
Local Odds Ratio Is More Efficient Than Correlation Coefficient
For Modeling Longitudinal Ordinal Data

Xinkai Zhou∗1, Ronghui Xu2, and David Elashoff1,3

1Department of Medicine Statistics Core, University of California, Los Angeles
2Department of Mathematics and Department of Family and Preventive Medicine,

University of California, San Diego
3Department of Biostatistics, University of California, Los Angeles

Abstract
While correlation coefficient is commonly used for parameterizing the “working” correla-

tion structure in generalized estimating equations (GEE) for modeling longitudinal ordinal
data using the proportional odds cumulative logit model, it is well known that its range
is severely constrained as a result of the Fréchet bound. Although alternative parameter-
izations have been proposed, a direct comparison between them is lacking. Consequently,
analysts usually fall back to the correlation coefficient method as the default option even
though they are aware of its potential problems. To inform modeling choice, this paper
conducted a simulation study and found that the correlation coefficient approach is not op-
timal in a wide range of scenarios. In fact, we found that the local odds ratio approach can
achieve up to 30% efficiency gains (in a sense that will be defined in the article) compared
to the correlation coefficient approach.
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1. Introduction

Parameter estimation for the proportional odds cumulative logit model in the lon-
gitudinal ordinal data setting has long been dominated by utilizing the generalized
estimating equations (GEE) method (Liang and Zeger, 1986) where the association
within subjects is parameterized by correlation coefficients (Clayton, 1992; Lipsitz
et al., 1994; Parsons et al., 2009). While correlation coefficient can capture any
association pattern between continuous variables, it may fail to do so for ordinal
variables. In fact, its range is severely restricted by the marginal model. To miti-
gate this problem, Touloumis et al. (2013) proposed a brand new approach that has
the potential to eradicate the problem and to drastically improve model parameter
estimation. Specifically, they recognized α as a nuisance vector and parameterized
it using local odds ratios, whose values are not restricted. Since the consistency of
the GEE estimator does not depend on the correct specification of the “working”
correlation structure, substituting local odds ratios for correlation coefficients has
no effect on its asymptotic property. With that said, it is not clear how the lo-
cal odds ratio approach performs at small to medium sample sizes, and whether it
improves parameter estimation compared to the correlation coefficient method.

However, the comparison is not completely straightforward. For example, sim-
ulating correlated ordinal data sets can be a challenge. While a few methods have
been proposed (Amatya and Demirtas, 2015; Barbiero and Ferrari, 2017), they
require direct specification of the correlation structure between repeated ordinal
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responses. Since, as previously mentioned, the range of correlation coefficients be-
tween ordinal variables is severely limited, it is nearly impossible to find a correlation
structure that is congruent to all marginal model specifications. The“independence”
correlation structure (diag(1, 1, · · · , 1)) would work, but is not interesting for the
obvious reason. To circumvent the challenge, we simulated latent correlated con-
tinuous variables and cut them into ordinal ones. This workaround allowed us to
make the intended comparison under correlation structures of various complexity.

Our simulation study demonstrates the clear advantage of the local odds ratio
method over the traditional correlation coefficient approach, and provides valuable
information that analysts can readily use to guide their modeling choice. The rest
of the paper is organized as follows: Section 2 briefly reviews the model and the
estimation methods under discussion; Section 3 presents the simulation method
and the main results, which is followed by a discussion in Section 4. Details of the
simulation results are left to Section 5.

2. A Brief Review of Theory

Let Yit ∈ {1, 2, · · · , I > 2} be the ordinal response for subject i (i ∈ {1, 2, · · · , N})
at time t (t ∈ {1, 2, · · · , Ti}). For the purpose of modeling, we re-code each scalar
Yit as a binary vector Yit = (Yit1, Yit2, · · · , Yit(I−1))′ where Yitj = I(Yit = j), and let
Yi = (Y′i1,Y

′
i2, · · · ,Y′iTi)

′. In other words, the Ti × 1 vector of ordinal responses
for subject i is represented as a Ti(I − 1) × 1 binary vector. Furthermore, let
xit be the (I − 1) × p matrix of covariates that include variables of interest and
category specific cut-points for subject i at time t, and let Xi = (x′i1, · · · ,x′iTi)

′.
Finally, let πitj = E(Yitj |xit) = Pr(Yitj = 1|xit), πit = (πit1, πit2, · · · , πit(I−1))′, and
πi = (π′i1,π

′
i2, · · · ,π′iTi)

′. Then the proportional odds cumulative logit model can
be written as

logit(g(E(Yit|xit))) = logit(g(πit)) = xitβ, (1)

where g(πit) = (πit1, πit1 + πit2, · · · ,
∑I−1

i=1 πitj)
′, and β is the vector of model pa-

rameters that we want to make inference on.
To estimate β, the GEE method solves the following equations:

U(β,α) =
N∑
i=1

D′iV
−1
i (Yi − πi) = 0, (2)

where Di = ∂πi/∂β, V i = V i(β,α) is the Ti(I−1)×Ti(I−1) “working” covariance
matrix of Yi, and α is a vector of nuisance parameters that captures the association
between responses within the same subject at different times. Specifically,

V i(β,α) = A
1/2
i Ri(α)A

1/2
i , (3)

where Ai = diag(Ai1, · · · ,AiTi), Ait = diag(Var(Yit1), · · · ,Var(Yit(I−1))), and
Ri(α), commonly referred to as the “working” correlation structure, models the
association pattern. Liang and Zeger (1986) showed that solving (2) yields consis-
tent estimate for β under mild regularity conditions.

As mentioned in the introduction, the most commonly used parameterization
for Ri(α) is through correlation coefficients. However, the range of correlation
coefficient between binary variables can be severely restricted (Fréchet, 1940) (also
see Touloumis et al., 2013, supplementary materials). For example, the correlation
coefficient for two Bernoulli random variables with marginal probabilities 0.1 and
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0.7 is bounded between −0.11 and 0.22. Consequently, the correlation coefficient
parameterization is not ideal.

To circumvent this problem, Touloumis et al. proposed to parameterize Ri(α)
with local odds ratios. Specifically, for each of the L =

(
T
2

)
time pairs, where

T = max{T1, · · · , TN}, an I × I marginalized contingency table is formed using all
the available responses, and local odds ratios for all cut-points are calculated. This
gives rise to the vector α = (θ1121, θ1121, · · · , θ(T−1)(I−1)(T )(I−1)), where θtjt′j′ is the
local odds ratio at cut-point jj′ for time pair tt′. To achieve parsimony, θtjt′j′ is
modeled as

log θtjt′j′ = φtt′(µ
tt′
tj − µtt

′

t(j+1))(µ
tt′
t′j′ − µtt

′

t′(j′+1)), (4)

which is a generalized version of the row-column effect model (Becker and Clogg,
1989). Here the parameter µ represents potentially time dependent category scores
and φtt′ partially controls time exchangeability. Touloumis et al. used the maximum
likelihood method to estimate α, and showed how it leads to consistent estimate of
β. Furthermore, they recommended four association structures to use in practice:

• The uniform structure: log θtjt′j′ = φ;

• The category exchangeable structure: log θtjt′j′ = φtt′ ;

• The time exchangeable structure: log θtjt′j′ = φ(µj − µj+1)(µj′ − µj′+1);

• The row-column effect structure: log θtjt′j′ = φtt′(µ
tt′
j − µtt

′
j+1)(µ

tt′
j′ − µtt

′
j′+1);

We will examine their performance through simulation studies.

3. Simulation Study

We simulated 5-category ordinal responses measured on 4 occasions from the fol-
lowing model:

logit(Pr(Yit ≤ j|xit)) = β0j + βxit. (5)

Specifically, we set I = 5, t = 1, ..., 4, N = 100, 500, and β = (β01, β02, β03, β04, β)′

= (−1.5,−0.5, 0.5, 1.5, 1)′. Moreover, xi = (xi1, · · · , xi4)′ was simulated from a
tetra-variate normal distribution with mean vector 0, unit variances and a correla-
tion matrix with off-diagonal elements equal to 0.8; εi = (εi1, · · · , εi4)′ was simulated
from a tetra-variate normal distribution with mean vector 0, unit variances and cor-
relation matrix Rε. Once β, xi and εi were generated, the ordinal response Yit was
obtained as follows:

Yit = j ⇐⇒ β0(j−1) < εit − βxit ≤ β0j , (6)

where j = 1, ..., 5, β00 = −∞, and β05 = ∞. To evaluate the two methods un-
der various correlation strength and complexity, we considered five specifications
for Rε. The simplest setting corresponds to the independence structure on the
latent continuous scale, where the off-diagonal elements of Rε equal 0. Then, in-
creasing in correlation strength, we set the off-diagonal elements to 0.15, 0.5, 0.85,
respectively. Finally, we considered the non-time-exchangeable structure: a Toeplitz
matrix whose first row is (1, 0.85, 0.5, 0.15), i.e.,

1.00 0.85 0.50 0.15
0.85 1.00 0.85 0.50
0.50 0.85 1.00 0.85
0.15 0.50 0.85 1.00
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Figure 1: Comparing the simulated relative efficiency (SRE) for N = 100, 500 at
Rε = R1,R2, ...,R5 between the correlation coefficient (CC) method and the local
odds ratio (LOR) method. SRE is defined as MSE(β̂CC Uniform)/MSE(β̂). An SRE

greater than 1 indicates that β̂ is superior to β̂CC Uniform.

These five correlation structures are named R1,R2, ...,R5 henceforth.
The simulation study then proceeds as follows: at each sample size (N =

100, 500) and latent correlation structure (Rε = R1,R2, ...,R5) setting, we repeated
the following experiment 5, 000 times:

1. Simulate a data set: (Y 1, · · · ,Y N ), (X1, · · · ,XN );

2. Calculate the bias, standard error, and the 95% Wald confidence interval of β
obtained from the following methods:

• Correlation coefficient (CC) method with independent, uniform and AR1
working correlation specifications;

• Local odds ratio (LOR) method with uniform, category exchangeable
(CE), time exchangeable (TE) and row-column effect (RC) specifica-
tions.

To aggregate results from the 5, 000 iterations, we calculated the mean bias and
standard error, the percentage of times that the confidence interval covered the
true parameter value, and the simulated relative efficiency (SRE) which is defined
as the ratio of the mean squared error of β̂benchmark to β̂. Bigger numbers suggest
higher efficiency. Since the correlation coefficient method with the uniform working
correlation (“CC Uniform”) specification is most widely used in practice, we chose it
as the benchmark. R packages {SimCorMultRes, repolr, and multgee} were used to
simulate data and fit models. SRE results are presented in Figure 1, further details
of the simulation results are summarized in Tables 1-5 in Section 5.

From Figure 1, we can see that the local odds ratio approach compared favorably
to the correlation coefficient approach. Specifically, when the latent correlation was
truly uniform (R1, ...,R4), the SRE of the local odds ratio method with uniform,
category exchangeable and time exchangeable specifications were close to or greater
than 1, suggesting that it was similarly or more efficient than the “CC Uniform”
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method. Moreover, the efficiency of the local odds ratio method increased mono-
tonically as the latent correlation grew stronger. For example, the category ex-
changeable specification reached an SRE of 1.18 (or equivalently, 15% more efficient
than the “CC Uniform” method) under R4 when N = 500. The only exception to
this general trend was the row-column effect specification at N = 100, where the
method performed worse than the “CC Uniform” method. This is likely because
the sample size was too small to reliably estimate the numerous parameters in this
specification. In other words, the row-column effect specification is more data hun-
gry than the other specifications and should only be used on larger data sets. In
fact, it showed noticeable performance improvement after the sample size increased
to 500, reaching 1.15 in SRE at R4. In terms of bias, we can see from Table 1-4 that
both uniform and time exchangeable specifications had smaller bias when the latent
correlation was weak (R1,R2); when it became stronger (R3,R4), however, the
category exchangeable and time exchangeable specifications tended to have smaller
bias. The row-column effect specification, by contrast, showed consistent downward
bias in all four scenarios, with a magnitude that was 3-5 times larger than most
other methods.

On the other hand, when we compared between different specifications for the
correlation coefficient method, we found that the independent and AR1 structures
were less efficient than the uniform specification. This is perhaps why people pri-
marily use the latter in practice, and justifies our choice of using it as the benchmark
for comparison.

In addition to the superior SRE results atR1, ...,R4, the local odds ratio method
also outperformed the correlation coefficient method under more complex latent
correlation structures. For example, the category exchangeable specification reached
an SRE of 1.4 at both sample sizes, amounting to a 30% efficiency boost. The row-
column effect specification showed similar efficiency gain at N = 500.

Finally, comparing between the four specifications for the local odds ratio method,
we noticed that the uniform, category exchangeable and time exchangeable struc-
tures performed similarly at R1, ...,R4. The row-column effect structure, on the
other hand, was slightly behind even at N = 500. For the more complex latent
structure R5, both the category exchangeable and row-column effect specifications
worked well, whereas the uniform and time exchangeable structures seemed less
adequate: their SREs were around 1.1 – much lower than that obtained from the
category exchangeable structure.

4. Discussion

In this study, we have compared the efficiency of different methods for estimating the
regression parameter β of proportional odds cumulative logit models for longitudinal
ordinal data, and found that the local odds ratio method can achieve up to 30% ef-
ficiency gains compared to the widely used correlation coefficient method. Based on
our results, we recommend using the category exchangeable local odds ratio method
as the default modeling choice. To sum up, our results demonstrate the advantage
of the local odds ratio parameterization, and provide a better understanding of how
different parameterizations of the association structure can affect model parameter
estimation. Analysts may find this study useful to their work. Specifically, they
may decide to switch their default modeling choice from the correlation coefficient
method to the local odds ratio method.

Since the local odds ratio method came out rather recently, few papers have
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examined its performance. Nooraee et al. (2014) compared the R package {multgee}
with a few other software tools and focused on issues such as software stability and
algorithm convergence rather than estimation efficiency. Touloumis et al. (2013)
compared between different specifications within the local odds ratio framework,
but not against the traditional correlation coefficient method, which is the focus of
this study.

Future studies may extend the comparison to other classes of models and to
nominal rather than ordinal categorical data; this would allow the evaluation of the
full potential of the local odds ratio parameterization for modeling categorical data.

5. Supplementary Information

This section contains details of the simulation results. Specifically, we focused on
the parameter estimation for β from model (5), which was set to 1 throughout the
simulations, and aggregated the results from the 5, 000 iterations by summarizing
the mean bias and standard error (SE), the percentage of times that β was covered
by the 95% confidence interval (coverage probability, CP), and the simulated relative
efficiency (SRE) which is defined as MSE(β̂CC Uniform)/MSE(β̂).

N = 100 N = 500

Method Bias SE CP SRE Bias SE CP SRE

CC Independent 0.0051 0.1045 0.94 1.00 0.0013 0.0465 0.95 1.01
CC Uniform 0.0054 0.1048 0.95 1.00 0.0015 0.0467 0.95 1.00
CC AR1 0.0054 0.1046 0.95 1.00 0.0016 0.0466 0.95 1.00
LOR Uniform 0.0024 0.1041 0.94 1.00 0.0010 0.0465 0.95 1.01
LOR CE -0.0126 0.1032 0.93 0.98 -0.0020 0.0464 0.94 1.00
LOR TE 0.0011 0.1039 0.94 1.01 0.0006 0.0464 0.95 1.01
LOR RC -0.0241 0.1014 0.93 0.98 -0.0042 0.0462 0.94 1.00

Table 1: Simulation results under the latent correlation matrix R1, which is uni-
form with off-diagonal elements equal to 0.

N = 100 N = 500

Method Bias SE CP SRE Bias SE CP SRE

CC Independent 0.0069 0.1047 0.95 0.98 0.0015 0.0467 0.95 0.98
CC Uniform 0.0070 0.1033 0.94 1.00 0.0018 0.0461 0.95 1.00
CC AR1 0.0068 0.1038 0.95 0.99 0.0018 0.0463 0.95 0.99
LOR Uniform 0.0045 0.1030 0.95 1.01 0.0012 0.0461 0.95 1.00
LOR CE -0.0107 0.1021 0.94 0.98 -0.0016 0.0460 0.94 1.00
LOR TE -0.0002 0.1026 0.94 1.01 0.0002 0.0460 0.94 1.01
LOR RC -0.0344 0.0995 0.91 0.90 -0.0081 0.0457 0.94 0.97

Table 2: Simulation results under the latent correlation matrix R2 (uniform with
off-diagonal elements equal to 0.15).
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N = 100 N = 500

Method Bias SE CP SRE Bias SE CP SRE

CC Independent 0.0122 0.1098 0.95 0.85 0.0014 0.0490 0.95 0.84
CC Uniform 0.0129 0.1011 0.95 1.00 0.0014 0.0450 0.95 1.00
CC AR1 0.0123 0.1038 0.95 0.94 0.0013 0.0462 0.95 0.95
LOR Uniform 0.0108 0.0984 0.95 1.06 0.0009 0.0438 0.95 1.06
LOR CE -0.0039 0.0974 0.94 1.05 -0.0019 0.0437 0.95 1.05
LOR TE 0.0061 0.0979 0.95 1.07 0.0000 0.0437 0.95 1.06
LOR RC -0.0468 0.0941 0.88 0.85 -0.0097 0.0433 0.94 1.01

Table 3: Simulation results under the latent correlation matrix R3 (uniform with
off-diagonal elements equal to 0.5).

N = 100 N = 500

Method Bias SE CP SRE Bias SE CP SRE

CC Independent 0.0140 0.1219 0.95 0.74 0.0015 0.0546 0.95 0.74
CC Uniform 0.0144 0.1047 0.95 1.00 0.0022 0.0466 0.95 1.00
CC AR1 0.0134 0.1083 0.95 0.93 0.0018 0.0483 0.95 0.94
LOR Uniform 0.0124 0.0962 0.95 1.17 0.0022 0.0428 0.95 1.18
LOR CE 0.0004 0.0952 0.94 1.17 -0.0001 0.0427 0.95 1.18
LOR TE 0.0095 0.0957 0.95 1.19 0.0016 0.0426 0.95 1.19
LOR RC -0.0448 0.0915 0.88 0.94 -0.0081 0.0422 0.94 1.15

Table 4: Simulation results under the latent correlation matrix R4 (uniform with
off-diagonal elements equal to 0.85).

N = 100 N = 500

Method Bias SE CP SRE Bias SE CP SRE

CC Independent 0.0104 0.1151 0.95 0.81 0.0014 0.0515 0.94 0.81
CC Uniform 0.0096 0.1039 0.95 1.00 0.0017 0.0464 0.94 1.00
CC AR1 0.0090 0.0982 0.95 1.12 0.0013 0.0439 0.94 1.12
LOR Uniform 0.0072 0.0993 0.95 1.11 0.0015 0.0444 0.94 1.10
LOR CE -0.0037 0.0874 0.95 1.41 -0.0009 0.0395 0.94 1.39
LOR TE 0.0026 0.0987 0.95 1.12 0.0006 0.0442 0.94 1.11
LOR RC -0.0458 0.0839 0.88 1.08 -0.0089 0.0387 0.93 1.35

Table 5: Simulation results under the latent correlation matrix R5 (a Toeplitz
matrix whose first row is (1, 0.85, 0.5, 0.15)).
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