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Abstract 
We describe research on the use of hurdle models for projecting the number of installations 
of residential solar photovoltaic (PV) systems in the United States. The U.S. Energy 
Information Administration (EIA) publishes detailed energy-related projections annually 
in its Annual Energy Outlook (AEO). The 2017 edition of the AEO provides projections to 
2050. The EIA uses its own National Energy Modeling System (NEMS) to produce AEO 
projections. 
 
Hurdle models have been used to model count data in various settings, including public 
health and econometric applications. Rothfield (2010) used hurdle models to identify 
significant drivers of residential PV installations in California, revealing both economic 
and social effects. We use the GAMLSS package in R to fit hurdle models, incorporating 
logistic and negative binomial components, to zipcode-level residential PV installation 
data. We combine the model coefficients with projected variables from the NEMS to 
project future PV installations. The projections are aggregated to the national and Census 
Division levels for publication. 
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1. The Rising Penetration of Residential Solar Photovoltaic Systems 
 
Solar photovoltaic (PV) systems are the most widely used solar electricity generating 
systems both globally and in the United States. In 2014, solar PV accounted for 6.9% of 
net electricity consumption in Germany and met 2.9% of Japan’s electricity demand. PV 
systems range in size from small residential systems (10 killowatts or less) to utility-scale 
systems generating more than one megawatt. Unlike solar thermal systems, which collect 
solar heat and use it to power conventional generators, PV systems generate electric current 
from sunlight and can therefore operate at cool temperatures without losing efficiency with 
reduced scale. Cloud cover and other sources of shade, however, affect the efficiency of 
solar PV systems.  
 
Because of declining system costs, improving technologies, and government policies, PV 
penetration has increased substantially in the United States, where small-scale PV 
electricity generation more than doubled between 2014 and 2016. PV systems now account 
for over 90% of installed U.S. solar electricity generating capacity. In 2014, about 75% of 

                                                 
1 Disclaimer:  Opinions expressed in this paper are those of the author and do not constitute policy 
of the U.S. Energy Information Administration. 
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installed solar PV electric generating capacity was concentrated in five states, 2  but 
installations outside these states are increasing. Stanford University futurist Dr. Tony Seba 
has predicted that, by 2030, nearly all American homes and businesses will have solar PV 
systems (Seba 2014). 
 
Both state and federal tax incentives have made solar PV more economically competitive 
in recent years. The federal investment tax credit (ITC), implemented in 2006, effectively 
provides a 30% rebate on the cost of purchasing and installing a residential PV system. 
Many states also have renewable portfolio standards (RPS) that offer solar renewable 
energy certificates (SREC) for electricity generated through solar PV. The SREC’s may be 
sold to electricity suppliers, who are required to hold a minimum number of them in order 
to comply with the RPS. 
 
Solar technology, including PV technology, is less cost effective in the residential sector 
than in the utility sector. The cost of an installed PV system is the sum of the cost of the 
actual PV panels and the balance of system (BOS) costs. Because of hardware and 
logistical costs, coupled with relatively weak competition among residential PV installers, 
the BOS component can make up more than two thirds of the total system cost for 
residential installations.3 The high upfront cost has led to power purchase agreements 
(PPA) and leasing arrangements through which a third party developer installs and retains 
ownership of a PV system on a home, and the homeowner either pays a monthly lease 
amount or buys the installed PV system’s electricity from the developer. 
 
Under a PPA, the price that the homeowner pays for the electricity is based on the retail 
electricity rate for the location and a discount factor which generally saves the homeowner 
approximately 15% on the electricity generated by the PV system rather than purchased 
from the grid. PPA and leasing arrangements minimize or remove the upfront cost of a PV 
system to homeowners, while tax and RPS incentives help make the investment worthwhile 
for the third party developers. Although the trend toward PPA arrangements appears to be 
weakening, the majority of new residential PV systems installed in 2013 and 2014 were 
covered by third party agreements.  
 
The growth in the PV market, along with the implementation of government incentives, 
has led to increased public-access data sources on PV prices and installations. Several 
states now publish project-level administrative records, and the National Renewable 
Energy Laboratory (NREL) has launched the Open PV Project, which provides real time 
data on the status of PV penetration nationwide (https://openpv.nrel.gov/). The modeling 
approach described here relies on data from multiple sources with the limitations noted 
below. EIA expects to further update and develop the models in the future as the available 
data sources expand. 
 
 
 
 
 
                                                 
2 Key Figures of the “Solar Market Insight Report 2015 Q2,” Solar Energy Industry Association, 
available at http://www.seia.org/research-resources/solar-market-insight-report-2015-q2.  
3 MIT Energy Initiative report, “The Future of Solar Energy:  An Interdisciplinary MIT Study led 
by the MIT Energy Initiative,” available at https://mitei.mit.edu/futureofsolar.  
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2. Modeling Residential Solar PV in the National Energy Modeling System 
 

EIA’s National Energy Modeling System (NEMS) is a modular system incorporating 
energy supply, consumption, and integrating modules. Prior to 2017, the NEMS 
Residential Energy Consumption Module (RECM) relied on data from EIA’s 2009 
Residential Energy Consumption Survey (RECS). The RECS provides data on PV 
installations, electricity prices, and housing unit characteristics such as square footage. The 
RECS data were mapped to an NREL database containing zipcode-level estimates of solar 
irradiation levels. Projections of new solar PV installations were based on a cash flow 
analysis that calculated the number of years required for a residential PV installation to 
“pay for itself” in the form of lower electricity costs. A logistic curve, with parameters 
assigned by expert judgment, was then used to project future installations based on the 
number of years to achieve payoff. 
 
The new projection method, implemented in the 2017 version of the NEMS, combines 
zipcode level data from three state databases, NREL, the Census Bureau’s American 
Community Survey (ACS), and other sources. Previous studies matching data from solar 
PV databases to ACS data include those by Rothfield (2010) and Hernandez (2013). 
Rothfield presents a statistical model-based investigation of the effects of economic and 
social factors on residential PV installation decisions in California. The results indicate that 
previous installations within a zipcode significantly increase the likelihood of future 
installations, even when the models control for other factors (e.g., income, education of 
householders). Through a descriptive analysis of the installation data for California, New 
Jersey, and Arizona, Hernandez shows the effects of income on homeowners’ decisions to 
adopt solar PV.  
 
 

3. Using Hurdle Models to Project Residential PV Installations 
 
Online databases of residential solar PV installations are available for the states of 
California, New Jersey, and Arizona.4 NREL publishes an Open PV Database, containing 
voluntarily-reported data on new PV installations. The Open PV data for Massachusetts 
and Maryland are sufficiently complete to be used in the models. These five states therefore 
serve as “data states.” The five states combined represent a broad range of solar irradiation 
levels and economic conditions. We refer to the zipcodes within these states as data 
zipcodes. We use the combined data from these zipcodes, along with covariate data 
available for most zipcodes in the United States, to estimate historical PV installations for 
zipcodes outside the data states. We refer to the zipcodes for which we wish to estimate 
historical installations as target zipcodes. All data used in the hurdle models are annual. 
 
The zipcode-level data are for Census Bureau zipcode tabulation areas. Although these 
include the vast majority of zipcodes, some zipcodes with few or no residential units are 

                                                 
4 The residential PV installations data can be downloaded from the following sites:  
http://www.californiasolarstatistics.ca.gov/current_data_files/,  
http://www.njcleanenergy.com/renewable-energy/project-activity-reports/installation-summary-
by-technology/solar-installation-projects, and www.arizonagoessolar.org.  The three test states 
represent a broad range of solar insolation levels and median incomes.  In the Census Bureau’s 
2012-2014 state income rankings, New Jersey had the 4th highest median household income 
among all states ($64,670), while California ranked 14th ($56,883), and Arizona ranked 33rd 
($49,562). 
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not treated as tabulation areas in Census Bureau surveys. Also, the residential solar PV 
installation data may be subject to some under counting, as discussed in [1]. The estimated 
PV capacity and generation estimates are therefore benchmarked to EIA’s historical 
estimates. The goal is to produce projections of residential solar PV installations at the 
Census Division level that reflect assumptions regarding changes in median household 
income, PV prices, and other economic factors, as well as the “social spillover” effect 
documented by Rothfield (2010). Zipcode-level American Community Survey (ACS) data 
were downloaded from the Census Bureau website using the American Fact Finder (AFF) 
extraction tool.  
 
To initialize the data series for the zipcodes outside the five datastates, we matched each 
target zipcode with a similar data zipcode. We used the historical data from the matching 
data zipcode, adjusted by a ratio of fitted model values, to impute historical installations 
for the target zipcode.  For all but four of these target zipcodes, we used the hurdle model 
described in Section 4 to impute and project the number of residential PV installations. 
Because of extreme covariate values, which may have created a “snowball effect,” the 
lagged dependent variable was omitted in the model for four zipcodes (three in Hawaii and 
one in Texas). The main steps in the method may thus be summarized as follows: 
 

1. Obtain a covariate vector for each zipcode. Match each target zipcode to a data 
zipcode such that the Euclidean distance between the covariate vectors of the target 
zipcode and its matched data zipcode is minimized. 

2. Fit a reduced hurdle model, including all covariates listed in subsection 4.1 (but 
excluding a lagged dependent variable), to the combined zipcode-level data for the 
data states. 

3. For each target zipcode, impute the installation and lagged installation values from 
the matching data zipcode, adjusted by the ratio of the fitted values from the 
reduced model and a size adjustment factor (number of households).  

4. Use the coefficients of the hurdle model described in Section 4, along with the 
zipcode-level covariate data and the imputed installation data, to estimate 
installations for the target zipcodes. (In the case of the four zipcodes with extreme 
covariate values, omit the lagged dependent variable from the model.)  

5. Use the coefficients of the hurdle models, along with projected covariate data from 
the NEMS, to project residential PV installations at the zipcode level; aggregate 
the projections to the national and Census Division levels. 

 
The models described in Section 4 incorporate zipcode-level ACS estimates of median 
household income and numbers of households. They account for solar irradiation and 
electricity prices at the zipcode level and for national-level annual mortgage interest rates 
and solar PV prices, aggregated to compute an average monthly payment for a solar PV 
system. The monthly payment is assumed constant across areas but varies over time. Other 
ACS zipcode-level variables that were tested in the models include median age and 
educational attainment of householders, as well as percentage of owner-occupied housing 
units. These were found insignificant in the models, due to high correlation with median 
household income. EIA state-level estimates of household electricity consumption were 
also tested as a proxy for electricity demand but proved too strongly (negatively) correlated 
with electricity prices to be included in the models. Similarly, one-year lagged measures 
of state-level average cooling degree days, obtained from the National Oceanic and 
Atmospheric Administration, were tested as proxy demand measures but were found 
insignificant. 
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Because the models are intended to be used for long-term projections (step 5 above), the 
available covariates are limited to those projected in the NEMS. Solar PPA and leasing 
rates, for example, are not directly available but are reasonably assumed to be driven by 
retail electricity rates, prices of installed PV panels, and interest rates, which are projected 
in the NEMS. The models cannot directly account for state and local policy effects, because 
these may be confounded with other differences between geographic areas (e.g., 
differences in retail electricity prices and/or solar irradiation levels). Future research, 
discussed in Section 6, may focus on incorporating policy effects into the projections 
through adjustments applied to the hurdle model estimates. 
 
The hurdle models include all the variables used in the previous NEMS “payback model” 
except residential roof area. Zipcode-level population density estimates are used as a proxy 
for roof area. Roof area is expected to become less of a limiting factor in installation 
decisions as the solar PV technology evolves. For example, solar skyscrapers are being 
built with PV panels mounted on exterior walls and in windows. Concentrated solar PV 
(CPV) technology, which requires less roof area and is currently used in utility and large-
scale commercial applications, may eventually become economically viable for residential 
projects. Residential system capacity calculations, separate from the statistical models 
described here, will continue to be performed in the NEMS. 
 
 

4. Model Specification 
 
4.1 Model Explanatory Variables 
The model covariates are based on data from EIA, the National Renewable Energy 
Laboratory (NREL), the Census Bureau’s American Community Survey (ACS), and the 
decennial census. The following covariates were included for each year ݐ and zipcode ݖ: 
 

ଵ,௧,௭ݔ ൌ median	household	income,	estimated	from	the	ACS	and	decennial	 
															census	data;5	 

		ଶ,௭ݔ ൌ annual	average	solar	irradiation	level,	in	kilowatthours	per	square	 
															meter	per	day	ሺestimated	by	NREL	as	described	in	ሾ8ሿሻ,	assumed	constant	  
															over	time; 6 

ଷ,௧,௭ݔ ൌ electricity	rate	ሺcents	per	kilowatthourሻ,	estimated	as	described	in 
																Appendix	A; 

ସ,௧,௭ݔ ൌ number	of	households,	estimated	from	the	ACS	and	decennial	census; 

                                                 
5 ACS data are available for 2011 through 2013.  Decennial census data were used, along with the 
ACS data, to interpolate median income and numbers of households for 2001 through 2010. 
6 The zipcode-level solar irradiation levels, downloaded from the NREL website, assume PV 
panels at a lateral tilt.  The NREL database excludes the state of Alaska, because cloud cover 
obscures the Alaska irradiation measures gathered from satellites.  Alaska solar irradiation data 
were imputed at the zipcode level, based on NREL data available for 17 locations within the state. 
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		ହ,௧ݔ ൌ installed	price	of	solar	PV	panels	in	year	ݐ; 7		and 

଺,௧ݔ ൌ annual	average	mortgage	interest	rate		for	year	8.ݐ 

We combined the solar PV panel price (ݔହ,௧	) with the annual average mortgage interest 
rate (ݔ଺,௧) to compute a monthly payment (ݔ଻,௧) per kilowatt of installed capacity, based on 
a 30-year (360 month) mortgage: 
 

଻,௧ݔ ൌ ହ,௧ݔ1,000 ൦

଺,௧ݔ
12 ቀ1 ൅

଺,௧ݔ
12 ቁ

ଷ଺଴

ቀ1 ൅
଺,௧ݔ
12 ቁ

ଷ଺଴
െ 1

൪. 

 
We further combined the estimated number of households ݔସ,௧,௭ with land area information 
to create a measure of population density in units of households per square mile: 
 

௧,௭,଼ݔ ൌ
ସ,௧,௭ݔ
௭ܣ

, 

 
where ܣ௭ represents the land area of zipcode ݖ in square miles, as recorded in the 2010 
Census.9  The time-dependent financial covariates are deflated to constant 2009 dollars. 
 
The models specified below were fit in R using the GAMLSS package. The time periods 
covered differed for the five data states, with the Arizona data covering 2000-2015, the 
New Jersey data covering 2001-2015, and the California, Maryland, and Massachusetts 
data covering 2007-2015. Because of positive correlations between the data values for the 
same zipcodes in different years, the p-values generated by GAMLSS (shown in Appendix 
B) may be somewhat understated. Prior knowledge of the residential PV market, however, 
indicates that the selected variables are significant drivers of PV installations. 
 
4.2. Hurdle Model Specification 
The reduced hurdle model is a two-part model comprising logit and zero-truncated negative 
binomial components.  Both components use covariates from the list above as independent 
variables.  The logit model specification is as follows: 
 

 
௧,௭ߣ ൌ ln ቆ

௧,௭ߨ
1 െ ௧,௭ߨ

ቇ ൌ ଴ߙ ൅ ଵ,௧,௭ݔଵߙ ൅ ଷ,௧,௭ݔଶߙ ൅ ସ,௧,௭ݔଷߙ ൅  ଻,௧ݔସߙ

൅ߙହ଼ݔ,௧ ൅ ௧ିଵ,௭ݕ଺ߙ , 
(1) 

 
where, for zipcode ݖ during year ߨ ,ݐ௧,௭ represents the probability of observing at least one 
solar PV installation, and ݕ௧ିଵ,௭ represents the number of new installations observed in the 
previous year. The model is fit using a binary dependent variable, which takes on values in 
ሼ0,1ሽ , with 0  indicating no observed installations and 1  indicating one or more 
                                                 
7 Annual average national-level solar PV prices are from a report issued by the Lawrence Berkeley 
National Laboratory, available at http://emp.lbl.gov/publications/tracking-sun-vii-historical-
summary-installed-price-photovoltaics-united-states-1998-20.   The prices are adjusted to account 
for the 30% federal tax credit implemented in 2006. 
8 Annual average national-level mortgage interest rates are from the Federal Reserve Economic 
Data (FRED) system. 
9 The land area dataset is available at http://proximityone.com/cen2010_zcta_dp.htm. 
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installations. For the four zipcodes with extreme covariate values, the lagged dependent 
variable ݕ௧ିଵ,௭ is omitted from the logit model. 
 
The zero-truncated negative binomial component of the reduced hurdle model is specified 
as follows: 
 

 
௧,௭ߞ ൌ ln൫ݕ௧,௭หݕ௥,௭ ൐ 0൯ ൌ ଴ߚ ൅ ଵ,௧,௭ݔଵߚ ൅ ଶ,௭ݔଶߚ ൅ ଷ,௧,௭ݔଷߚ ൅  ସ,௧,௭ݔସߚ

൅ߚହݔ଻,௧ ൅ ௧,௭,଼ݔ଺ߚ .  
       (2) 

 
Because of the conditioning on the dependent variable (ݕ௥,௭ ൐ 0), the zero-truncated model 
is fit using only the zipcode/year observations with one or more solar PV installations.  
Model diagnostics for both component models are given in Appendix B.  To extract the 
fitted value (the expected number of installations) for zipcode ݖ in year ݐ, we compute 
 

ො௧,௭ݕ  ൌ
݁ఒ෡೟,೥ା఍෠೟,೥

1 ൅ ݁ఒ෡೟,೥
,         (3) 

 
where ߣመ௧,௭  and ߞመ௧,௭  are computed using the estimated coefficient vectors ࢻෝ  and ࢼ෡  from 
model equations (1) and (2) along with the covariates for zipcode ݖ in year ݐ. 
 
4.3. Dynamic Model Coefficients 
Coefficients for the hurdle model, as estimated from historical data, appear in Appendix B.  
As residential solar PV becomes more common and affordable, however, the effects of 
income, retail electricity rates, and social spillover (represented by the lagged dependent 
variable) are expected to decline. For the 2018 version of the NEMS, we therefore applied 
dampening factors to the coefficients for these variables. The factors ranged from 1 (at the 
beginning of the projection period) to 0.82 (40 years after the most recent year of historical 
data). The formula for the dampening factor for year ݐ is 
 

 ݀௧ ൌ
1

ሺݐ െ ଴ሻ଴.଴ହହݐ
,         (4) 

 
where ݐ଴ is the most recent year for which historical data are available. The constant 0.055 
was chosen by expert judgement following a sensitivity analysis. The dampening factors 
appear in Figure 1. 
 
4.4. Matching Target Zipcodes to Data Zipcodes 
In order to apply the lagged hurdle model to the target zipcodes, we impute installation 
counts for each target zipcode from a data zipcode that is similar in the covariates ݔଵ 
through ݔସ defined in subsection 4.1.  We first average the time-dependent covariates for 
each zipcode for the years 2007 to 2015. For ݅ ∈ ሼ1,2,4ሽ, let 
 

௜,௭ݔ̅ ൌ
1
9

෍ ௜,௧,௭ݔ

ଶ଴ଵହ

௧ୀଶ଴଴଻

. 

 
Because the covariates are expressed in different units with substantially different 
magnitudes, we standardize them prior to computing Euclidian distances.   
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Figure 1: Dampening Factors for Coefficients of Income, Electricity Rate, and Spillover 
Effect  
 
The standardization and matching process is done by state.  Let ݏ be a target state, and let 
݀ represent the collection of data states.  We combine the zipcodes from ݏ and ݀ for the 
standardization. For ݅ ∈ ሼ1, … ,4ሽ  and ݖ ∈ ݏ ∪ ݀ , let ߤ௜,௦,ௗ  and ߪ௜,௦,ௗ  be the mean and 
standard deviation, respectively, of ̅ݔ௜,௭, taken over the combined zipcodes ݖ ∈ ݏ ∪ ݀.  Let 
 

௜,௭ߦ ൌ
௜,௭ݔ̅ െ ௜,௦,ௗߤ
௜,௦,ௗߪ	

. 

 
For each target zipcode ݖ௦ ∈ ௗݖ and each data zipcode ݏ ∈ ݀, let 

,௦ݖሺݑ ௗሻݖ ൌ෍൫ߦ௜,௭ೞ െ ௜,௭೏൯ߦ
ଶ

ସ

௜ୀଵ

. 

 
We match the target zipcode ݖ௦ to the data zipcode ݖௗ that minimizes ݑሺݖ௦,  ௗሻ. To imputeݖ
a solar PV installation count ݕ෤௧,௭ೞ for the target zipcode ݖ௦ in year ݐ, we adjust the count 
from the matched zipcode ݖௗ by the ratio of the fitted values from a reduced hurdle model 
that includes all independent variables shown in equations (1) and (2) except the lagged 
dependent variable. The imputed value is   
 

෤௧,௭ೞݕ ൌ ௧,௭೏ݕ ቆ
ො௧,௭ೞݕ
ො௧,௭೏ݕ

ቇ ቆ
ସ,௧,௭ೞݔ
ସ,௧,௭೏ݔ

ቇ, 

 
where ݕ௧,௭೏  is the actual installation count from zipcode ݖௗ , and ݕො௧,௭ೞ  and ݕො௧,௭೏  are the 
fitted values from the reduced hurdle model. The second adjustment factor accounts for 
differences between the sizes (numbers of households) in the target and data zipcodes. 
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5. Results 
 
Appendix B shows the estimated coefficients of the hurdle model specified in Section 4.  
These coefficients were used, along with the NEMS projections of the model covariates,10 
to project the numbers of solar PV installations. The national-level results for the Reference 
case presented in the Annual Energy Outlook 2015 (AEO 2015) are shown in Figure 2. The 
AEO Reference Case is based on current policies and an assumed annual GDP growth rate 
of 2.4%.  For details on all of the AEO 2015 cases, see “Assumptions to AEO 2015,” 
available at http://www.eia.gov/forecasts/aeo/assumptions/. Figure 2 shows that, as 
compared to the previous “payback model,” the hurdle models project larger numbers of 
PV installations in the years following 2021. 
 

 
Figure 2: National Projections for the AEO 2015 Reference Case, Hurdle vs. Payback 
Models  
 
The 2016 leveling-off point in the payback model series in Figure 2 reflects the impact of 
the expiration of the federal investment tax credit for residential solar PV.  The hurdle 
model series appears to be driven more by macroeconomic conditions and shows less 
impact of the tax credit expiration. Figure 3 shows the hurdle model results for the nine 
Census Divisions. Growth in all divisions is projected, with the Pacific and South Atlantic 
Divisions continuing to add the highest numbers of installations. 
 
Figures 2 and 3 show series computed for the AEO 2015; these series include only roof-
top solar installations on individual homes. Preliminary projections for the AEO 2018 are 
substantially higher, because (a) they are adjusted to include community solar that is 
classified as residential and (b) they assume implementation of the Clean Power Plan, 
which provides incentives for renewable energy systems. 
 

                                                 
10 Household income is not projected in the NEMS but was assumed to change in proportion to the 
projected changes in personal disposable income. 
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Figure 3: Regional Hurdle Model Projections for the AEO 2015 Reference Case 
 
 

 
Figure 4: Preliminary High and Low Economic Growth Cases for the AEO 2018 
 
Figure 4 shows preliminary projections, as of June 2017, for the AEO 2018 Reference Case, 
along with those of the High Economic Growth and Low Economic Growth Cases. These 
cases assume higher and lower annual growth in the gross domestic product (GDP), 
respectively, as compared to the Reference Case. Household income, interest rates, and 
numbers of households are all affected by the differing macroeconomic assumptions, and 
the inclusion of these variables in the hurdle model causes the model projections to reflect 
substantially larger numbers of PV installations for the High versus the Low Economic 
Growth Case. 
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Figure 5 shows the preliminary hurdle model projections for the AEO 2018 Reference Case 
along with those for the High and Low Oil and Gas Price Cases.  The High and Low Oil 
and Gas Price Cases assume higher and lower values of the Brent crude oil price by 2050, 
as compared to the Reference Case. These cases reflect the macroeconomic effects of high 
and low oil and natural gas prices. As compared to the low oil price case, the high oil price 
case has the following projected differences: 
 

a) higher electricity prices; 
b) higher inflation, as measured by the GDP price deflator; 
c) higher interest rates (10 year treasury note); and 
d) lower real personal disposable income. 

 
The higher electricity prices in the High Oil Price case would increase the incentive for 
homeowners to install solar PV systems.  Higher inflation, however, would increase the 
prices of residential PV systems, and higher interest rates would increase the cost of 
financing the investment.  The decrease in disposable income would also tend to decrease 
the number of PV installations.  Figure 5 shows that, according to the hurdle models, the 
combined effect of (a) through (d) above is essentially negligible, as the effects of (b) 
through (d) counteract the effect of (a). 
 

 
Figure 5: Preliminary High and Low Oil and Gas Price Cases for the AEO 2018 
 
 

6. Future Research 
 
EIA expects to further develop the hurdle models described above by incorporating 
additional data on PV installations.  Data from additional states will be incorporated into 
the models as they become available, and the hurdle model projections will continue to be 
benchmarked to historical estimates.   
 
The hurdle models cannot separate out the effects of different state policies from the effects 
of different levels of income, solar irradiation, etc., in the data states.  Although the NEMS 
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applies adjustments to account for some state-level policy differences, these capabilities 
may be enhanced in the future by incorporating the results of studies focused on state-level 
policy effects.  NREL, for example, has compiled the results of several studies on its 
website (http://www.nrel.gov/analysis/policy_state_local.html).  
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Appendix A:  Estimating Zipcode-level Electricity Rates 
 
The zipcode-level electricity rate estimates are computed by combining average state-level 
rates from form EIA-861 (“Annual Electric Power Industry Report”) with zipcode-level 
estimates for February, 2011. The zipcode level estimates were developed by NREL using 
inputs from EIA and Ventyx Research, Inc. The estimates and accompanying 
documentation are available at the following link: 
http://catalog.data.gov/dataset/u-s-electric-utility-companies-and-rates-look-up-by-
zipcode-feb-2011-57a7c. 
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The goal of the estimation is to use the NREL estimates to capture some of the variation in 
electricity rates by zipcode within each state, while calibrating the zipcode-level estimates 
to the state-level averages from form EIA-861. For each state ݏ and year ݐ, let ݌௧,௦ denote 
the state-level average electricity rate from form EIA-861. For each zipcode ݖ ∈  ௭݌ let ,ݏ
denote the zipcode-level rate from the NREL data, computed as a simple average of the 
rates for investor-owned and non-investor-owned utilities. (The rates for the two types of 
utilities differed little for most zipcodes.) Let ݔ௧,௭ ൌ ସ,௧,௭ݔ , the estimated number of 
households in zipcode ݖ in year ݐ, from the ACS and decennial census data. Let 
 

௧,௦̅݌ ൌ
∑ ௭௭∈௦݌ ௧,௭ݔ
∑ ௧,௭௭∈௦ݔ

. 

 
We estimate the electricity rate for zipcode ݖ in year ݐ as 
 

௧,௭̂݌ ൌ ௭݌ ቆ
௧,௦݌
௧,௦̅݌

ቇ. 

 
Averaging the zipcode-level estimated rates within the state, weighted by the estimated 
numbers of households, returns the state-level average rate (݌௧,௦) from form EIA-861.  
 
 

Appendix B:  Model Diagnostics 
 
Logit Component 
 
Family:  c("BI", "Binomial")  
 
Call:   
gamlss(formula = AnyInstalls ~ Households + PopDensity +   
    Income + ElecRate + MonthlyPayment + Lag1_Installs,   
    family = BI(mu.link = "logit"), data = CANJAZPlus,   
    method = CG())  
 
Fitting method: CG()  
 
Mu link function:  logit 
Mu Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)    -2.965e+00  7.794e-04 -3804.1   <2e-16 *** 
Households      7.742e-05  2.650e-08  2921.8   <2e-16 *** 
PopDensity     -1.076e-04  4.253e-06   -25.3   <2e-16 *** 
Income          1.051e-05  2.760e-09  3807.4   <2e-16 *** 
ElecRate        1.371e-01  3.547e-05  3864.5   <2e-16 *** 
MonthlyPayment -2.390e-02  6.018e-06 -3972.0   <2e-16 *** 
Lag1_Installs   2.891e-01  7.247e-05  3989.7   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
----------------------------------------------------------------- 
No. of observations in the fit:  30468  
Degrees of Freedom for the fit:  7 
      Residual Deg. of Freedom:  30461  
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                      at cycle:  8  
  
Global Deviance:     28855.56  
            AIC:     28869.56  
            SBC:     28927.83  
 
 
Zero-truncated Negative Binomial Component 
 
Family:  c("NBIlefttr", "left truncated Negative Binomial type 
I")  
 
Call:  gamlss(formula = Installs ~ Households + PopDensity +   
    Income + Insol + ElecRate + MonthlyPayment, family = 
NBIlefttr,   
    data = CANJAZPlusPos)  
 
Fitting method: RS()  
 
Mu link function:  log 
Mu Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)    -1.689e+00  1.296e-01  -13.04   <2e-16 *** 
Households      1.290e-04  2.111e-06   61.12   <2e-16 *** 
PopDensity     -1.193e-04  5.074e-06  -23.52   <2e-16 *** 
Income          9.722e-06  3.630e-07   26.78   <2e-16 *** 
Insol           4.652e-01  1.473e-02   31.59   <2e-16 *** 
ElecRate        1.101e-01  4.312e-03   25.53   <2e-16 *** 
MonthlyPayment -8.428e-02  1.171e-03  -72.00   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
----------------------------------------------------------------- 
Sigma link function:  log 
Sigma Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   0.4852     0.0205   23.67   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
----------------------------------------------------------------- 
No. of observations in the fit:  17614  
Degrees of Freedom for the fit:  8 
      Residual Deg. of Freedom:  17606  
                      at cycle:  9  
  
Global Deviance:     118281.9  
            AIC:     118297.9  
            SBC:     118360.1  
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