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Abstract
Under a proportional hazards assumption, the time to event outcome and the predictive measures
are independent given the hazard function. Provided the model specification is valid, for large sam-
ples and consistent estimates of the hazard, the outcome and predictors should appear independent
within subsamples with similar values for the estimated hazard. We use this result to develop a
graphical diagnostic method. For a given sample point, we can fit a local survival model in the
neighborhood of sample points with similar values for the estimated hazard. For a well specified
model, the estimated local hazard function at this sample point would be expected to be close to
the hazard function estimated from the fitted model. We can splice together the differences between
the log estimated hazard for the fitted model and the local survival model in plots against individual
predictors. A well specified model should yield a scattering of points centered on the origin. If the
plot exhibits curvature then the fitted model would appear to be inadequate or inappropriate. We
demonstrate how these plots can identify necessary or useful transformations of the predictors.

Key Words: Model diagnostics, sufficient summary, model selection

1. Introduction

Model diagnostics are an important element of a regression analysis as the veracity of infer-
ences drawn from the analysis depends upon the appropriateness of the model assumptions.
Nelson and Noorbaloochi [6] developed splice plots for diagnosing the fit of generalized
linear regression models and compared the performance of splice plots to several graph-
ical diagnostic methods including residual plots, partial residual plots, CERES plots, and
smoothed residual plots. Based on the conditional independence of the outcome variable
and the explanatory measures given the regression function, splice plots compare the fitted
model with local models fit within neighborhoods of sample points with similar values for
the estimated regression function. Plotting the differences between the estimated regression
function and the locally estimated regression function can be used to assess model fit and,
in particular, can be useful for assessing the functional form of the parametric regression
model and identifying needed transformations of the explanatory measures.

A number of different diagnostic residuals have been developed for use with propor-
tional hazards models. Schoenfeld residuals [8] are used to assess the veracity of the pro-
portional hazards assumption, score residuals are used to investigate the influence of indi-
vidual observations on the estimated model parameters, and both martingale residuals [1],
[10] and deviance residuals [10] are used to investigate needed transformations of explana-
tory variables. Here we adapt splice plots for use with proportional hazards models and
compare these plots with martingale residual plots.

2. Splice Plots Background

Let A áá B denote independence of A and B and A áá B ¶C denote conditional in-
dependence of A and B given C. For a response variable Y and vector of continuous
explanatory variables X � �X1, . . . , Xp� consider a sample of n independent observations
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Figure 1: Conditional regression of Y against Xj in the neighborhood Si,e for (a) S a sufficient
summary or η̂ � η or (b) η̂ n η. t represents the pair �xij , yi� for the sample element �xi, yi�, S
represents �xij , m̂�xi��, and the a represent the sample elements falling in Si,ε. The solid curve
presents the local regression estimate m̂�xlj ¶Si,ε�.

�xi � �xi1, . . . , xip�, yi� drawn from the joint distribution of Y and X. A regression of the
yi on the xi estimates the conditional distribution f�y ¶X� yielding an estimate m̂�x� of
µ�x� � E�Y ¶X � x�. For many types of regression models this conditional distribution
is characterized by a function η�X� together with a set of constants, φ, that do not depend
on Y or X. This is the case for generalized linear regression models where the conditional
distribution for Y takes the form

f�y ¶X� � h�φ,X� exp vy B�µ�X�� �A�µ�X��
a�φ� � C�y, φ�|,

for some functions a, h,A,B,C and constant φ, where η�X� � g�µ�X�� is assumed to be
a linear combination of the X, or transformations of the X, for the link function g.

Note that Y áá X ¶ f�y ¶X� as all of the information the covariates X contain about
Y is contained in this conditional distribution function. If f�y ¶X� depends on X only
through S�X� then Y áá X ¶S�X�. Such an S is a sufficient dimension reduction sum-
mary [5, 7] as all of the information in the explanatory variables about the distribution of
the response Y is contained in the summary S. For a sufficient summary S and sample
element �xi, yi�, with S�xi� � si, consider the subsample of �xl, yl� belonging to the
neighborhood

Si,ε � r�x, y� � ¶S�xi� � S�x�¶ $ εx
for some ε % 0. For ε sufficiently small we would expect the yl and xl in Si,ε to appear
to be observations of independent random variables. If we then fit a well specified local
regression of the yl on any function T �xl� of the xl in Si,ε, the local regression estimate for
the conditional mean function, m̂�T �xl� ¶Si,ε�, should be roughly constant and close to
µ�xi� � E�Y ¶S�X� � si�. Further then, if the regression model fit to the entire sample
is well-specified then we would expect m̂�xi� to be near m̂�T �xi� ¶Si,ε�. In particular,
if T �X� � Xj and we regress the yl on the xlj in this neighborhood then we would ex-
pect m̂�xij ¶Si,ε� to be close to m̂�xi� as illustrated in Figure 1(a). If, however, we splice
the local differences m̂�xij ¶Si,ε� � m̂�xi�, or g�m̂�xij ¶Si,ε�� � η̂�xi� if we are fitting
a generalized linear model, together in a plot against the xij and see any systematic cur-
vature then we would have evidence that the specified regression model is inadequate or
inappropriately specified.
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If a generalized linear regression model fit to sample data is well specified then the
fitted regression function η̂�X� should be close to η�X� and should then function in the
argument above similarly to the sufficient summary S. For Si,ε now defined as

Si,ε � r�x, y� � ¶η̂�xi� � η̂�x�¶ $ εx,
if we estimate m̂�xij ¶Si,ε� from local models fit in these neighborhoods we would expect
similar behavior in plots splicing together the differences g�m̂�xij ¶Si,ε�� � η̂�xi�. For
a well specified model this plot should comprise a scattering of points centered around
the origin with apparent independence between these differences and the predictor. If the
plot displays any systematic curvature then there would appear to be a problem with the
model used to estimate η̂. In particular, consider η�X� � g�E�Y ¶ X�� � h�X� �
δ�Xj� for link function g, function h, and function δ of the jth covariate but we fit a
model assuming η�X� � h�X�. There will be neighborhoods where the yl and xl do not
look independent, the local regression function m̂�xij ¶Si,ε� is not flat, and the difference
m̂�xij ¶Si,ε� � m̂�xi� is not close to zero, as illustrated in Figure 1(b). In particular, if
ĥ�X� � h�X�, then in the subsample Si,ε, η�xl� � ci � δ�xlj� for ci � η̂�xi� and
g�m̂�xlj ¶Si,ε�� � η̂�xi� � δ�xlj�. Now, if we splice these local differences together in a
plot against the jth covariate we would expect to see a scattering of points highlighting the
component δ�Xj� missing from the regression model fit to the data.

3. Splice Plots for Proportional Hazards Models

Consider an event time T , a censoring time C, and vector of explanatory variables, X �

�X1, . . . , Xp�. The survival function for T given X � x is given by

S�t; x� � Prob�T % t ¶X � x� � exp��E t

0
λ�s; x� ds�

for the conditional hazard function

λ�s; x� � lim
δ�0

δ
�1
Prob�t & T & t � δ ¶x, T ' t�.

It is clear then that T áá X ¶λ�s; X��. All of the information the covariates X contain
about T is contained in this hazard function λ�s; X�. Here we focus on proportional
hazards survival models of the form

λ�s; x� � h0�s� exp�g�x��
for a baseline hazard function, h0 and a log hazard ratio function g. For such hazard
functions we then have that

T áá X ¶ g�X�. (1)

Further, if C áá �T,X� or C áá T ¶X then, following Dawid [2],

T áá �C,X� ¶ g�X�. (2)

The regression analysis estimates the conditional distribution of T given the covariates
X by modeling the hazard function λ�s; x� using the observed data �Y, D, X� where Y �

min�T,C� and D � I�C%T � indicates whether the event time was observed or censored. If
a fully parametric specification of a family of proportional hazard functions

rλ�s; x� � h0�s;φ� exp�g�x, θ�� ¶φ " Φ, θ " Θx
2011



is fit to the data then the estimated values θ̂, typically estimated using likelihood maxi-
mization, can be used to form an estimate λ̂�s; x� � h�s; φ̂� exp�g�x; θ̂�� of the hazard
function. If a semiparametric specification of a family of proportional hazards functions

rλ�s; x� � h0�s� exp�g�x, θ�� ¶ θ " Θx,
with h0 unspecified, is fit to the data, then we can combine the partial likelihood derived
estimates θ̂ with available methods for estimating the baseline hazard function, which use
the g�x; θ̂�, to obtain an estimate λ̂�s; x� � ĥ0�s� exp�g�x, θ̂�� for the hazard function.

Given Equations (1) and (2) we see that we can readily modify the argument in the sec-
tion above. Assume λ�s; x� � h0�s� exp�g�x; θ�� and we fit a model assuming λ�s; x� �
h0�s� exp�g�x, β��. Let

Si,ε � r�y, d,x� � ¶g�xi; β̂� � g�x; β̂�¶ $ εx
denote small neighborhoods constructed around a given sample value �yi, di,xi�. The
model fit to the data is well specified so, with sufficiently large n and small ε, we should
essentially have �Y,C� áá X ¶ g�X; β̂� for �Y,D, X� " Si,ε. Let ŵi,ε�xi� be a local
regression estimate for the conditional log hazard function derived from regressing the
�yl, dl� on the xl or any subset of the xl for �yl, dl,xl� " Si,ε. For brevity of discussion
we refer the reader to Loader [4] for a discussion of these local survival regression models.
With the near conditional independence in this neighborhood we would expect ŵi,ε�xi� �
log λ̂�s; xi� to be near zero in value. Further then, if we join or splice together these
individual local estimates, ŵi,ε�xi� � log λ̂�s; xi�, in a plot against the respective sample
values for individual covariates or functions of the covariates the constructed splice plots
should exhibit no systematic curvature.

In contrast to the above, assume that the relationship between T and the covariates is
given by λ�s; x� � h0�s� exp�g̃�x; θ�� but we fit the model λ�s; x� � h0�s� exp�g�x, β��
where

g̃�x; θ� � g̃�x;β, φ� � g�x;β� � d�x;φ�
for a function d. If g�x; β̂� and ĥ0�s� are close to g�x;β� and h0�s� then in the neigh-
borhood Si,ε around the ith sample value with covariate values xi and g�xi; β̂� � ci we
have log λ�s; x� � log�h0�s�� � ci � d�x;φ�. Now, as above, the ŵi,ε�xi� � log λ̂�s; xi�
will not tend to be close to zero and scatterplots of these quantities against the values of
the xij may exhibit systematic curvature. Furthermore, if d�x;φ� � δ�xj ;φ�, namely the
specified regression function is missing a component that is a function solely of the jth

covariate, then in the neighborhood Si,ε we have

log λ�s; x� � log ci � log h0�s� � δ�xi,j ;φ�
Here, the values of the ŵi,ε�xi� � log λ̂�s; xi� would be expected to be close to δ�xij ;φ�
and, hence, scatterplots of these quantities against the values of the xij will present the
form of the missing functional component in the fitted regression function.

4. Implementation and Empirical Performance

Simulation Studies: To demonstrate this diagnostic method we construct splice plots for
models fit to samples drawn from the population models presented in Table 1. We drew
samples of 500 elements from each population, fit a Cox proportional hazards model to
the sample data modeling the log hazard function as an additive linear function of the two
covariates, and constructed splice plots looking at potential transformations for each of
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Table 1: Simulation Study Population Models

T ¶X � x �Weibull�exp�g�x��, 2�, C ¶X � x � 0.5 � Exponential�0.25¶x1¶�
X � �X1

X2
� � MVN�0,Σ�, Σ � � 1.0 0.5

0.5 1.0
�

Simulation Models for g�X�
Scenario 3: g�X� � X1 �X2

Scenario 4: g�X� � 0.5X1 � 0.5X
2
1 �X2

Scenario 5: g�X� � log ¶X1¶ � ¶X2¶
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Scenario 1 − Splice Plot for X1
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Scenario 1 − Splice Plot for X2
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Scenario 2 − Splice Plot for X1

X1

Lo
ca

l M
od

el
 D

iff
er

en
ce

●

●
●

●

●

●
●

●●

●

●

●

●

● ●●

●

●
●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●●● ●
●●

● ●
●

●

●
●

●●
● ●

●

●

●●

●

●

●
●●

●

●

●

● ●
●

●●

●

●

●●
●

● ●
● ●

●

●
●

●

● ●

●
●

●
●

●

●●●
● ●● ●

●
●

●● ●

●

●

●
●

●

● ●

●

●
●

●

●
●●

●
●

●

●
●

●

●
●

● ●
●●●

●

●
●●

●

●

●●

●
●

●
●

●

●
●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
● ● ●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

● ●

●
●

●●

●

●
● ● ●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●● ●

●●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

● ●●
●●

●

●

●●

●

●

●●
●

●

●

● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●● ●
●

●

●
●●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●●
●

●

●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
3

−
1

0
1

2
3

Scenario 2 − Splice Plot for X2
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Scenario 3 − Splice Plot for X1
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Figure 2: Splice for survival models fit to samples drawn from population models in Table 1.

the individual covariates. Specifically, for the jth predictor, we constructed a neighbor-
hood around a sample point �yi, δi,xi� using the one-fifth of the sample values �yl, δl,xl�
with estimated values for ĝ�xl� closest to ĝ�xi�. Within this neighborhood we estimated
ŵi,ε�xi� � ŵi,ε�xij�, the conditional log hazard function at xij , using a local likelihood
second order survival model [4] regressing the �yl, dl� on the xlj in this neighborhood.

The constructed splice plots are presented in Figure 2. For the first of these scenarios,
as expected, the splice plots for both of the Xi present a scattering of points with little
indication of any curvature. In the second of these scenarios the fitted model is missing
X

2
1 as a predictor. In the splice plot for X1 we observe curvature consistent with this

missing quadratic term. The splice plot for X2 for this scenario exhibits an unexpected
distribution of points for the lower values of X2 that likely stems from the correlation

2013
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Figure 3: PBC Martingale Residual Plots. The first row of plots presents martingale residual plots
for albumin, bilirubin, and protime from model with no predictors. The second row of plots presents
martingale residual plots for log albumin, log bilirubin, and log protime from a model regressing
survival on age, edema, log albumin, log bilirubin, and log protime.

between X1 and X2 affecting the estimation of the ŵi,ε�xij�. As discussed Nelson and
Noorbaloochi [6], the splice plots for predictors other than those directly involved with
the missing functional component can exhibit some curvature but the curvature present
in the splice plots for the relevant predictors will tend to be much stronger. Lastly, for
the third scenario, the splice plot for X1 exhibits curvature that is stronger than that for
a simple logarithmic transformation of X1 but is consistent with the difference between a
logarithmic transformation and a linear function of X1. Here again, the splice plot for the
second predictor is perhaps a little less flat and featureless than we could expect but the plot
presents much less systematic curvature than is present in the plot for X1.

Mayo Primary Biliary Cirrhosis Dataset: We end this discussion with an application to
a well studied dataset. Therneau and Grambsch [9] discuss analysis of data from a Mayo
Clinic randomized clinical trial studying primary biliary cirrhosis (PBC) of the liver. The
data set comprises records for 312 individuals who participated in the trial and another 106
individuals who consented to provide study data, including study outcomes, but did not
participate in the trial. Here we model the association between survival and age, presence
of edema, serum albumin level, serum bilirubin level, and standardized blood clotting time
(denoted here as protime). We compare the splice plots constructed for serum albumin,
serum bilirubin, and protime to martingale residual plots constructed for these three predic-
tors. Again, for brevity, we refer the reader to Therneau and Grambsch [9] for a discussion
of martingale residuals.

The first row of plots in Figure 3 presents the martingale residual plots for these three
variables constructed from a model with no predictors included in the fitted model. In
the plot for serum bilirubin we see curvature consistent with a logarithmic function of this
predictor. The residual plots for serum albumin and protime are less clear in demonstrating
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Figure 4: PBC Data Splice Plots. The first row of plots presents splice plots for albumin, bilirubin,
and protime from model regressing survival on age, edema, albumin, bilirubin, and protime. The
second row of plots presents splice plots for log albumin, log bilirubin, and log protime from a
model regressing survival on age, edema, log albumin, log bilirubin, and log protime.

what, if any, transformations of these predictors would be beneficial. Therneau et al. [10]
fit a model with log transformations of all three of these predictors. The second row of
martingale residual plots in Figure 3 are constructed from this final fitted model; while not
entirely indicative of a good fit, these plots do not indicate substantial problems with the fit
of the model. Each of the plots presents a scatter of points that are generally flat though not
entirely flat, and perhaps even less flat in the log protime plot. In summary then, while the
fit of the model may not be ideal, the model could be expected to provide useful inference
regarding the association between mortality and these predictors.

The first row of splice plots presented in Figure 4 were constructed using a model
including these five predictors with no transformations. We see here as well an indication
in the plot for serum bilirubin that a logarithmic transformation of this predictor may be
beneficial. The splice plot for protime does not indicate a need to transform this predictor
while, here as well, the splice plot for serum albumin is a little difficult to interpret. For
the model fitting log transformations of these three predictors we constructed the splice
plots presented in the second row of Figure 4. As with the martingale residual plots for this
model, these splice plots do not clearly indicate substantial problems with the specification
of the model. The splice plots, while not ideal, present generally flat scatterings of points
with the plot for bilirubin suggesting that an additional or alternate transformation of the
bilirubin levels may be necessary.

In both the martingale residual plots and the splice plots we see that the log transforma-
tion of the bilirubin measure leads to a better fitting model but there may be some additional
improvement in fit to be found. This dataset has been examined in numerous discussions
of diagnostic methods for Cox proportional hazards models. In these previous discussions
a logarithmic tranformation of bilirubin is commonly identified as leading to an improve-
ment in the fit of the survival model but some of the previous examinations of this dataset
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have identified an inverse square root transformation as potentially useful, see León and
Tsai [3]. We will not pursue an analysis of this dataset in any greater depth as the focus
here is simply to demonstrate the application of splice plots for model diagnostics.

5. Summary and Discussion:

For assessing fit of generalized linear models, Nelson and Noorbaloochi [6] found that
splice plots offer some improvement in performance over many common residual plots and
similar performance to smoothed residual plots for smaller numbers of predictors. For sit-
uations with a large number of predictors, splice plots performed better than the smoothed
residual approaches. Here we found similarly good performance for splice plots in as-
sessing the fit of proportional hazards models, with comparable performance to martingale
residual plots for these models.

The approach discussed for developing splice plots for proportional hazards models
and generalized linear models depends solely on the conditional independence of the out-
come and predictors given the regression function and the ability to express this conditional
independence as equivalent to the conditional independence of the outcome and predictors
given an simple estimable univariate function of the predictors. This approach should be
applicable and perform well in other situations were conditional local regression estimates
can be applied to estimate the conditional mean or suitable transformation of the condi-
tional mean for the outcome given the predictors.
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