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Abstract
This paper provides analyses of multivariate daily immigration data, separating the long-term trend
from annual and weekly patterns of seasonality via the use of so-called canonical models in an
unobserved components framework. These canonical models are as stable as possible, having the
maximal amount of white noise already removed, resulting in a less variable stochastic component.
To further separate trend and annual seasonality, we employ a Hodrick-Prescott (HP) filter to the
combined component, and using an implied models framework determine the uncertainty. To sur-
mount the computational challenges, we implement forecast extension together with application of a
bi-infinite filter composed of the HP and model-based aspects. Parameter estimates are obtained by
a simple method-of-moments estimator, which is modified to ensure that no spurious co-integration
effects are present in the model. These methods are demonstrated on the six high frequency immi-
gration series, successfully decomposing the data into diverse components that each have correct
(and disjoint) dynamic properties.

Key Words: Spectral analysis, signal extraction, moving holidays, outlier effects

Disclaimer

Any views expressed are those of the author(s) and not necessarily those of the U.S. Census
Bureau.

1. Introduction

A key challenge of high frequency time series data is separating low frequency content
through signal extraction. For economic data that exhibits a notable trend, viewed heuris-
tically as a frequency-zero phenomenon, the increase of the sampling frequency generates
a confounding of trend with other salient patterns such as seasonality. This is because
stochastic effects in a series that recur once a year have frequency proportional to the recip-
rocal of the period, which is increasing in the sampling frequency. For example, a seasonal
effect for quarterly data has frequency 2π/4; for monthly data the frequency is 2π/12; for
daily data the frequency is 2π/365 (ignoring leap year). The frequency 2π/365 is hard to
distinguish numerically from zero, and hence trend and annual seasonality is easily con-
founded in daily time series. For an illustration, consider the six time series of New Zealand
(NZ) immigration plotted in Figure 1.

This facet of high frequency data is counteracted by the abundance of sample: clearly,
if 10 years of daily data are available, this should be as good or better – for the purposes of
extracting trend and seasonality – as having 10 years of monthly data. However, note that
the objective in the former case is more demanding than in the latter case: we now seek
a daily trend, which is more difficult than producing a monthly trend. Although down-
sampling the high frequency data from daily to monthly would yield a time series where
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Figure 1: Six (6) New Zealand immigration series (September 1, 1997 through July 31,
2012).

there is a more obvious separation of the components in the frequency domain, filtering
such – apart from doing ad hoc interpolation – is of no use in producing a daily trend. The
lower frequencies of the data are closely entwined, in a way that is not present to such a
degree in data that is sampled less frequently. We advocate a solution to this challenge
through the concept of canonical models, together with use of the Hodrick-Prescott (HP)
filter (Hodrick and Prescott, 1997).

Canonical models were introduced by Hillmer and Tiao (1982), and essentially refer to
stochastic time series models where the maximal amount of white noise has already been
removed from the definition of the component. In other words, there is no extraneous nois-
iness inherent to the stochastic process (see Gómez (2001) for a canonical trend example).
Having implemented such canonical models for atomic components in our custom soft-
ware sigex, we apply these constructs to the modeling of New Zealand immigration data,
wherein both a clear trend and a salient seasonal pattern are evident.

These models alone are unable to discriminate trend from annual seasonality (cycle, for
short) based upon the available sample, and so we proceed by extracting a joint component,
followed by application of the HP filter to separate the signal according to pass-band (trend)
and stop-band (cycle). The combination of an ad hoc filter with a model-based paradigm
has precedent in the univariate work of Kaiser and Maravall (2005). This is an effective
means of separating content, although the signal-to-noise ratio must be set appropriately,
and the filter must be combined with the model-based filter of the combined trend-cycle
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component and applied to forecast-extended data. An additional challenge is determining
the appropriate signal extraction uncertainty for the trend, or for more complex signals that
incorporate the trend (such as the seasonal adjustment).

Another facet of our analysis is that the daily series are modeled multivariately, utiliz-
ing the general structures described in McElroy (2017), which allow for different types of
seasonal co-integration among batches of series. These in turn yield informative economet-
ric relationships with attractive interpretations, while simultaneously improving model fit
and reducing signal extraction uncertainty. However, the advantages of a multivariate anal-
ysis are offset by the computational challenges associated with big data. With the NZ data,
one faces the prospect of computing both the Gaussian likelihood and signal extraction
estimates for six series and almost 6000 observations. In order to estimate the parame-
ters, we utilize the method-of-moments (MOM) estimator proposed in McElroy (2017),
with modifications to diminish the influence of spurious co-integration implied by reduced
rank estimated covariance matrices. These modifications are very important in applica-
tions, because permitting false co-integration effects yields signal extraction filters with
insufficiently strong noise suppression bands, resulting in signal leakage onto associated
components.

These novel facets – canonical atomic models, separation of trend and cycle via HP fil-
tering, and invertible MOM estimators – together yield a computational feasible decompo-
sition of the immigration data into the three chief dynamics: trend, cycle (annual seasonal-
ity), and weekly seasonality. Along the way, we have a model-based interpretation for each
component (including the trend and cycle, via the implied model paradigm of Kaiser and
Maravall (2003)) that is capable of describing co-integration effects explicitly; should any
component exhibit undesirable characteristics (e.g., seasonality in the trend component),
the methodology can easily be tuned in an intuitive manner to yield extracted components
possessing sufficient fidelity to their target process’ dynamics.

Below (Section 2) we provide a description and exploratory analysis of the NZ data
that motivated this work. Having had little success with basic atomic models, in our final
analysis we utilized canonical atomic models, which are reviewed in Section 3. Estimation,
and the invertibility modifications to the MOM estimators, is discussed in Section 4, while
the implied models framework, and the choice of HP signal-to-noise ratio, is discussed in
Section 5. Signal extraction is reviewed in Section 6, with details on how an ad hoc filter
such as the HP can be combined with a model-based filter, and how the mean squared error
of extracted components can be quantified. These techniques are applied to the data in
Section 7, along with our final remarks in Section 7.3.

2. New Zealand Demographic Data

This paper studies six daily imigration series of New Zealand, covering the period Septem-
ber 1, 1997 through July 31, 2012. A description of each series is given below:

NZArr New Zealand residents arriving in New Zealand after an absence of less than 12
months.

NZDep New Zealand resident departures for an intended period of less than 12 months.

VisArr Overseas residents arriving in New Zealand for a stay of less than 12 months.

VisDep Overseas residents departing New Zealand after a stay of less than 12 months.
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PLTArr Permanent and Long Term Arrivals includes overseas migrants who arrive in New
Zealand intending to stay for a period of 12 months or more (or permanently), plus
New Zealand residents returning after an absence of 12 months or more.

PLTDep Permanent and Long Term Departures includes New Zealand residents departing
for an intended period of 12 months or more (or permanently), plus overseas visitors
departing New Zealand after a stay of 12 months or more.

Figure 1 displays each of the series, and several patterns of seasonality are present,
apart from the overall trend growth. There is an annual pattern, and secondarily (though
not apparent) a weekly pattern. While a monthly pattern seems plausible, it is not present
in this particular series.

In order to get a crude initial analysis of each series main features, we compute spectral
density estimates via an autoregressive spetral estimator (Tiao and Tsay, 1983) and mark
with vertical lines the chief frequencies of potential interest (Bell and Hillmer, 1984). In
Figure 2 we display the spectral densities in units of a daily frequency; spectral peaks of a
cusp-like convexity are known to correspond to periodic behavior in the process’ autocor-
relation function (Findley, 2005), where the period is given by 2π divided by the radians
frequency of the peak. In the spectral plot, the x-axis has already been normalized, so
that the ordinates correspond to the number of cycles per year (i.e., the number of times a
phenomenon occurs per year). The peaks indicated by the vertical red lines correspond to
365/7, 2 ·365/7, and 3 ·365/7, or roughly 52, 104, and 156 – hence once, twice, and thrice
a week.

The green line denotes twelve cycles per year, i.e., the monthly frequency, and no such
effect is apparent in the series. The annual or fundamental cycle, which corresponds to
more conventional notions of seasonality, is the blue line. One of the key challenges with
daily data is the entanglement of trend and fundamental seasonality. This is because the
fundamental seasonal frequency is 2π/365, or .99 degrees, which is very close to zero,
the trend frequency – this poses a difficulty for likelihood evaluation and signal extraction
computation.

In order to better measure the fundamental seasonality, we proceed to difference the
data, which yields growth rates (versus the original levels). This will annihilate the trend
peak in the spectrum, and may help to identify annual and monthly spectral peaks. Figure
3 displays the results: the weekly effects are still apparent; now the annual seasonality has
been wiped out, and no monthly peak is apparent either.

Although down-sampling (or flow aggregation) allows us to separate the annual season-
ality from the trend, the resulting data process would no longer be high frequency, defeating
the objectives of analysis.

3. Modeling

Our basic model begins with the daily data, not paying particular attention to the day of
week pertaining to each time index – this will be captured through the weekly seasonal
effect. We propose a model for the N -variate series {yt}, which has been appropriately
transformed, providing an additive decomposition into independent latent components:

yt = µt + ξt + ιt + zt. (1)

See Harvey (1989) for background on this general approach to modeling time series. Here
{µt} incorporates both the stochastic trend and the annual seasonality, and is denoted as the
trend-cycle component. Also, {ιt} is a stationary transient (or irregular), and the weekly
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Figure 2: AR spectral density estimate of 6 New Zealand immigration series (September
1, 1997 through July 31, 2012). Vertical red lines correspond to once a week, twice a week,
and thrice a week phenomena; blue line corresponds to annual phenomena, and green line
corresponds to monthly phenomena.

seasonal component is {ξt}. We have omitted a monthly seasonal component for the retail
data, as their inclusion was not really warranted by the spectral analysis. Fixed effects are
incorporated through zt, which consists of a set of regressors (e.g., moving holidays and
outliers) – these may differ from series to series. Each of these latent processes involves
model parameters, which will need to be estimated in a preliminary modeling stage. Condi-
tional on the fitted model, one may proceed to forecasting and signal extraction, which will
allow optimal estimation of trend, seasonal, fixed, or transient effects. The fixed effects zt
take the form

zt = x′t β.

Here xt is a vector of r regressors, and β is the corresponding parameter. These regressors
include the fixed effects, namely additive outliers (an indicator regressor) and moving hol-
iday effects. The trend and seasonal latent processes will be supposed to be non-stationary,
being defined such that differencing by a polynomial δω(B) yields a mean zero, stationary
time series. Here, for any ω ∈ [0, π], we define

δω(B) = 1− 2 cos(ω)B +B2.

As a special case δ0(B) = (1−B)2; however, we denote single differencing by ∇ =
1 − B. We henceforth suppose the total order d of trend differencing (1−B)d satisfies
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Figure 3: AR spectral density estimate of 6 New Zealand immigration series in growth
rates (September 1, 1997 through July 31, 2012). Vertical red lines correspond to once
a week, twice a week, and thrice a week phenomena; blue line corresponds to annual
phenomena, and green line corresponds to monthly phenomena.

d ≤ 2.
In general, the null space of δω(B) has the basis of time series e±iωt, i.e., all time

series xt such that δω(B)xt = 0 can be written as a linear combination of the functions
e±iωt. Now the frequencies appropriate for annual and weekly effects in a daily time series
are simply given by dividing the corresponding daily period into 2π, yielding 2π/365 and
2π/7. (If desired, leap year could be accounted for by taking the average year length
over four years to be 365.25, but such subtleties make no difference to model fitting.)
These are the chief harmonics, although higher multiples of such frequencies might also be
considered. Combining the weekly frequency with its double and triple frequency aliases,
we obtain

δ2π/7(B) · δ4π/7(B) · δ6π/7(B) = 1 +B +B2 +B3 +B4 +B5 +B6 =: U(B),

which is verified by polynomial arithmetic. This U(B) is the differencing operator for the
whole weekly seasonal component, as discussed below. We use each of these differencing
polynomials to define latent components, by imposing that the differenced component is a
white noise process. In each case we denote the differenced component by an underscore.
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Therefore we have

µ
t

= ∇µt ∼WN(0,Σµ)

ξ
t

= U(B)ξt ∼WN(0,Σξ)

ιt ∼WN(0,Σι).

The innovation covariance matrices are unknown parameters – in this case there are three
of them. The first component encapsulates the trend, along with any long-term movements.
Because the annual frequency of 2π/365 is so close to zero, such a trend component will
also tend to capture annual seasonality. For this reason we refer to the component as the
trend-cycle (where cycle is a short term for annual seasonality). As for weekly season-
ality, the spectral plot in Figure 2 indicates that the three weekly peaks can have varying
width. As argued in McElroy (2017), it is advantageous to entertain a more nuanced weekly
specification, known as the atomic specification:

ξt = ξ
(1)
t + ξ

(2)
t + ξ

(3)
t

ξ(1)
t

= δ2π/7(B)ξ
(1)
t ∼WN(0,Σ1)

ξ(2)
t

= δ4π/7(B)ξ
(2)
t ∼WN(0,Σ2)

ξ(3)
t

= δ6π/7(B)ξ
(3)
t ∼WN(0,Σ3).

This atomic specification yields a total of five covariance matrix parameters for the full
model. In order to obtain a greater separation between components, we define them in
such a way that the maximal amount of white noise is removed – this is referred to as
stabilization. This specification takes the scalar portion of a component’s pseudo-spectral
density, namely |δω(e−iλ)|−2, and subtracts off its minimum value

c = min
λ∈[−π,π]

|δω(e−iλ)|−2.

Then the stabilized atomic model has pseudo-spectral density(
|δω(e−iλ)|−2 − c

)
Σ.

This still defines a difference stationary process, but now the differenced component has
a moving average structure instead of being white noise. In sigex the moving average
polynomial is computed using spectral factorization, and the resulting stabilized atomic
model is used to fit the data.

In order to fit these latent component models, it is necessary to obtained the reduced
form representation for the observed process. Since all the differencing operators are dis-
tinct (i.e., the polynomials share no common roots), the minimum differencing polynomial
that reduces the data to stationarity is given by their product, i.e.,

δ(B) = δ2π/365(B) · Uw(B) = δ2π/365(B) · δ2π/7(B) · δ4π/7(B) · δ6π/7(B).

Applying δ(B) to (1) yields

y
t

= δ(B)yt = δ2π/365(B) · Uw(B)µt

+ Uw(B) ξa
t

+ δ2π/365(B) ξw
t

+ δ2π/365(B) · Uw(B) ιt

+ δ2π/365(B) · Uw(B) zt.
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In the case of atomic weekly seasonals, we also have the expression

ξw
t

= Uw(B)ξwt = δ4π/7(B)·δ6π/7(B) ξ(1)
t

+δ2π/7(B)·δ6π/7(B) ξ(2)
t

+δ2π/7(B)·δ4π/7(B) ξ(3)
t
.

The autocovariance sequence of {y
t
} is easily computed from these equations. In fact,

the equation for y
t

takes the form of three (five in the case of atomic weekly seasonals)
independent vector moving average processes, of various orders, whose moving average
polynomials are given by the various products of differencing polynomials, each being
driven by independendent white noises of variances given above.

Regarding the first and last terms, the fixed effects: we simply apply the differencing
operator to each component regressor of xt – so long as this is not annihilated, the fixed
effect is identifiable (otherwise, it is redundant with at least one of the components, and can
safely be eliminated from the model). Let us denote this vector of differenced regressors,
for the trend and non-trend effects, via

xt = δ(B)xt.

Then y
t
− x′tβ is mean zero, with autocovariance structure given by summing the autoco-

variances of the three (or five) latent moving average processes. Thus, the parameter vector
is composed of β and the parametrizations of all of the covariance matrices, utilizing the
Cholesky parametrization discussed in McElroy (2017).

4. Model Estimation

With a fitted model in hand, we can proceed to check the goodness-of-fit via examination
of the time series residuals. If the model seems to be adequate, we may consider more
parsimonious nested alternative models. For example, if a covariance matrix Σ has small
eigenvalues, we might attempt to fit a nested model where Σ is enforced to have reduced
rank. Estimation of the parameters can be accomplished in the sigex software via the MOM
(method of moments) scheme; maximizing the Gaussian likelihood is not really feasible,
due to the high dimension of the parameter space. The final parameter estimates will be
denoted θ̂.

The MOM estimator of McElroy (2017) involves a set of equations involving compo-
nent and process spectral densities, which are solved for the various innovation covariance
matrices Σ. The equations involve the autocovariance function of the differenced process
{y

t
} at various lags, and hence the parameter estimates are obtained by subsituting sample

autocovariances in the same formulas. Whereas a single likelihood evaluation can take a
minute or more for the data considered in this paper, the MOM calculation is complete in
a few seconds. Consistency and asymptotic normality of these estimators has been estab-
lished in a working paper; there is an efficiency loss as compared to MLE. Although the
estimators converge in probability to the true covariance matrices, which are non-negative
definite, the actual estimates can have negative eigenvalues in practice.

Because such estimates are not interpretable as covariance matrices, and are thereby
useless for statistical applications such as signal extraction, it is necessary to modify the
straight MOM to a non-negative definite version. This can be done by taking the max-
imum of each eigenvalue with zero. However, a singular covariance matrix leads to an
interpretation of co-integration in the original series, as discussed in McElroy (2017), and
furthermore indicates a very distinctive behavior in the signal extraction filter. McElroy
and Trimbur (2015) showed that an implication of co-integration is that optimal signal ex-
traction filters may have nonzero gain functions in the stop band. That is, in the simple

1908



case where only a trend and irregular component is present, and supposing that the trend
covariance Σµ is reduced rank, the noise extraction filter at frequency zero is

1N − L (L′Σ−1ι L)L′Σ−1ι ,

where L is the lower triangular Cholesky factor of Σµ. Now when Σµ is full rank, the noise
extraction filter at frequency zero is equal to the zero matrix, which corresponds to the full
trend suppression needed to estimate the irregular; but in the case of a co-integrated trend –
which corresponds to a reduced rank Σµ – the frequency response function can be nonzero.
If the data really are not really co-integrated the noise suppression will be inadequate, and
long-term movements will leach into the extracted irregular.

This is only a simple illustration of a more general phenomenon. In our case of five
components, an unwarranted co-integration effect (at frequency zero, or at one of the
weekly seasonal frequencies) will result in the inadequate suppression of that particular
component when it is featured as noise – for instance, unwarranted co-integration at fre-
quency 4π/7 will generate a problem for extracting either the trend-cycle, the first sea-
sonal, the third seasonal, or the irregular (or combinations thereof), with dynamics of the
second weekly seasonal leaching out. For this reason, great care is needed to ensure that
no co-integration effects are imputed to the model unless they are truly warranted. Simply
thresholding the eigenvalues of a MOM estimate to zero can generate just such a difficulty,
as the resulting estimate would have reduced rank.

To rectify this problem, we describe a procedure that modifies a given MOM estimate
to a close positive definite covariance matrix, by modifying its correlations while leaving its
variances intact. The Generalized Cholesky Decomposition (GCD) of a covariance matrix
is discussed in Golub and Van Loan (1996). Also, condition numbers are defined in McEl-
roy (2017) that describe near-singularity in a scale-free way: they are the logged diagonal
entries in the GCD of the associated correlation matrix. Let a j-dimensional covariance ma-
trix be denoted Σj , which can be decomposed as Σj = Lj Dj L

′
j for a unit lower-triangular

Lj and a diagonal matrix Dj . Letting the lower row of Lj be denoted [`′j , 1], it is known
that

gj+1 = dj+1 + `′j+1Dj `j+1,

where gj+1 denotes the lower right entry of Σj+1. Moreover, the j+ 1th condition number
can be expressed as

τj+1 = − log (gj+1/dj+1) = − log
(
1 + `′j+1Dj `j+1/dj+1

)
.

These are recursive relations, so that for a given N -dimensional Σ we can examine the
upper left submatrix Σj for 1 ≤ j ≤ N and recursively compute the condition numbers
τj . Now τj = −∞ corresponds to singularity (it is shown in McElroy (2017) that certain
partial correlations are equal to±1 in this case); hence, if we wish to modify a given Σ such
that the condition numbers exceed some minimum threshold, then we must modify either
`j+1 or Dj . Whereas the former is related to linkages between variables, the each dj is a
partial variance (of the jth variable given the preceding variables 1 through j−1); choosing
to modify these to some new d̃j , we see how the condition number changes accordingly.
Thus, if we set τj+1 equal to a desired threshold α, and given that we have already modified
in a recursive fashion the preceding Dj to D̃j , we have the formula

d̃j+1 =

(
exp{−α} − 1

`′j+1 D̃j `j+1

)−1
. (2)
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This suggests the following algorithm to produce a positive definite modification of a
given Σ matrix: compute the GCD, and iteratively check whether 1/dj+1 < (exp{−α} −
1)/`′j+1 D̃j `j+1; if so, we replace dj+1 by d̃j+1 (2) and increment j. This yields a new

Σ̃ = L D̃ L′,

where all the condition numbers are bounded below by α. In practice, the thresholds for α
can be set according to the criteria discussed in McElroy (2017). For instance, α = −1.66
corresponds to a partial correlation of .90; this is sufficiently distinct from unity, so as to
ensure there is no signal leakage.

5. Implied Models from an Ad Hoc Filter

For model-based signal extraction an optimal extraction (i.e., minimal Mean Squared Error
(MSE) among all linear estimators) of signal {st} from {yt} is given by a filter Ψ(B) with
frequency response function

Ψ(e−iλ) = fs(λ) fy(λ)−1,

where fs and fy are the pseudo-spectral densities of the signal and the data process. (See
McElroy and Trimbur (2015) for details.) That is, ŝt = Ψ(B)yt is the extraction and equals
E[st|{yt}t∈Z] when the process is Gaussian. This is known as the Wiener-Kolmogorov
estimator. In contrast, we may consider ad hoc filters such as the Hodrick-Prescott (HP)
filter. The HP filter has frequency response function (frf) given by

H(e−iλ) =
q

q + (2− 2 cos(λ))2
,

where q > 0 is the signal-to-noise ratio (snr). Taking q larger makes the filter resemble
the identity, whereas low values of q indicate that more smoothing is necessary, and the
frf has a low-pass shape. Clearly at frequency zero the frf equals one, and the value of λ
yieldingH(e−iλ) = 1/2 is arccos(1−√q/2). This suggests a relationship between the snr
and the cutoff between low-pass and high-pass bands; see Harvey and Trimbur (2003). For
example, to capture effects of a ten-year period in quarterly data, we can set 2π/λ = 40
and obtain q−1 = 1649; Hodrick and Prescott (1997) advocated q = 1/1600 for quarterly
data, which yields a cutoff period of 39.7 quarters.

However, this rule for separating phenomena still allows some leakage of signal effects
into the noise; in order to screen the signal more completely from the noise, we should
insist upon more damping at the cutoff frequency, i.e., determine λ according to the rule

κ = H(e−iλ) λ = arccos [1 + (1− 1/κ)
√
q/2] .

By setting κ = .1, we impose that only 10% of the variation at the cutoff frequency (and
even less variation to the left of the cutoff frequency) seeps into the noise. In cases where
the cutoff frequency λ is determined by a desired period 2π/λ that we take as given, the
corresponding snr is

q = 4
(1− cos(λ))2

(1− 1/κ)2
.

The trend-cycle component will now be decomposed into proper trend {ωt} and cycle
(annual seasonal) {ψt}:

µt = ωt + ψt.
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Letting fµ denote the pseudo-spectral density of the trend-cycle, it follows from results in
Bell (1984) that HP filtering yields a low-pass trend (from the pass-band) and a high-pass
cycle (from the stop-band), with pseudo-spectral densities denoted

fω(λ) = H(e−iλ) fµ(λ) (3)

fψ(λ) =
[
1−H(e−iλ)

]
fµ(λ). (4)

(These expressions involve the product of a scalar function with a matrix-valued fµ.) In
other words, the outputsH(B)µt and [1−H(B)]µt of the HP low-pass and high-pass filters
applied to the trend-cycle component are declared to be the trend and cycle components,
by definition. From another viewpoint, if the trend and cycle components happened to
have pseudo-spectral densities defined by (3) and (4), then H(e−iλ) would be the Wiener-
Kolmogorov (WK) filter for extracting trend from trend-cycle, and the HP filter would be
optimal. However, {µt} is not observable, and so estimation of the trend would proceed by
computing H(B)µ̂t, which is also optimal.

Proposition 1 Suppose that the WK filter for extracting {µt} from {yt} is Ψ(B), and the
trend and cycle pseudo-spectra are defined via (3) and (4). Then H(B)µ̂t is the minimum
MSE linear estimator of ωt from {yt}, and [1 − H(B)]µ̂t is the minimum MSE linear
estimator of ψt from {yt}.

Proof of Proposition 1. The trend extraction error is

ωt −H(B) Ψ(B) yt = (ωt −H(B)µt) +H(B) [µt −Ψ(B) yt] .

The second term is orthogonal to all linear functions of the data, by assumed optimality
of the WK filter Ψ(B). The first term is orthogonal to all linear functions of {µt} by the
optimality of the HP (it is a WK filter for the trend from trend-cycle); the error ωt−H(B)µt
only involves linear combinations of differenced trend and cycle processes {ωt} and {ψt},
which by assumption are orthogonal to the differences of each of the other non-trend-cycle
components. Hence, using Assumption A of Bell (1984), the trend-cycle error is orthogonal
to {yt} as well. �

For computation, one could first obtain µ̂t for 1 ≤ t ≤ T as described in the next
section, and then apply the HP filter. However, in order to obtain extractions at the sample
boundary it is necessary to extend the calculation of µ̂t to 1 − L ≤ t ≤ T + L for some
horizon L > 0, where the HP filter is truncated to length 2L + 1. Alternatively, the fil-
ter coefficients of the composite filter H(B) Ψ(B) can be directly computed from the frf
H(e−iλ) Ψ(e−iλ), so that extractions are computed with a single pass of the filter on the
extended data. Similar considerations apply to calculation of the cycle, although it is typi-
cally important that the cycle be a stationary process; this is handled by cancelling zeroes
in the numerator of

1−H(e−iλ) =
(2− 2 cos(λ))2

q + (2− 2 cos(λ))2

with any zeroes at frequency zero in the pseudo-spectral density fµ. In the implementation
discussed in Section 3, fµ(λ) = fµ(λ) (2− 2 cos(λ))−d for d ≤ 2 (we take d = 1 in
our empirical analyses below), where fµ is the bounded spectral density of the differenced
trend-cycle; hence

[1−H(e−iλ)] Ψ(e−iλ) =
(2− 2 cos(λ))2−d

q + (2− 2 cos(λ))2
fµ(λ) fy(λ)−1 |U(e−iλ)|2. (5)
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We can also compute the signal extraction error spectral densities, but these will actually
follow from a more general result given below. The error spectral densities are useful
for computing correlations of signal extraction errors, and the integral over [−π, π] and
normalized by 2π equals the signal extraction MSE.

Consider a component {ηt} distinct from {µt}, such that we wish to extract the mixed
signal ωt + ηt. It follows that there must exist an {εt} (although it can be identically zero)
such that

yt = µt + ηt + εt

is a decomposition into orthogonal components. For example, {ηt}might correspond to the
irregular, so that {ωt+ηt} is the seasonal-adjustment (i.e., the trend-irregular) and εt = ξwt .
Whereas the extraction is given by ω̂t + η̂t, the error spectral density can be computed in
terms of the HP frf and the error spectra for the other components. In particular, letting
gη, gµ, and gε denote the error spectral densities for components {ηt}, {µt}, and {εt}, it
follows from McElroy and Trimbur (2015) that

gη = fη fy
−1 [fµ + fε] gµ = fµ fy

−1 [fη + fε] gε = fε fy
−1 [fη + fµ].

Because these are also the error spectral densities for the corresponding noise process in
each case (µ+ ε, η+ ε, and µ+ η respectively), they are Hermitian and can be written with
the first and third pseudo-spectral density swapped. In the next result, we let H and 1−H
denote as a short hand the frf of the HP low-pass and high-pass filters, as functions of λ.

Proposition 2 Suppose that the trend and cycle pseudo-spectra are defined via (3) and (4),
and the order of trend-cycle differencing is d ≤ 2. Then the error spectral densities for the
mixed signals are

gω+η = H (1−H) fµ −H (1−H) gµ + (1−H) gη +H gε

gψ+η = H (1−H) fµ −H (1−H) gµ +H gη + (1−H) gε.

Proof of Proposition 2. From McElroy and Trimbur (2015) and (3) and (4) we obtain

gω+η = [fω + fη] fy
−1 [fψ + fε]

= [H fµ + fη] fy
−1 [(1−H) fµ + fε]

= H (1−H) fµ fy
−1 fµ + (1−H) fη fy

−1 fµ +H fµ fy
−1 fε + fη fy

−1 fε

= H (1−H) fµ −H (1−H) fµ fy
−1 [fη + fε] + (1−H) fη fy

−1 [fµ + fε]

+ [1− (1−H)] fη fy
−1 fε +H fµ fy

−1 fε,

which simplifies to the stated formula (because [fµ+fη] fy
−1 fε = gε). The expression for

gψ+η is similarly derived. �

Remark 1 Whereas the direct expression for the error spectrum gω+η is in theory available
– as described in the proof – it is more convenient from the standpoint of software to have
the formulas of Proposition 2, which allow us to compute in terms of gµ, gη, and gε; the
product (1−H) fµ can be computed using (5).
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6. Signal Extraction

Once the modeling is complete, we can proceed towards signal extraction (Bell, 1984),
which is concerned with extracting (estimating) the components of interest. Actually, in
the case of fixed components there is nothing further to do, because we merely take

ẑt = x′t β̂.

But the stochastic components are more subtle to estimate. Note that this reflects a frequen-
tist philosophy; a Bayesian analyst would weave model selection, parameter estimation,
and signal extraction into a seamless garment. Although arguably less elegant, the frequen-
tist approach is computationally simpler and still provides correct and relevant results.

The matrix formulas for signal extraction (McElroy and Trimbur, 2015) implemented
in sigex are not feasible for large data sets. The full data vector for the six series has
length 5448, which makes likelihood evaluation cumbersome and direct signal extraction
infeasible, as the matrix formulas require inversion of a matrix of dimension 32688. In this
paper we pursue an exact calculation of likelihood and signal extraction under Assumption
A of Bell (1984), using MOM parameter estimates.

We here propose an alternative methodology to direct matrix formulas. It is known
(McElroy and Monsell, 2015) that signal extraction in a finite sample can always be ac-
complished by applying the Wiener-Kolmogorov (WK) filter to the forecast-extended se-
ries, utilizing the same fitted model to do so. The WK filter is applicable to a full time
series, and is described in McElroy and Trimbur (2015). This method has been imple-
mented in sigex, proceeding with the calculation of the WK frequency response function
– derived from the spectral densities of the component models – and computing the filter
coefficients by integration. In this case, each filter coefficient is a 6 × 6 matrix. Forecast-
ing and backcasting is straightforward, because the reduced form of the model has already
been computed, and the recursive one-step ahead predictors lay at the heart of the Durbin-
Levinson (D-L) algorithm.

In terms of speed, there is some cost associated with calculation of forecasts and back-
casts, as it amounts to an evaluation of the Durbin-Levinson algorithm on an expanded
sample size. (So if the sample size is T = 5448, and H = 500 forecasts are desired,
then D-L must be run for sample size T + H = 5948.) There is also the cost associated
with computing the WK filter, which in turn is contingent on the desired resolution of the
frequency grid utilized for the frequency response function; for our applications, we chose
7000 grid points. Once the series has been extended, application of the WK filter via a
convolution operation is extremely fast, requiring a negligible portion of time relative to
the other calculations. In summary, the multivariate signal extraction can be feasibly calcu-
lated, with approximation error made as small as desired (by increasingL) while potentially
increasing computation time.

To quantify the signal extraction uncertainty we compute the WK MSE, or the normal-
ized integral of the error spectral density. (These calculations omit the extra MSE at the
beginning and end of the sample due to backcast and forecast extension of the time series.)
This is rapidly calculated, and in the figures each extracted signal is shaded with a band of
two standard errors, defined as the square root of the WK MSE.

7. Results

We fit the mulitvariate model described in (1) to the New Zealand immigration series. In
addition to that model, we are interested in estimating moving holiday effects for Easter
and the first three school holidays for public schools in New Zealand.
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The general methodology used to fit the multivariate model for the New Zealand immi-
gration series is given below:

• Specify model, regressors for the six series.

• Perform MLE-estimation of fixed effects for the univariate series.

• Using t-statistics, determine which fixed effects will be estimated in the final model.

• Re-estimate final fixed effects for the univariate series using MLE-estimation.

• Remove fixed effects from the series.

• Perform MOM-estimation for the multivariate model on the series with fixed effects
removed.

• Use WK filters to generate components, standard errors for the components.

• Use HP filter to separate trend-annual component into trend, fundamental seasonal
components.

7.1 Moving Holidays and Y2K Regressors

For all of the moving holidays, the window of days around the specific holiday was kept
small to capture a very local effect for the holiday. For example, the Easter regressor is set
to one for the day before and the day of Easter for each year; every other observation is set
to zero. Then, the Easter regressor is centered by removing the daily mean of the regressor
over the entire series.

For the school holidays, an effect is estimated for the start and end of the holiday for the
first three school vacations in each year. The school holiday regressor for the first day of
the vacation period is set to one for that day and one for the day after, zero otherwise. These
regressors will be referred to henceforth as school1, school2, and school3 for the
first, second, and third school holiday, respectively. The school holiday regressor for the
last day of the vacation period is set to one for that day and one for the day before, zero
otherwise. These regressors will be referred to henceforth as school1e, school2e, and
school3e for the first, second, and third school holiday, respectively. Again, the school
holiday regressors are centered by removing the daily mean of each of the regressors over
the entire series.

Another regressor added for each series is a point outlier for January 1, 2000. Plots of
the log of each of the series (Figure 4) show that for many of the series, there is a large
decline on that day. A regressor was added to each of the series with a one for the day of
January 1, 2000, zero otherwise. We’ll refer to this regressor as the AO(Y2K) regressor.

In the first round of MLE estimation, all of the regressors described above were fit to
each of the series univariately. Table 1 gives the t-statistics for the moving holidays and AO
regressors. The statistics in bold represent those regressors that were found significant, and
included in the final model for each series.

The significant fixed effects were removed from the series to prepare for the estimation
of the multivariate model. Plotting the logged series adjusted for fixed effects showed
additional outliers around January 1, 2000 for most of the series. For these series, AO
regressors were included in the model and re-estimated; those regressors with significant
t-statistics were included in the final model.

Figure 5 shows the AO adjustment factors related to observations around January 1,
2000. Note that the effects are quite large, and there are two AO regressors for all the series
except for NZ Arrivals.
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Figure 4: Log of six (6) New Zealand immigration series (September 1, 1997 through July
31, 2012). Point Outliers are evident in many series near January 1, 2000.

Figure 6 shows the Easter factors for the five series with significant Easter effects. Note
that for most of the series, Easter by and large depresses activity around the Easter holiday,
except for Permanent and Long Term Arrivals.

Figure 7 shows the combined effect of the moving holidays for the first school holiday
regressors.

7.2 Signal Extraction Results

After the final fixed effects are removed from the series, the multivariate model is fit using
MOM estimation. Then Wiener-Kolmogorov (WK) filters for the each of the components
are derived, and the WK filter for each component is applied to the forecast and backcast
extended series (transformed with fixed effects removed). The HP filter is then applied to
the combined trend-seasonal component to generate a trend component and a fundamental
seasonal component. From this a seasonally adjusted series can be generated; the seasonal
adjustment generated by the multivariate model includes the fundamental seasonal bound
with the trend. Standard errors are generated for each of the components.

A series of plots shows the components generated for one of the series, New Zealand
Arrivals (NZArr). Figure 8 shows the seasonally adjusted series (in blue) against the origi-
nal series (in grey). The uncertainty of the seasonally adjusted series is shown by the blue
shading in the plot. The seasonal adjustment is quite smooth for this series, and the fun-
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Table 1: t-statistics for Holidays, AO for NZ Immigration Series

Holiday NZArr NZDep VisArr VisDep PLTArr PLTDep
Easter -12.12 -4.63 -4.88 -5.03 2.45 0.73
School1 -6.26 4.22 6.88 -6.62 -2.97 -6.30
School1e 4.25 -4.54 -7.46 2.32 -4.80 -3.26
School2 -0.12 4.44 3.17 -3.68 -0.89 -5.97
School2e 0.99 -1.82 -6.64 4.24 -7.43 -0.86
School3 -0.59 3.24 1.67 -3.77 -1.06 -4.88
School3e 1.68 -3.21 -7.54 2.83 -8.03 -1.98
AO(Y2K) -17.38 -3.50 -15.02 -3.91 -12.35 -5.12

damental seasonality is not reflected in the seasonal adjustment. The AO(Y2K) outlier is
apparent in the seasonally adjusted series.

Figure 9 shows the seasonally adjusted for the NZArr series generated from the trans-
formed series with the fixed effects removed and another seasonally adjusted for the NZArr
series generated from the transformed series without the fixed effects removed. Note that a
more fully realized AO effect is contained in the adjustment done without the fixed effects;
the AO effect for the adjustment without adjustment for fixed effects shows that some of
the outlier effect is contained in either the fundamental or weekly seasonal effects.

Figure 10 shows the trend series (in orange) against the original series (in grey) for
NZArr. The uncertainty in the trend is indicated with orange shading. The fundamental
seasonality (in green) and the combined weekly effects (in purple) are also shown. Visually
the fundamental seasonality is seen to be slightly larger than the combined weekly effects.

Figure 11 shows the original series (in black) and the individual weekly effects (in
purple) for NZArr. Visually the first weekly component (for once a week) is larger than the
other two weekly effects. Figure 12 shows the original series (in black) and the individual
moving holiday effects (Easter in purple, school1 and school1e in green), along with
the AO(Y2K) effect (in blue).

One criteria for judging a seasonal adjustment is to look for residual effects - is there
residual seasonal or weekly variation? One way of looking for this is to use spectral plots,
as in Figure 2.

Figure 13 gives AR spectra for the seasonal adjustment of all six New Zealand Im-
migration series. Two adjustments are shown in the plot: one an adjustment from the
original decomposition containing the fundamental seasonality (black line), and another
the seasonal adjustment derived after the Hodrick-Prescott filter is used to estimate a trend
component and the fundamental seasonality is isolated and removed (orange line). While
there are troughs at the weekly frequencies for most of the series and the spectrum for the
seasonal adjustment without the fundamental seasonality component is generally lower,
one sign of trouble is the small peak at the thrice weekly adjustments for the Permanent
and Long Term Departures series.

7.3 Future Work

We continue to look at different models and procedures for separating the long term trend
from the fundamental seasonality. The size of the uncertainty bounds may lead to using a
different estimation procedure for the multivariate model.

Another area of future work is how to adjust for outliers and extremes. Trying to test
each observation, as is done in X-13ARIMA-SEATS, has the potential to be extremely time
consuming. We will look at the method proposed in McElroy and Penny (2016), which uses
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Figure 5: AO(Y2K) factors for six (6) New Zealand immigration series (September 1, 1997
through July 31, 2012).

entropy. A related issue is the issue of missing values.
Other moving holiday effects may also be considered, as well as changing the mov-

ing window length to try and find an optimal setting for existing holiday regressors. An
additional outlier effect for the 2011 Rugby World Cup will also be considered.
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Figure 7: First semester NZ school holiday factors for six (6) New Zealand immigration
series (September 1, 1997 through July 31, 2012).
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Figure 8: Seasonal adjustment for the logged NZ Arrivals series (September 1, 1997
through July 31, 2012). The original series is shown in grey, and the seasonally adjusted
series is given in blue. The uncertainty in the seasonal adjustment is indicated with blue
shading.
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Figure 9: Seasonally adjusted series for the logged NZ Arrivals series (September 1, 1997
through July 31, 2012). The top panel is the seasonally adjusted series where the fixed
effects were removed before signal extraction, the bottom panel is the seasonally adjusted
series where no fixed effect were removed prior to signal extraction.
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Figure 10: Trend component for the logged NZ Arrivals series (September 1, 1997 through
July 31, 2012). The original series is shown in grey, and the trend series is given in orange.
The uncertainty in the trend is indicated with orange shading. The fundamental seasonality
(in green) and the combined weekly effects (in purple) are also shown.
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Figure 11: Weekly effects for the logged NZ Arrivals series (September 1, 1997 through
July 31, 2012). The original series is shown in black, and the atomic weekly effects are
also given in purple.
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Figure 12: Moving holiday effects for the logged NZ Arrivals series (September 1, 1997
through July 31, 2012). The original series is shown in black. The moving holidays shown
are Easter (in purple), NZ school holidays (in green), and point outliers for Y2K (in blue).
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Figure 13: AR spectral density estimate of seasonal adjustments for 6 New Zealand im-
migration series (September 1, 1997 through July 31, 2012). Vertical red lines correspond
to once a week, twice a week, and thrice a week phenomena; blue line corresponds to
annual phenomena, and green line corresponds to monthly phenomena. Two adjustments
are shown in the plot: one an adjustment from the original decomposition containing the
fundamental seasonality (black line), and another the seasonal adjustment derived after the
Hodrick-Prescott filter is used to estimate a trend component and the fundamental season-
ality is isolated and removed (orange line).
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