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Abstract

This paper applies various Markov switching asymmetric GARCH models in estimating value-at-

risk (VaR) and its coherent complement Expected shortfall(ES) on returns of the Nigerian stock

index. This was done by considering a mixture of Student's-t distributions with varying variances

over different time and regimes. Single regime asymmetric GARCH models were compared with

their Markov switching counterparts. We found that although the Markov switching models were

able to adjust for spurious high persistence found in the single regime asymmetric GARCH models.

Under relative performance and hypothesis-testing evaluations, the VaR forecasts derived from the

Markov-switching GARCH models were not necessarily preferred to their single regime counter-

parts.
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1. Introduction

A major consequence of the recent global �nancial crisis is the improvement of the regu-

latory process of the Basel Accords (currently the Basel III Accords)(on Banking Supervi-

sion, 1996);(on Banking Supervision, 2011). Financial institutions of leading nations are

obliged to meet stringent capital requirements and rely on state-of-the-art risk management

systems ((bas, )). It is undoubtful that better risk management practices should lead to a

higher stability of the economy and ultimately translate to social bene�ts for the critical

mass. It would also translate to more con�dence for potential startups, encouraging the

inception of small and medium scale enterprises. Nigeria as a nation has not been ex-

empt from the current global crisis. Being a major oil producing state, a lot of economic

development in the country is hinged largely on proceedings from trading crude. Hence

it is not surprising that staggering prices of crude would signi�cantly rock the Nigerian

economy. The economy is currently struggling heavily under the recent drop in crude oil

prices resulting in major job losses and a rise in the birth of small business as families

seek other sources of livelihood. The need for seamless functioning banking and insurance

systems and of course credit system cannot be over emphasised at this time. Modeling the

volatility of �nancial markets is central in risk management. Furthermore, back testing ex-

isting risk models and comparing the estimation techniques used to calibrate these models

is even more critical. Research on modeling volatility dynamics using time series mod-

els has been active since the creation of the original ARCH model by (Engle, 1982) and its

generalization by (Bollerslev, 1986). Many variants that sprung from GARCHmodels have

been proposed to capture additional stylized facts observed in �nancial markets. However,

the choice of an optimal model still remain evasive as different market dynamics play out

in different markets and different time periods. GARCH-type models have been shown to

recognize that there may be important nonlinearities, asymmetries, and long-memory prop-

erties in the volatility process; see (Bollerslev et al., 1986), (Engel and Keen, 1994) for a
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review. One important �nding is that estimates based on GARCH-type models can be bi-

ased by structural breaks or regime switches in the volatility dynamics (see, e.g.,(Bauwens

and Sucarrat, 2010); (Bauwens et al., 2015). These breaks typically occur during periods

of �nancial upheaval in the said markets. Estimating a GARCH model on data displaying a

structural break yields a non-stationary estimated model which could lead to poor risk pre-

dictions.(Ardia, 2009);(Ardia et al., 2017) suggested markov-switching GARCH models

(MSGARCH) whose parameters can change over time according to a discrete latent (i.e.,

unobservable) variable as a way to handle the problem. These models can quickly adapt to

variations in the unconditional volatility level, which should improve risk predictions (see,

e.g.,(Marcucci, 2005);(Ardia, 2009)).

This paper compares the forecast performance of selected single regime asymmetric

models and 2-regime asymmetric GARCH models in providing risk forecasts for the Nige-

rian stock index. The forecasting performance of each of the models is tested for the �-

nancial time series based on 250 out-of-sample monthly (percentage) log-returns of the

Nigerian stock index. The period considered ranges from 1985 to 2015. We assess the

performance of the various models in forecasting the left-tail (i.e., losses) of the condi-

tional distribution of the assets' returns. Single regime GARCH and 2-regime MSGARCH

models are estimated by the Maximum Likelihood (ML) method (see (Haas et al., 2013),

(Marcucci, 2005). Risk forecasts are backtested using the Unconditional Coverage(UC)

and Conditional Coverage (CC) tests of (Christoffersen, 1998);(Kupiec, 1995) and the DQ

test of (Engle and Manganelli, 2004).

The rest of this paper is structured as follows: In Section 2, we discuss the single regime

GARCHmodels and 2-regime MSGARCHmodels, we also outline the details of the single

and 2-regime versions of the each of the models considered. In Section 2.5 we discuss the

risk estimation methods considered and give an overview of the risk forecast backetesting

procedures. Section 3 describes the data used. The results are presented in Section 4.

Finally, Section 5 concludes.

2. Methods

2.1 GARCH models

Consider a stock index of price yt, with corresponding continuously compounded rate of

return rt de�ned as rt = 100[log(yt) − log(yt − 1)], where the t indicates the time in-

dex under consideration. The basic GARCH(1,1) model for the returns series is given as

follows:

rt = δ + η
√

ht (2.1.1)

ht = α0 + α1e
2
t−1 + βht−1 (2.1.2)

Where α0 > 0, α1 > 0 and β1 ≥ 1

2.2 Markov Switching GARCHModels

Consider rt ∈ R, the (percentage) log-return of a stock index of price yt at time t. The

general Markov- switching GARCH speci�cation assumes that:

rt | (st = k, It−1) ∼ D(0, hk,t, ϵk) (2.2.1)

where D(0, hk,t, ek) is a continuous distribution with zero mean, time-varying variance

hk,t, and additional shape parameters gathered in the vector ϵk. Furthermore, it is assumed
that the integer- valued stochastic variable st, de�ned on the discrete space {1, . . . ,K},
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evolves according to an unobserved �rst order ergodic homogeneous Markov chain with

transition probability matrix P ≡ {pi,j}Ki,j=1, with pi,j ≡ P[st = j | st−1 = i]. The

information set up to time t − 1 is denoted by It−1,i.e. It−1 ≡ {rt−1, i > 0}. Given

the parametrization of D()̇,R[r2t | st = k, It−1] = hk,t, that is, hk,t is the variance of rt
conditional on the realization of st. Note that the conditional mean of the return is assumed
to be zero across time and regimes. The conditional variance of rt is assumed to follow a

GARCH-type model. Hence, conditionally on regime st = k, hk,t is available as a function
of past returns and the additional regime-dependent vector of parameters θk ((Ardia et al.,
2017)) such that, hk,t ≡ λ(rt−1, hk,t−1, θk) where λ()̇ is an It−1 measurable function

which de�nes the �lter for the conditional variance and also ensures its positiveness. It is

also assumed that hk,1 ≡ h̄k(k = 1, . . . ,K), where h̄k is a �xed initial volatility level for
regime k, that we set equal to the long-run unconditional volatility in regime k. Depending
on the shape of λ()̇. Flexible de�nitions of the �lter λ()̇ can be de�ned, e.g.to account

for the asymmetric reaction of volatility to the sign of past returns (i.e. leverage effect) a

Markovswitching GJR model with K regimes can be de�ned (see (Ardia et al., 2017) for

details)In the next subsection, we give details of the variants of Equation 2.1.1 considered

in this paper.

2.3 The Models

Here we give brief details of the GARCH models considered in this work. For each of

the models described, we consider both single and 2-regime versions. The models are as

follows

• Standard GARCH model (sGARCH): For the sGARCH model, the conditional vari-

ance of is modelled as (Bollerslev, 1986):

ht = k + δ1ht−1 + θ1e
α
t−1 (2.3.1)

• Glosten, Jagannathan, and Runkle GARCH (GJR-GARCH): (Glosten et al., 1993)

proposed an asymmetric GARCHmodel that accounts for leverage effect. The model

allows the conditional variance of to respond differently to shocks of either sign. It

is de�ned as follows:

ht = α0 + α1e
2
t−1[1− Ie1−1>0 ] + εe2t−1[1− Ie1−1>0 ] + β1ht−1 (2.3.2)

where I· is an indicator function.

• Exponential GARCH (EGARCH): (Nelson, 1991) introduced the EGARCH model,

here there are no parameter constraints and logarithm of the conditional variance is

modelled as follows:

log(ht) = α0 + α1

∣∣∣∣ et−1

ht−1

∣∣∣∣+ ε

∣∣∣∣ et−1

ht−1

∣∣∣∣+ β1log(h1) (2.3.3)

(2.3.4)

• Threshold GARCH (TGARCH): (Zakoian, 1994) introduced a GARCH variation

similar to the GJR-GARCH. The speci�cation is one on conditional standard devia-

tion instead of conditional variance such that:

ht = K + δht−1 + α+
1 e

+
t−1 + α−

1 e
−
1 (2.3.5)

where e+t−1 = et−1 if et−1 > 0 , and e+t−1 = 0 if et−1 ≤ 0 . Likewise, e−t−1 = et−1

if et−1 ≤ 0 , and e−t−1 = 0 if et−1 > 0.
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• Generalised autoregressive score model (GAS) :(Blasques et al., 2016) proposed the

GASmodel. The main feature of GASmodels is that the evolution in the timevarying

parameter vector θt is driven by the score of the conditional distribution yt | y1:t−1 ∼
p(yt; θt) together with an autoregressive component:θt+1 = +Ast+Bθt. where,, A
and B are matrices of coef�cients with proper dimensions collected in e, and st is a
vector which is proportional to the score of the conditional distribution.

2.4 Model evaluation

We compare model performances by employing the following penalised measures:

1. Akaike Information Criterion (AIC): It penalizes the loglikelihood for additional

model parameters. AIC provides an asymptotically unbiased estimator of the ex-

pected Kullback discrepancy between the generating model and the �tted approxi-

mating model. it is computed as follows:

AIC = −2 ln f(y | θ̂k) + 2k

(Akaike, 1974).

2. Bayesian Information Criterion (BIC): It also penalizes the loglikelihood for addi-

tional model parameters, however this penalty increases as the number of records

in the dataset increases. BIC provides a large-sample estimator of a transformation

of the Bayesian posterior probability associated with the approximating model. it is

computed as

BIC = −2 ln f(y | θ̂k) + k lnn

(Kass and Raftery, 1995).

Note 2.1. It is noteworthy that AIC and BIC feature the same goodness-of-�t term, however,

the penalty term of BIC is more stringent than the penalty term of AIC. (For n ≥ 8, k lnn
exceeds 2k.) Consequently, BIC can be too restrictive and tends to favor smaller models

than AIC.

2.5 Risk estimation and backtest

One step ahead predictive distribution is then computed for the returns series. VaR is

computed as the 100α% quantile of the predictive distribution and ES is computed as,

E[rt | rt > V aRα].
In this paper, we focus on focus on the VaR forecasts at the 1% and 5% risk levels. The

�rst test used is the conditional coverage (CC) test of (Christoffersen, 1998), the common

extension of the unconditional coverage (UC) test by (Kupiec, 1995). This approach is

based on the study of the hit sequence Iαt = I{yt ≤ V aRα
t } where V aRα

t denotes the

VaR prediction at time t for risk level α. I{·} is an indicator function such that Iαt equal to

one if the condition holds, and zero otherwise. A sequence of VaR forecasts at risk level

α has correct conditional coverage if {Iαt ; t = 1, . . . , H} is an independent and identically
distributed sequence of Bernoulli random variables with parameter α. This hypothesis can
be veri�ed by testing jointly the independence on the series and the unconditional coverage

of the VaR forecasts.

The dynamic quantile (DQ) test of (Engle and Manganelli, 2004) was also considered.

This method jointly tests for UC and CC and has more power than previous alternatives

under some form of model misspeci�cation. The series of interest is de�ned as {Iαt −α; t =
1, . . . , H}. Under correct model speci�cation, we have the following moment conditions:
E({Iαt − α)} = 0, E({Iαt − α | It−1}) = 0,E({(Iαt − α)(Iα

t′
− α)It−1)} = 0 for t ̸= t

′

(Engle and Manganelli, 2004).
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3. Data

The data is composed of 366 adjusted monthly closing prices of the Nigerian Stock Ex-

change (NSE) between 1985-2015. Figure1 gives the times plot of the NSE stock prices

and corresponding log returns over the period considered.

Figure 1: Time plot of NSE stocks (top panel) and NSE log returns (lower panel)

Figure 2 presents the Autocorrelation (ACF) and Parital Autocorrelation (PACF) plots

of the returns series. Both plot do not record any periodicity in the returns series. This is

further con�rmed by the result of the Augmented Dickey-Fuller (ADF) Test, which returns

a p-value less than 0.01 con�rming that at 5% and 1% level of signi�cace we are safe to

say that there is no periodicity in the returns series.
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Figure 2: ACF of NSE log Returns (top panel) and PACF of NSE log returns (lower panel)

The summary statistics on the data is presented in Table 1

Table 1: Summary statistics of NSE log returns

Statistic values

nobs 365.00

NAs 0.00

Minimum -36.59

Maximum 32.35

1. Quartile -1.05

3. Quartile 4.29

Mean 1.56

Median 1.61

Sum 570.58

SE Mean 0.32

LCL Mean 0.94

UCL Mean 2.19

Variance 36.67

Stdev 6.06

Skewness -0.50

Kurtosis 7.81

JB test(p-value) 0.00
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Skewness, kurtosis and Jarque-Bera test indicates that the returns are far from being

unconditionally normally distributed,thus supporting our choice of more �exible distribu-

tional assumptions to improve model performance. This paper thus chooses the student's t

distribution rather than the Gaussian distribution.

4. Results

4.1 Model evaluation (AIC and BIC)

Table 2 records the AIC and BIC scores for each of the models considered. The scores for

both the single and 2-regime versions of the models are recorded.

Table 2: AIC and BIC results for each model
Single regime model 2-regime model

Model AIC BIC AIC BIC

sGARCH 2260.93 2280.43 2221.93 2268.73

GJR-GARCH 2259.84 2283.24 2236.90 2291.50

EGARCH 2242.38 2265.78 2194.37 2248.97

TGARCH 2241.02 2264.42 42793.00 42847.60

GAS 2249.52 2269.02 2226.85 2273.65

• Apart from the TGARCH model, the information criteria consistently selects the 2-

regime model.

• The 2-regime EGARCH model was selected as the best model.

4.2 VaR Backtest results

1. Dynamic Quantile test results In Table 1, the results of the dynamic quantile (DQ)

test are presented while the results of the Mean Absolute Deviation (ADmean) and

the Maximum Absolute deviation (ADmax) are presented in Table 1.

2-regime model Single-regime model

DQ p-value DQ p-value

sGARCH 32.41 0.00 23.46 0.00

GJR-GARCH 32.41 0.00 32.42 0.00

E-GARCH 0.77 0.99 32.42 0.00

TGARCH 0.76 0.99 - -

GAS 0.76 0.99 0.39 1.00

• DQ tests report slightly better forecasts with the 2-regime models than for the

single regime models. Suggesting that the 2-regime models might be better

suited to forecasting VaR for the Nigerian Stock Index (NSE). On the other

hand the Apart from the GAS model for which the 2-regime models perform

better, the single regime models perform better for all the other models.
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Single regime model 2-regime model

Model Ad mean AD max AD mean AD max

sGARCH 3.60 6.38 6.81 15.06

GJR-GARCH 3.60 6.38 5.91 10.93

E-GARCH 2.27 3.27 8.03 11.08

TGARCH 5.04 5.99 - -

GAS 5.04 5.99 2.53 5.55

2. Unconditional coverage test results The results of the Unconditional Coverage (UC)

test are presented in Table 2 below.

Single regime model 2-regime model

Model LRuc p-value LRuc p-value

sGARCH 20.33 0.00 16.93 0.00

GJR-GARCH 20.33 0.00 20.33 0.00

E-GARCH 24.41 0.00 20.33 0.00

TGARCH 24.41 0.00 - -

GAS 24.41 0.00 20.33 0.00

• The UC tests report that similar performance for both single and 2-regime

models.

3. Conditional coverage test results The results of the Conditional Coverage (CC) test

are presented in Table 3 below

Single regime model 2-regime model

Model LRcc p-value LRcc p-value

sGARCH 20.38 0.00 17.02 0.00

GJR-GARCH 20.38 0.00 20.38 0.00

E-GARCH 24.43 0.00 20.38 0.00

TGARCH 24.43 0.00 - -

GAS 24.43 0.00 20.38 0.00

• The CC tests report that similar performance for both single and 2-regimemod-

els.

4. Actual over Expected exceedance ratio

Model 2-regime 1-regime

sGARCH 0.16 0.22

GJR-GARCH 0.16 0.16

E-GARCH 0.11 0.16

TGARCH 0.11 -

GAS 0.11 0.16

• Similar to the UC and CC tests, the Actual over expected exceedance ratio for

both single and 2-regime models are not too far apart.
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5. Summary

In this paper we applied selected Markov switching asymmetric GARCH models in esti-

mating value-at-risk (VaR) and its coherent complement Expected shortfall(ES) on returns

of the Nigerian stock index. This was done by considering a mixture of Student's-t distri-

butions over different time and regimes. Single regime asymmetric GARCH models were

compared with their Markov switching counterparts. The forecasted risk measures were

back tested using the unconditional coverage (UC)test of (Kupiec, 1995), the conditional

coverage (CC) test of (Christoffersen, 1998) and Dynamic Quantile (DQ) test of (Engle

and Manganelli, 2004). We found that while the Markov switching models were able to ad-

just for spurious high persistence found in the single regime asymmetric GARCH models,

forecast performance is not too different between single and 2-regime models.

The results of this work has raised some questions concerning the behaviour of the

Nigerian stock index.

• For Nigerian stock index, do monthly dynamics differ signi�cantly from daily dy-

namics? The authors hope to investigate by running the same analysis on adjusted

daily closing prices.

• Is sample size a critical determinant in the choice of single or multiple regime mod-

els? The authors hope to investigate this by extending the data to cover more years.
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