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Abstract
Virtually all seasonal adjustment programs include a variety of statistical tests for assessing whether
a given time series is a candidate for seasonal adjustment. However, any ensemble of seasonality
tests is certain to be either consistent or inconsistent. In the former case, the tests arrive at the
same decision, raising the question if there is a method that is capable of eliminating seemingly
redundant tests. In the latter case, the tests arrive at different decisions, raising the question if there
is a method that is capable of identifying the most informative tests and finding a final decision.
Using simulated seasonal and non-seasonal ARIMA models that are representative of the Deutsche
Bundesbank’s time series database, we apply random forests of conditional inference trees in order
to answer the two questions. In particular, we quantify the informational content of the seasonality
tests implemented in JDemetra+ and find that the modified QS- and the Friedman-test yield by far
the most informative results.
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1. Motivation

When deciding whether an observed time series is seasonal or non-seasonal, a variety of
statistical tests can be used. For example, in release version 2.1 of JDemetra+ (JD+), the
output’s diagnostics section reports the results of six different seasonality tests, among
many other things. However, any set of seasonality tests is certain to be (1) consistent or
(2) inconsistent. In the first case, the tests reach the same decision, raising the questions
whether the set is too large and if it can be reduced by eliminating redundant tests. In the
second case, the tests reach different decisions, raising the questions if the most informative
tests can be identified reliably and how their outcomes can be condensed into a final deci-
sion. We show by means of a simulation study that random forests of conditional inference
trees provide convenient answers to the questions in either case.

The remainder of this paper is organised as follows. Section 2 briefly describes the
seasonality tests currently implemented in JD+. Section 3 provides basic theory of random
forests, including the assessment of variable importance. Section 4 describes the simula-
tion algorithm. Section 5 simulates a manifold set of seasonal and non-seasonal ARIMA
processes, applies the six JD+ seasonality tests to the simulated series, and grows random
forests on the tests’ outcome. Furthermore, it compares the misclassification rates between
the entire forest and the single seasonality tests, and uses variable importance measures
to identify the most informative tests for the ensemble decision on seasonality. Finally,
Section 6 draws some conclusions.
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2. Seasonality tests in JD+

JD+ incorporates six seasonality tests, each of which states absence of seasonality as the
null hypothesis (H0). To provide an overview of these tests, let {zt} be a weakly stationary
series of length T and τ the seasonal period of {zt}, i.e. τ = 12 for monthly series and
τ = 4 for quarterly series.

2.1 Time domain tests

JD+ implements four tests for seasonality in the time domain: the modified QS-test is a
Ljung-Box-type test for significance of the seasonal autocorrelations of {zt}; the Kruskal-
Wallis- and Friedman-tests are ANOVA-type tests on the ranks of {zt}; the F -test on sea-
sonal dummies is a regression-based test for significant differences between the period-
specific means of {zt}.

2.1.1 Modified QS-test

The modified QS-test (QS) checks for significant positive autocorrelation at seasonal lags.
Let γ(h) = E (zt+h zt) − E2 (zt) and ρ(h) = γ(h)/γ(0) denote the lag-h autocovariance
and autocorrelation, respectively, of {zt}. Then, the null hypothesis is specified as H0 :
ρ(k) ≤ 0 for k ∈ {τ, 2τ}, and the QS-statistic is obtained as follows: if ρ̂(τ) ≤ 0, then
QS = 0; otherwise,

QS = T (T + 2)

(
ρ̂2(τ)

T − τ
+

[max {0, ρ̂(2τ)}]2

T − 2τ

)
.

The exact null distribution of the QS-statistic is unknown but can be approximated reason-
ably well by a χ2-distribution with two degrees of freedom, (Maravall 2011).

2.1.2 Friedman-test

The Friedman-test (FT) checks for significant differences between the period-specific mean
ranks of the observations, being essentially a one-way ANOVA with repeated measures. To
see this, assume that each period i ∈ {1, . . . , τ} has n observations. Furthermore, let rij be
the rank of the observation in the i-th period of the j-th year, where the ranks are assigned
separately for each year (i.e. 1 ≤ rij ≤ τ ), and µi = E (rij). The null hypothesis is then
given by H0 : µ1 = µ2 = · · · = µτ , and the test statistic is defined as

FT =
τ − 1

τ

τ∑
i=1

n [r̄i − (τ + 1)/2]2

(τ2 − 1)/12
,

where r̄i = n−1
∑

j rij . Under H0, the FT -statistic asymptotically follows a χ2-distribution
with τ − 1 degrees of freedom.

2.1.3 Kruskal-Wallis-test

The Kruskal-Wallis-test (KW) basically follows the same idea as the Friedman-test but
comes up with two modifications, being essentially a one-way ANOVA without repeated
measures. First, period-specific numbers ni of observations are allowed; second, ranks are
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assigned over the entire observation period (i.e. 1 ≤ rij ≤ T ). The null hypothesis again
reads H0 : µ1 = µ2 = · · · = µτ , and, assuming absence of ties, the test statistic is given by

KW =
T − 1

T

τ∑
i=1

ni [r̄i − (T + 1)/2]2

(T 2 − 1)/12
.

Under H0, the KW -statistic asymptotically follows a χ2-distribution with τ − 1 degrees
of freedom.

2.1.4 Seasonal dummies

The F -test on seasonal dummies (SD) checks if the effects of the τ − 1 seasonal dum-
mies are simultaneously zero. Dropping the stationarity assumption on {zt} and assuming
absence of additional regression variables, the (pdq)(000) regARIMA model

ϕp(B)(1−B)d

(
zt −

τ−1∑
i=1

βiDi,t

)
= µ+ θq(B) εt

is considered, where Di,t = 1 if t = i, Di,t = −1 if t = τ , and Di,t = 0 otherwise. Let
β = (β1, . . . , βτ−1)

⊤. The null hypothesis is then specified as H0 : β = 0, and the test
statistic is given by

SD =
β̂
⊤
Σ̂

−1

β̂ β̂

τ − 1
· T − d− p− q − τ − 1

T − d− p− q
,

where Σ̂β̂ is the estimated covariance matrix of β̂. Under H0, the SD-statistics follows an
F -distribution with τ − 1 and T − d − p − q − τ − 1 degrees of freedom. Two variants
of non-seasonal orders are included in JD+ first, (pdq) = (011) is used; second, (pdq) is
determined via automatic model identification.

2.2 Frequency domain tests

JD+ implements two tests for seasonality in the frequency domain: the periodogram-test
evaluates a weighted sum of the periodogram of {zt} at the seasonal frequencies; the
dummy-type test for seasonal peaks is based on visually significant peaks at the seasonal
frequencies in the Tukey and AR(30) spectra of {zt}.

2.2.1 Periodogram-test

We follow Brockwell and Davis (1991) and define the discrete periodogram in terms of the
discrete Fourier transform of the observed time series. To this end, let ωj = 2πj/T be
the j-th Fourier frequency satisfying −π < ωj ≤ π, i.e. j ∈ {⌊(T − 1)/2⌋, . . . , ⌊T/2⌋},
where ⌊x⌋ denotes the integer part of x. Then, the discrete periodogram at frequency ωj is
defined as

I(ωj) =
1

T

∣∣∣∣∣
T∑
t=1

zte
−itωj

∣∣∣∣∣
2

, (1)

which is closely related to the empirical autocorrelation function {γ̂(h)}. More precisely,
equation 1 is equivalent to the following representation:

I(ωj) =

{∑
|h|≤T γ̂(h)e−ihωj , ωj ̸= 0

T |z̄|2 , ωj = 0
, (2)
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where z̄ = T−1
∑T

t=1 zt. Equation 2 can be used to construct the periodogram-based
seasonality test. To this end, let ω⋆

j = 2πj/τ denote the j-th seasonal frequency for j ∈
{1, . . . , τ/2}, S(τ) = {ω⋆

1, . . . , ω
⋆
τ/2} the set of seasonal frequencies for any given τ , and

ΣS(τ) = 2

τ/2−1∑
j=1

I(ω⋆
j ) + I(ω⋆

τ/2) · 1{T even}

the weighted sum of the periodogram evaluated at the seasonal frequencies, where 1 is the
indicator function of the event in braces. The null hypothesis of the periodogram-test then
reads H0 : ΣS(τ) = 0, and the test statistic is given by

PD =
T − τ

τ − 1
·

ΣS(τ)∑T
t=1 z

2
t − I(0)− ΣS(τ)

.

Under H0, the PD-statistic follows an F -distribution with τ − 1− 1{T even} and T − τ +
1{T even} degrees of freedom.

The discrete periodogram can be extended to the continuous periodogram by defining

I(ω) = T−1
∣∣∣∑T

t=1 zte
−itω

∣∣∣2 for all ω ∈ [−π, π]. However, the discrete periodogram has
refined statistical properties at the Fourier frequencies, which do not necessarily apply to
other frequencies. In either case, a periodogram estimator of the spectral density f(ω) =
(2π)−1

∑
h γ(h) e

−ihω is given by

f̂Per(ω) =
I(ω)

2π
,

which is asymptotically unbiased for all ω ∈ [−π, π] if E (zt) = 0 and for all ω ̸= 0 if
E (zt) ̸= 0 but not consistent regardless of E (zt) (Brockwell and Davis 1991).

2.2.2 Seasonal peaks

Since the test for seasonal peaks (SP) combines information from the Tukey and AR(30)
spectra of {zt}, we first introduce the two estimators of f(ω) as well as respective criteria
for calling a spectral peak visually significant.

The Tukey spectrum is a non-parametric “lag window” estimator. To transform equa-
tion 2 into a consistent estimator of f(ω), the general idea of “lag window” estimators is
to put relatively more weight on smaller lags of γ(h), which are considered to be more
reliable, and relatively less weight on higher lags of γ(h), which are considered to be less
reliable. For that purpose, an even and piecewise continuous window function w(·) is in-
troduced which satisfies the following three conditions: (1) w(0) = 1, (2) |w(x) | ≤ 1 for
all x ∈ R, and (3) w(x) = 0 for |x | > 1. The Tukey spectrum is then defined as

f̂T (ω) =
1

2π

∑
|h|≤H

wa(h/H) γ̂(h) e−ihω,

where wa(·) is the Blackman-Tukey window given by

wa(x) =

{
1− 2a+ 2a cos (πx), |x | ≤ 1

0, |x | > 1

with a ∈ [0, 0.25] and H is any truncation lag, not necessarily the number of observations
available, T . A peak at any Fourier frequency ωj is called visually significant at the α-level
of significance if

2f̂T (ωj)

f̂T (ωj−1) + f̂T (ωj+1)
≥ Fd1,d2,1−α,
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where Fd1,d2,1−α is the critical value of the F -distribution with d1 and d2 degrees of free-
dom, which are determined empirically via simulations described by Maravall (2011).

The AR(30) spectrum is a parametric “plug in” estimator. The basic idea of this class
of estimators is to choose a particular time series model for {zt}, derive its theoretical spec-
trum f(ω), and replace the unknown parameters in f(ω) with well-established estimators.
In general, the spectrum of an autoregressive (AR) process of order p > 0 is given by

f(ω) =
σ2
ε

2π

∣∣∣∣∣1−
p∑

h=1

ϕhe
−ihω

∣∣∣∣∣
−2

,

where σ2
ε is the variance of the white noise process driving the AR process. The AR(30)

spectrum is then given by

f̂AR(ω) =
σ̂2
ε

2π

∣∣∣∣∣1−
30∑
h=1

ϕ̂he
−ihω

∣∣∣∣∣
−2

,

where σ̂2
ε and ϕ̂h are some estimators of the white noise’s variance and the AR coefficients,

respectively (Priestley 1981). The choice of 30 as the truncation lag is justified pragmati-
cally by Soukup and Findley (1999) who argue that “this choice [...] can potentially produce
the largest number of peaks possible, i.e. 30, in a plot with 61 frequencies. Thus, it has the
greatest resolving power.” A peak at any Fourier frequency ωj is called visually significant
if (1) f̂AR(ωj) is larger than the median AR spectrum of all Fourier frequencies and (2) the
quantity

f̂AR(ωj)−max
{
f̂AR(ωj−1), f̂AR(ωj+1)

}
maxj f̂AR(ωj)−minj f̂AR(ωj)

is larger than some critical value which may be set to 6/52 for all frequencies (i.e. the
X-12-ARIMA default) or be chosen individually for each frequency ωj . As a compromise,
Maravall (2011) provides critical values based on a large-scale simulation of random walk
processes and suggests to use the critical value associated with the first TD frequency for
all frequencies.

For τ = 12, {zt} is now said to have seasonal peaks, giving SP = 1, if visually
significant peaks show up in1

(1) f̂T (ω) OR f̂AR(ω) at four or more frequencies ω⋆
j ,

(2) f̂T (ω) OR f̂AR(ω) at three frequencies ω⋆
j PLUS in f̂T (ω) AND f̂AR(ω) at one or

more frequency ω⋆
j ,

(3) f̂T (ω) OR f̂AR(ω) at three frequencies ω⋆
j PLUS there is no peak at ω⋆

6 ,

(4) f̂T (ω) AND f̂AR(ω) at ω⋆
6 and another frequency ω⋆

j ,

(5) f̂T (ω) OR f̂AR(ω) at two or more frequencies ω⋆
j INCLUDING in f̂T (ω) AND

f̂AR(ω) at one frequency ω⋆
j PLUS there is no peak at ω⋆

6 .

Accordingly, the null hypothesis is specified as H0 : SP = 0. When assessing visual
significance of spectral peaks, α = 0.1 is always used for the Tukey and AR(30) spectra.
1For quarterly series, a similar but smaller set of rules applies which is not discussed here.
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3. Random forests

The growing literature on statistical and machine learning has provided a vast amount of
forecasting methods and algorithms. While several of these could be used to combine the
results of a set of seasonality tests, random forest has some favourable properties:

(1) Random forest is among the best performing algorithms for a broad range of predic-
tion and classification tasks, such as forecasting stock price movements (Patel et al.
2015), diagnosis of diseases (Hsieh et al. 2011), and detection of phishing emails
(Almomani et al. 2013).

(2) Measures to quantify the variable importance are readily available (Archer and Kimes
2008).

(3) Using random forests based on conditional classification trees (Strobl et al. 2007,
2008), we can take into account high correlations among predictors that otherwise
would bias the estimation of variable importance.

(4) Random forests consists of a large set of classification or regression trees. Their
output can be depicted as decision trees, which is an ideal basis for combining sea-
sonality tests conditional on their p-values in a non-linear, interpretable fashion.

3.1 Original approach

Random forest is an ensemble method that has been developed by Breiman (2001). It is
based on bootstrap aggregation (bagging) developed by Breiman (1996) and further anal-
ysed by Bühlmann and Yu (2002) and applicable equally well to regression and classifica-
tion problems. Restricting ourselves to the latter case, the basic idea is to combine a large
and diverse set of unpruned binary classification trees built upon bootstrap samples of the
training data. Thereby, aggregation smoothes the hard cut decisions of the binary splits
in a single tree and, usually, results in an improvement in classification accuracy. Further
information on classification trees and statistical/machine learning is provided by Breiman
et al. (1984) and Hastie et al. (2009).

Let L = (XY) be the training or learning data, where X = (X1 . . .Xp) is a set of
p predictors with Xj = (x1j , . . . , xNj)

⊤ for all j ∈ {1, . . . , p}, and Y = (y1, . . . , yN )⊤

is a vector of categorical responses with yi ∈ {1, . . . ,K} for all i ∈ {1, . . . , N}. For
b ∈ {1, . . . , B}, a bootstrap sample Lb is drawn with replacement from L, and an un-
pruned classification tree Tb is grown for the sample. To this end, assume that Tb cur-
rently has M terminal nodes corresponding to M classification regions Rm. To create a
binary split of any terminal node m ∈ {1, . . . ,M}, a random sample is drawn from the
set of p predictors. Here, the intention of random sampling is to prevent strong predic-
tors from dominating all other predictors, which in turn increases the diversity among the
single trees compared to bagging, where all predictors are considered at each split. For
each sampled predictor, the best split of node m among all possible splits is determined,
and the predictor that generates the best split in the sample is eventually chosen as split-
ting variable for node m. Thereby, best splits are identified by means of minimum node
impurity. Let p̂mk = N−1

m

∑
xi∈Rm

1{yi=k} be the proportion of training data in node
m from class k, where Nm =

∑
i 1{xi∈Rm} and xi = (xi1, . . . , xip) denotes the i-th

observation of the p predictors. A popular impurity measure is given by the Gini index
Qm(Tb) =

∑
k p̂mk (1− p̂mk). Tree growing is stopped if the minimum number of obser-

vations in terminal nodes is reached or the node impurity cannot be reduced further with

1894



the given predictors. The forest classification is finally given by the unweighted majority
vote of the tree classifications.

A celebrated advantage of random forests is the possibility of using subsets of the
training data for validation purposes. Let Ob = L\Lb be the “out-of-bag” (OOB) data of the
b-th bootstrap sample, that is the training data not selected in Lb. The forest’s performance
can then be judged by means of misclassification rates in the OOB samples. Alternatively,
external validation (VAL) data can be considered as usual.

3.2 Variable importance

Another advantage of random forests is the capability to provide information about the
predictors’ importance with respect to the ensemble decision. For an individual classifi-
cation tree, the importance of a given predictor is determined directly by the predictor’s
position in the tree. However, this concept does not apply to random forests in a straight-
forward way. Therefore, variable importance measures have been suggested to identify
strong predictors. A popular measure is given by the forest’s mean decrease of node impu-
rity caused by the predictor. Let M(Tb,Xj) be the set of nodes in Tb that were split by Xj

and Mj =
∑

b |M(Tb,Xj)| the respective total number of nodes in the forest. Measuring
node impurity by the Gini index, the variable importance of Xj is given by

VIG(Xj) =
1

Mj

B∑
b=1

∑
m∈M(Tb,Xj)

{
Qm(Tb)−

[
NmL

Nm
QmL(Tb) +

NmR

Nm
QmR(Tb)

]}
,

where mL and mR are the left and right descendent nodes of m.
Alternatively, variable importance can be measured by the mean decrease in prediction

accuracy after randomly permutating the values of the predictor in the OOB samples. The
rationale of this approach is that random permutation mimics absence of the predictor. Let
ŷi(Tb,Xj) and ŷi(Tb,Xπ(j)) denote the predicted classes of yi obtained from Tb before
and after random permutation of the values of Xj in Ob. The permutation-based variable
importance of Xj is then given by

VIP (Xj) =
1

B

B∑
b=1

∑
i∈Ob

[
1{yi ̸=ŷi(Tb,Xπ(j))}

|Ob|
−

1{yi ̸=ŷi(Tb,Xj)}

|Ob|

]
. (3)

Sometimes, this measure is normalised using the standard deviation of the differences be-
tween the misclassification rates in the OOB samples, though the unscaled version usually
should be preferred (Diaz-Uriarte and de Andrés 2006).

3.3 Conditional inference trees

Random forest based on conditional inference trees (or conditional random forests) deviate
from the original approach in two respects: variable selection and variable importance mea-
sures. In classical random forests, variable selection tends to be biased towards predictors
with larger measurement scales, a higher number of categories and, sometimes, missing
values (Hothorn et al. 2006, Strobl et al. 2009). Variable importance measures are likely to
be biased in the same cases as well as in the presence of correlated predictors (Strobl et al.
2007, 2008).

Regarding variable selection, Hothorn et al. (2006) develop a conditional inference
framework for decision trees which avoids potential biases by separating variable selec-
tion and node splitting. The rationale of this separation is an ex ante exclusion of those
predictors Xj which are not strongly related to the response Y. For any terminal node
m ∈ {1, . . . ,M}, they propose the following generic algorithm:
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1. Test the global null hypothesis of independence between Y and any Xj . Stop if
this hypothesis cannot be rejected. Otherwise, identify the predictor Xj∗ with the
strongest association to Y.

2. Take Xj∗ as splitting variable. Find the optimal binary split of node m using a pre-
specified splitting criterion.

In Step 1, the association between Y and any Xj is measured by means of standardised
linear statistics within the permutation test framework developed by Strasser and Weber
(1999). In Step 2, any splitting criterion can be considered in principle. However, Hothorn
et al. (2006) suggest using two-sample linear statistics which are in line with the criteria
applied in Step 1 of the generic algorithm.

Regarding variable importance measures, Strobl et al. (2008) develop a conditional per-
mutation scheme which avoids potential biases by taking the correlation structure among
the predictors into account. The aim of this scheme is to prevent ex ante the overes-
timation of seemingly influential predictors Xj that in fact are not strongly associated
with Y but appear as though due to a high correlation with a truly influential predictor,
such as Xj∗. To this end, the original permutation scheme π(·) which underlies equa-
tion 3 is applied to the values of Xj only within subgroups of observations of Xc

j =
(X1 . . .Xj−1Xj+1 . . .Xp), resulting in the conditional permutation scheme π(·)|Xc

· . The
respective conditional permutation-based variable importance measure is given by

VICP (Xj) =
1

B

B∑
b=1

∑
i∈Ob

[
1{yi ̸=ŷi(Tb,Xπ(j)|Xc

j
)}

|Ob|
−

1{yi ̸=ŷi(Tb,Xj)}

|Ob|

]
, (4)

where for each tree Tb the permutation grid for Xj is defined by the cut-points of Xc
j in

Tb. Thus, the conditional variable importance measure is feasible for both categorical and
continuous predictors.

As a final remark, conditioning on Xc
j in the permutation scheme might be seen as a

very conservative strategy. As an alternative, only those predictors in Xc
j whose correlation

with Xj exceeds a certain threshold could be used. To this end, the association measures
calculated in Step 1 of the generic algorithm developed by Hothorn et al. (2006) may give
an intuition about which predictors could be considered. Either way, it should also be kept
in mind that the differences between classical and conditional random forests primarily
concern variable importance measures and tend to be negligible in terms of misclassifica-
tion rates (Hothorn et al. 2006, Webel and Ollech 2017).

4. Simulation algorithm

We aim at simulating ARIMA processes that are representative of the non-seasonal and sea-
sonal economic data of the Deutsche Bundesbank’s time series database. More precisely,
given n observed time series that follow the same ARIMA model of order (pdq)(PDQ),
we wish to simulate ν̃ versions of this model under the restrictions that the ARMA parame-
ters of the simulated models should have the same multivariate distribution as the estimated
ARMA parameters of the models fitted to the observed data. As it is difficult to determine
the exact family of distributions of the latter parameters, we impose the proxy restrictions
that the former ARMA parameters

(1) do not induce (additional) unit roots in the characteristic polynomial of the simulated
ARIMA model,
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(2) display the same correlation structure as the estimated ARMA parameters of the
ARIMA models fitted to the observed time series,

(3) follow the same univariate distribution.

To meet these proxy restrictions, we assorted the following procedure which combines the
“NORmal-To-Anything” (NORTA) algorithm of Cario and Nelson (1997) with logspline
density estimation as described by Stone et al. (1997):

1. Set m = p + q + P + Q and let X ∈ Rm×n be the matrix of the estimated ARMA
coefficients. Calculate ΣX ∈ Rm×m, the correlation matrix of the coefficients.

2. Apply logspline density estimation to each row of X to obtain a non-parametric
estimate f̂j(·) of the density of the j-th ARMA coefficient, where j ∈ {1, . . . ,m}.

3. Set Σ(1)
Y = ΣX to initialise the simulation of ARMA coefficients, where Y ∈ Rm×ν

denotes an empty matrix to be filled during the following recursion.

4. Start of recursion. In the i-th loop, simulate ν ≫ ν̃ independent coefficient vec-
tors Yj ∈ Rm, where Yj ∼ N

(
0m,Σ

(i)
Y

)
for each j ∈ {1, . . . , n}. Set Y =

(Y1 . . .Yν).

5. Define Z = (zjk) ∈ Rm×ν , where zjk = F̂−1
j [Φ(yjk)] for all (j, k) ∈ {1, . . . ,m} ×

{1, . . . , ν} and F̂j(·) and Φ(·) are the distribution functions of f̂j(·) and the standard
normal distribution, respectively.

6. Let l ∈ {0, . . . , ν} be the number of columns of Z which contain ARMA coefficients
that induce unit roots. Remove the l columns from Z to obtain Z̃ ∈ Rm×(ν−l), the
matrix of admissible ARMA coefficients.

7. Select ν̃ columns from Z̃ according to simple random sampling without replacement,
where ν̃ ∈ {1, . . . , ν − l}. Store the sampled columns in Z̃(ν̃) ∈ Rm×ν̃ .

8. Calculate ΣZ̃(ν̃) ∈ Rm×m, the correlation matrix of the sampled admissible ARMA
coefficients.

9. Calculate ∆ =
∣∣ΣX −ΣZ̃(ν̃)

∣∣ = (δjk). Define C∆ = (cjk), where cjk = 1{δjk>ε}
for all (j, k) ∈ {1, . . . ,m}2 and some ε > 0. If C∆ ̸= 0, restart Step 4 with
Σ

(i+1)
Y = Σ

(i)
Y +α

[
ΣX −ΣZ̃(ν̃)

]
⊙C∆, where α > 0 and ⊙ denotes the Hadamard

product of two matrices, i.e. A ⊙ B = (ajk · bjk). If C∆ = 0, or the maximum
number of iterations is reached, end of recursion.

10. Simulate ν̃ ARIMA models of order (pdq)(PDQ) with the coefficients stored in the
columns of Z̃(ν̃).

5. Application

To simulate ARIMA models that are representative of the Deutsche Bundesbank’s time
series database, we draw a random sample of almost 14,000 seasonal and non-seasonal
monthly time series without replacement from the database and identify the ARIMA model
of each sampled series using the automatic identification routine of JD+. For each identified
model m of “seasonality class” k ∈ {N-S, S}, where N-S and S denote the class of non-
seasonal and seasonal models, respectively, we calculate the model’s share pmk among
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Table 1: Misclassification rates as a percentage (N-S = non-seasonal series, S = seasonal series).

Simulated ARIMA series
All lengths 5-year 10-year 20-year

Classifier N-S S N-S S N-S S N-S S

Conditional random forests OOB 0.8 2.2 0.7 2.5 0.9 2.0 0.9 2.0
VAL 0.8 2.2 0.7 2.4 0.9 2.1 0.9 2.1

Seasonality test α = 0.01 QS 4.8 1.5 2.5 1.7 5.0 1.4 7.1 1.3
FT 2.1 2.1 1.5 2.2 2.2 2.0 2.5 2.1
KW 2.4 3.8 1.9 3.9 2.6 3.7 2.7 3.7
PD 3.2 3.6 3.2 3.4 3.3 3.6 3.2 3.9
SD 4.0 2.7 4.4 2.5 4.1 2.7 3.7 2.9
SP ∗ ∗ ∗ ∗ 6.6 1.7 5.0 2.0

α = 0.05 QS 7.4 1.2 4.9 1.4 7.5 1.1 9.8 1.2
FT 6.6 1.6 5.6 1.6 7.0 1.5 7.3 1.6
KW 6.9 3.1 6.2 3.1 7.1 3.1 7.4 3.2
PD 8.1 3.2 8.3 2.8 8.2 3.1 8.0 3.5
SD 9.1 2.2 9.7 2.0 9.2 2.2 8.5 2.5
SP ∗ ∗ ∗ ∗ 6.6 1.7 5.0 2.0

all models in the same class and the simulation weights wmk = p̃mk/
∑

m p̃mk, where
p̃mk = pmk·1{pmk≥0.01}. For each model m of class k and each length N ∈ {60, 120, 240},
we run the NORTA algorithm with ν̃ = 100,000·wmk, ν = 100,000, ε = 0.02 and α = 0.5,
yielding 600,000 simulated ARIMA time series in total.

For each simulated series, we calculate the six seasonality tests in JD+, where we re-
strict ourselves to the version (pdq) = (011) of the F -test on seasonal dummies. The p-
values of the seasonality tests are then used as predictors for the random forests.2 More pre-
cisely, we randomly draw 50 independent training data sets of size 7,500 from the 600,000
simulated ARIMA models, keeping the respective non-sampled models for validation pur-
poses. As the empirical correlation between any two p-values is larger than 0.70, we grow a
random forest of conditional inference trees for each training data set. Each random forest
consists of B = 100 trees.3 For each single tree, ⌊√p⌋ = 2 predictors are considered at
each split4, and the minimum size of terminal nodes is set to one.

Table 1 reports the misclassification rates of the candidate seasonality tests5 and the
conditional random forests, where the OOB and VAL misclassification rates are averaged
over the respective 50 forests. In general, the modified QS-test seems to be the best test
for identifying seasonal series, whereas the Friedman-test performs particularly well at
detecting non-seasonal series. Interestingly, the misclassification rates of the modified QS-,
the Friedman- and the Kruskal-Wallis-test increase with the length for non-seasonal series,
2Note that in JD+ the test on seasonal peaks cannot be calculated for monthly time series with less than seven
years of observations. For that reason, we consider only the lengths N ∈ {120, 240} for this test.

3We also grew larger forests but did not observe a significant decrease of the OOB misclassification rates.
4Grömping (2009) notes for regression problems that increasing the number of candidate predictors at each
split will make the variable importance measures more conditional, i.e. the dependence structure among the
predictors is taken more strongly into account. In our case, even including all predictors at each split did
barely change the calculated variable importance measures.

5Note that in practice the estimation of the sample autocorrelations is sensitive to the order of differencing.
Correspondingly, the QS-statistic is biased in the case of under-differencing. In JD+, first differences are
taken once and the series is mean-adjusted, whereas in X-13ARIMA-SEATS and TRAMO/SEATS the default
order of differencing is max{1,min{d+D, 2}} (U.S. Census Bureau 2016, Maravall 2011).
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Figure 1: Boxplots of the seasonality tests’ importance based on sets of 50 conditional random
forests.

while the same is true for the misclassification rates of the periodogram test and the F -
test on seasonal dummies for seasonal series. The average misclassification rates of the
conditional random forests are universally lower for non-seasonal series than the rates of
any single seasonality test. For seasonal series, they are slightly above the best candidate
test. Overall, the performance of the conditional random forests is less dependent on the
length of the simulated series than for the seasonality tests.

Using the 50 training data sets, figure 1 shows boxplots of the seasonality tests’ mean
decrease in accuracy as defined in equation 4. The modified QS-test slightly outperforms
the Friedman-test in the battle for the most informative seasonality test, while the other
three tests are less important by far. The test for seasonal peaks is not considered in this
exercise since all lengths of simulated time series are used to obtain the mean decrease in
accuracy.

6. Summary

We showed by means of a large-scale simulation study that random forests conveniently
solve the problem of combining seasonality tests as they improve prediction accuracy and
provide insights into the informational content of the candidate tests. In particular, we high-
lighted that unbiased variable importance measures, which can be obtained by utilising ran-
dom forests of conditional inference trees, identify the modified QS- and Friedman-tests as
the most reliable seasonality tests. An intuitive explanation may be that the Friedman-test
mainly covers stable seasonality, while the modified QS-test allows for a higher degree
of flexibility in the seasonal component. Future research could use these findings to con-
struct an overall seasonality test based on variable selection within the conditional inference
framework.

Acknowledgement

We thank Nina Gonschorreck and Christiane Hofer for technical support.

1899



REFERENCES

Almomani, A., Gupta, B., Atawneh, S., Meulenberg, A. & Almomani, E. A. (2013). Survey of Phishing Email
Filtering Techniques. IEEE Communications Surveys & Tutorials 15 (4), 2070-2090.

Archer, K. J. & Kimes, R. V. (2008). Empirical Characterization of Random Forest Variable Importance
Measures. Computational Statistics and Data Analysis 52 (4), 2249-2260.

Breiman, L. (1996). Bagging Predictors. Machine Learning 24 (2), 123-140.
Breiman, L. (2001). Random Forests. Machine Learning 45 (1), 5-32.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees.

Chapman & Hall.
Brockwell, P. J. & Davis, R. A. (1991). Time Series. Theory and Methods. Springer.
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