 – 1009.

Schwarz, Gideon (1978), “Estimating the Dimension of a Model”, Annals of Statistics, 6,
461-464.

Sclove, Stanley L. (2017), . “Levels of Granularity: from Histograms to Clusters to Pre-
dictive Distributions”. Presented at the 2016 Annual Meeting of the Classification
Society, University of Missouri, June 1-4, 2016. To appear in the Journal of Statistical
Theory and Applications.

Tong, Howell (1975), “Determination of the Order of a Markov Chain by Akaike’s Infor-
mation Criterion”, Journal of Applied Probability, 12, 488 – 497.

2054




